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In real-time systems, where tasks have timing requirements, once the workload exceeds the system’s capacity, missed due dates
may cause system overload. In this situation, finding an optimal scheduling that minimizes the cumulative values of late tasks is
critical in both theory and practice. Recently, formalizing scheduling problems as a class of generalized problems, such as
Satisfiability Modulo,eory (SMT) andMaximum Satisfiability (MaxSAT), has been receiving immense concern. Enlightened by
the high efficiency of these satisfiability-based methods, this paper formulates the single-machine scheduling problem of
minimizing the total weight of late tasks as a Weighted Partial Maximum (WPM) Satisfiability problem. In the formulation,
scheduling features are encoded as rigidly enforced hard clauses and the scheduling objective is treated as a set of weighted soft
ones. ,en an off-the-shelf WPM solver is exploited to maximize the total weight of the satisfied soft clauses, provided that all the
hard clauses are satisfied. Experimental results demonstrate that, compared with the existing satisfiability-based methods, the
proposed method significantly improves the efficiency of identifying the optimal schedule. Moreover, we make minor changes to
apply the WPM formulation to parallel-machine scheduling, showing that the proposed method is sufficiently flexible and
well scalable.

1. Introduction

Real-time systems, which are designed to handle tasks with
completion due dates, play an important role in a variety of
modern applications, such as robotics [1], pacemakers [2],
chemical plants [3], telecommunications [4], and multi-
media systems [5]. Under ideal circumstances, a real-time
system completes all tasks before their due dates expire.
However, in reality, the workload may exceed the system’s
capacity, leading to missed deadlines [6]. Such a phenom-
enon is called overload. A classic example is a switch in a
communication network which polls its incoming links to
forward packets that have arrived since its previous servicing

of the link [7]. On each link, different packets may have
different processing times, deadlines, and importance values.
When packages flood the switch, overload happens. In this
situation, designing a suitable scheduling strategy to max-
imize the total value of forwarded packages is critical to
maintain a service’s stability.

Generally, scheduling algorithms can be classified as
online scheduling and offline scheduling, depending on
whether tasks’ information is known a priori. In online
scheduling, the scheduler receives tasks that arrive over time
and must schedule tasks without any knowledge of the
future. On the contrary, offline scheduling algorithms aim at
solving the problem optimally, provided that all data are
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known beforehand 1(note that an offline algorithm does not
contradict with a real-time system. An offline scheduling
algorithm allows a scheduler to make decision based on the
total knowledge of the problem, while a real-time system
assigns each task with a specific due date). Although online
scheduling is more flexible, in many situations, it is nec-
essary to obtain optimal schedules by offline algorithms,
especially in time-critical systems or for the evaluation of
heuristics [8]. In this paper, we take an interest in designing
an offline scheduling method on a single machine to min-
imize the total weight of tasks that miss their due dates.

To date, there has been an immense amount of work
devoted to characterizing scheduling problems and ana-
lyzing the complexity of problems with specific character-
istics. When preemption is prohibited, Michael Moore [9]
presented an optimal algorithm in polynomial time to
minimize the number of late tasks on a single machine,
under the assumption that all tasks are released simulta-
neously without dependency relations. In the standard
three-field notation [10], this problem is 1‖ 􏽐 Uj. Adding
weights on the criteria and setting precedence constraints
may complicate the problem. Richard [11] showed that
1‖ 􏽐 wjUj is binary NP-hard but can be solved by dynamic
programming in O(n 􏽐 pj) time [12], where n is the number
of tasks and pj is the processing time of task τj. Garey and
Johnson [13] showed that the problem of unit-time tasks
subject to precedence constraints, that is,
1|prec, pj � 1| 􏽐 Uj, is NP-hard. Furthermore, Lenstra and
Rinnooy Kan [14] proved that, even for chain-like prece-
dence constraints, where each task has at most one im-
mediate predecessor and at most one immediate successor,
the problem 1|chains, pj � 1| 􏽐 Uj is also NP-hard. Another
prevailing common knowledge is that usually preemptive
problems are not harder than their nonpreemptive coun-
terparts. For example, the problem with release dates
1|rj| 􏽐 Uj is NP-hard [10], while the preemptive version
1|rj, pmtn| 􏽐 Uj can be solved inO(n3k2) [15], where k is the
number of distinct release dates. Further complexity results
for single-machine scheduling problems are listed by [16]
and the scheduling problems with the late work criteria are
surveyed by [17].

Algorithms for solving scheduling are generally classified
as online scheduling and offline scheduling, depending on
whether the full information about tasks is known a priori or
not. Online algorithms aim to return high-quality results
within reasonable CPU time [18–21], whereas offline algo-
rithms are devoted to optimally solving scheduling prob-
lems, given that all data are known beforehand. For large-
scale problems that are computationally intractable, finding
optimal solutions requires a significantly long computation
time and heuristics are proposed to seek for suboptimal
solutions within a short computation time [22–24]. Nev-
ertheless, it is still of great significance to design optimi-
zation algorithms as a testbed for suboptimal solutions and
reap huge benefit when the scheduled application is executed
many times [8]. Previous attempts at finding optimal so-
lutions to single-machine scheduling problems are mainly
based on dynamic programming and branch-and-bound
algorithms, with promising results. For a comprehensive

survey, see the work by [25]. In the last decade, formalizing
scheduling problems as a class of generalized problems, such
as Mathematical Programming (MP) [26–31], Satisfiability
Modulo ,eory (SMT) [8, 32–34], Boolean Satisfiability
(SAT) [35–37], and Partial Maximum (PM) Satisfiability
[38], has received considerable attention. Motivated by the
significant progress in solving these generalized problems,
the formalized scheduling problem can be efficiently
addressed with the corresponding solving algorithms.

As a pioneering work in satisfiability formalization,
Crawford and Baker [35] first encoded scheduling problems
into a SAT problem, paving the way for subsequent work
[36] that solved six types of open job-shop scheduling
problems. Venugopalan and Oliver [27], Liu et al. [37], and
Malik et al. [8] presented optimization frameworks to ad-
dress task graph scheduling with communication costs based
on MIP, SAT, and SMT, respectively. Qi et al. [34] utilized
task duplication strategy-based SMTformulation to mitigate
the negative impact of the interprocessor communication
delay in the task graph scheduling problem. Qamhan et al.
[31] presented a new MILP model to schedule a set of tasks
on a single-machine subject to nonzero release date, se-
quence-dependent setup time, and periodic maintenance.
,e objective of all the above formulations is to minimize the
maximum completion time makespan.

To achieve the goal of minimizing the number of late
jobs, Ourari et al. [26] designed a mathematical integer
programming formulation for single-machine scheduling
without preemption, and Hung et al. [29] developed a
nonstandard MIP formulation to address the arbitrary
preemptive version on parallel machines. ,e restricted
preemptive counterpart on a single machine was solved by
Cheng et al. [32], which encoded the problem as a set of first-
order formulas that are tackled by an SMT solver called Z3.
By running the Z3 solver repeatedly to identify the maxi-
mum number of on-time tasks, the optimal schedule could
be finally determined. ,e SMT-based scheduling is suffi-
ciently flexible because it handles various task properties and
objectives with very few changes in adaption procedure. For
example, when tasks have different importance values and
the objective turns to minimizing the total weight of late
tasks, only the target constraints need to be modified [33].
Later on, Wang et al. [39] enhanced Cheng’s SMT formu-
lation by removing redundant constraints and eliminating
successive calls of the Z3 solver. Experiments illustrated that
the updated formulation improved the efficiency by more
than two orders of magnitude. Recently, Liao et al. [38]
encoded the unweighted version of the same scheduling
problem into Boolean propositional logic and showed that
PM solvers are a competitive alternative to SMT solvers.
However, we notice that when encoding scheduling features,
PM formulation generates redundant variables and clauses.
Such redundancy may create extra calculations and decrease
the overall performance. Furthermore, PM formulation
presented in [38] is incapable of handling weighted prob-
lems where the scheduling goal is to minimize the total
weight of late tasks.

In this paper, we present a Weighted Partial MaxSAT
(WPM) formulation to optimally solve scheduling in
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overloaded situations, with the aim of minimizing the total
weight value of late tasks. ,e minimization objective is
equivalent to maximizing the total weight of the tasks
meeting their due dates. Confronted with a weighted
scheduling problem, we first identify scheduling features
that uniquely characterize the problem, facilitating the
WPM formulation in the encoding phase. ,en, enlightened
by the WPM characteristics that satisfy all hard clauses and
maximize the total weight of the satisfied soft clauses, we
recast the weighted scheduling problem as a WPM problem.
Finally, in the problem-solving phase, we exploit the off-the-
shelf WPM solver to satisfy all the scheduling features and
maximize the total weight of tasks meeting their due dates,
thus deriving the optimal schedule from the output of the
WPM solver. Specifically, we make the following
contributions:

(i) We extend the PM formulation in [38], which was
originally designed for scheduling tasks without
weights, to adapt to the weighted cases.

(ii) Having noticed that redundant Boolean variables
and clauses exist in the previous formulation [38],
we develop a more compact encoding to charac-
terize the scheduling problem. Particularly, to de-
note a task’s completion time, the number of
Boolean variables generated by [38] is proportional
to the number of possible preemptions of the task.
In contrast, the novel compact encoding generates
only one Boolean variable to represent the task’s
completion time, no matter how many times the
task may be preempted.,eoretical analysis shows
the correctness of the compact encoding and
experiments demonstrate the substantial advan-
tages over the previous PM encoding [38] and
SMT formulation [39], which was enhanced from
[33].

(iii) In the WPM encoding, task features are encoded by
several separate rules.,is means if some of the task
features happen to change, only partial rules need to
be modified. To demonstrate the flexibility of our
formulation, we extend the current WPM encoding
to adapt to parallel-machine scheduling with little
modification. We believe that the proposed WPM
encoding can help users readily and effectively
design scheduling for practical systems with low
design cost.

Confronted with a weighted scheduling problem, we first
identify scheduling features that uniquely characterize the
problem, facilitating the WPM formulation in the encoding
phase. ,en, enlightened by the WPM characteristics that
satisfy all hard clauses and maximize the total weight of the
satisfied soft clauses, we recast the weighted scheduling
problem as a WPM problem. In the WPM formulation,
tasks’ features are encoded as a set of hard clauses, and the
goal of completing tasks before their due dates is trans-
formed into a set of weighted soft clauses. Finally, in the
problem-solving phase, we exploit the off-the-shelf WPM
solver to satisfy all the scheduling features and maximize the

total weight of tasks meeting their due dates, thus deriving
the optimal schedule from the output of the WPM solver.

To evaluate the performance of the proposed WPM
formulation, we compare it with the state-of-the-art SMT
formulation [39]. Our evaluation shows that WPM for-
mulation has a dominant advantage over the SMT-based
method in finding out the optimal schedule. We also
compare WPM with the latest PM formulation [38] on a
special case, where all the tasks have equal weights. We
reveal redundancies in PM and discuss how they can be
avoided in WPM. Experiments show that our WPM
encoding is more compact and more time-efficient than PM
for solving the same set of problem instances. Furthermore,
we show that the presented approach is sufficiently flexible to
adapt to parallel-machine scheduling problems with minor
changes.

,e remainder of this paper is organized as follows. ,e
scheduling model is described in Section 2, followed by the
WPM-based optimization framework in Sections 3. We
make theoretical comparisons between WPM and PM
formulation [38] in Section 4 and provide experimental
results to show the superiority of WPM in Section 5. Section
6 exhibits how to extend the WPM formulation of single-
machine scheduling to parallel-machine scheduling. Finally,
we conclude this paper in Section 7.

2. Scheduling Model

We adhere to the definition of scheduling problems in
previous works [33, 39]. For convenience, the notations used
in the model are summarized in Table 1.

,e problem involves n tasks Γ � τ1, . . . , τn􏼈 􏼉 to be
processed. All the tasks request a uniprocessor for execution
when they arrive in the system. Each task τℓ ∈ Γ is repre-
sented by a 4-tuple τℓ � (rℓ, cℓ, dℓ, wℓ), where rℓ, cℓ, dℓ, and
wℓ are all nonnegative integers

2(assuming all parameters to
be integers does not make the problem less general since real
numbers can be scaled to integers with a few orders of
magnitude) representing the release date, the execution
time, the due date, and the weight of τℓ, respectively.
Naturally, rℓ + cℓ ≤dℓ. Weight wℓ reflects the importance of
task τℓ. ,e larger wℓ is, the more important τℓ is. Given due
date dℓ, if task τℓ is completed at or before dℓ, τℓ is on time
and weight wℓ is obtained by the system. Otherwise, τℓ is late
and worthless to the system.

To allow preemption, which indicates that a running task
may be interrupted and resumed later, each task τℓ ∈ Γ is
split into qℓ nonpreemptive subtasks (fragments) and is
defined as a chain of indivisible fragments 〈fℓ

1, . . . , fℓ
qℓ

〉.
Symbol cℓi stands for the required execution time of fℓ

i .
Clearly, 􏽐

qℓ
i�1 cℓi � cℓ. For 2≤ i≤ qℓ, fℓ

i can only start to run
after fℓ

i−1 is completed.
In practical systems, tasks usually have dependency

relations. For example, if task τℓ requires the computed
result of τk, τℓ cannot start until τk is finished. Such a de-
pendency relation between tasks is written as τk ≺ τℓ, where
τk is the immediate predecessor of τℓ, and τℓ is the im-
mediate successor of τk. Obviously, if τk≺τℓ, the constraint
rk + ck ≤dℓ − cℓ should be satisfied; otherwise, τℓ can never
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be completed no matter when its predecessor finishes. ,e
set of task pairs that have dependency relations over Γ is
denoted by Rdp � (τk, τℓ): τk, τℓ ∈ Γ, τk ≺ τℓ􏼈 􏼉.

A system is defined as overloaded if no scheduling al-
gorithm canmeet the due dates of all the tasks that have been
submitted to it. ,is paper focuses on designing an exact
method to tackle overloaded single-machine scheduling
problems. ,e scheduling objective is to maximize the total
weight of the on-time tasks. In particular, if all tasks have
equal weights, then a schedule that maximizes the total
weight will be one that maximizes the number of on-time
tasks.

3. WPM-Based Optimization Framework

In this section, we provide theWPM formulation for solving
the task scheduling problem on a single machine. ,e
overview of the WPM formulation is illustrated in Figure 1.

Feature preprocessing identifies the scheduling problem
with two types of constraints, that is, constraints on
scheduling features and those on objective. Given a set of
tasks Γ � τ1, . . . , τn􏼈 􏼉, scheduling features uniquely char-
acterize the problem over Γ and the objective is to seek for a
schedule that completes all tasks on time subject to con-
straints on the scheduling features. In overloaded situations,
making all the tasks complete by their due dates is im-
possible, and the scheduling problem is then treated as an
optimization problem, which aims to maximize the total
weight of tasks that are completed by their due dates. After
feature preprocessing, WPM encoding can be implemented
separately on the scheduling features and objective. Spe-
cifically, scheduling features, which are intrinsic and de-
termined when tasks are released, are encoded into a set of
hard clauses that should be satisfied without exception. On
the other hand, the objective in overloaded situations is
encoded as a set of weighted soft clauses that are allowed to
be unsatisfied. By conjunction of hard clauses with weighted
soft clauses, the problem turns to a WPM problem that can
be addressed by any off-the-shelf WPM solver. In the
problem-solving phase, a WPM solver tries to satisfy all the
hard clauses and maximize the total weight of satisfied soft
clauses. ,e output of the WPM solver includes the as-
signment of all Boolean variables, from which the optimal
schedule can be derived.

Section 3.1 shows how to identify fragments’ critical time
points to characterize the scheduling problem, paving the
way for the WPM encoding described in Sections 3.2.
Section 3.3 exhibits an example to show how the scheduling
problem is addressed with the presented WPM encoding.
Details on the problem-solving phase are also exhibited in
Section 3.3.

3.1. Feature Preprocessing. Given a task set Γ � τ1, . . . , τn􏼈 􏼉,
where each task τℓ ∈ Γ is characterized by (rℓ, cℓ, dℓ, wℓ),
∀τℓ ∈ Γ, τℓ cannot start before its release date rℓ. ,us, the
possible Earliest Start Time (EST) of τℓ, denoted by ESTℓ, is
equal to its release date rℓ, and the Earliest Completion Time
(ECT) of τℓ, denoted by ECTℓ, is ESTi + ci. ∀(τk, τℓ) ∈ Rdp,
ESTℓ is jointly restricted by rℓ and ECTk. Specifically, if
ECTk ≤ rℓ, then ESTℓ � rℓ; otherwise, ESTℓ � ECTk, sug-
gesting that τℓ should wait until τk is finished. Typically, let
Pℓ be the set of predecessors of τℓ; then
ESTℓ � max rℓ,maxτk∈Pℓ

ECTk􏼈 􏼉􏽮 􏽯.
After ESTℓ for each τℓ in Γ has been determined, ESTand

ECT of each fragment in τℓ can be calculated as follows:

(i) Earliest Start Time (EST) of fℓ
i is denoted by ESTℓ

i ,
where ESTℓ

i � ESTℓ + 􏽐
i−1
u�1c

ℓ
u. ∀τℓ ∈ Γ and ∀fℓ

i ∈ τℓ,
fℓ

i should start at or after ESTℓ
i , indicating that fℓ

i

cannot be started before all its previous fragments
are finished. Typically, ESTℓ

1 � ESTℓ.
(ii) Earliest Completion Time (ECT) of fℓ

i is denoted by
ECTℓ

i , where ECTℓ
i � ESTℓ + 􏽐

i
u�1 cℓu. No fragment

fℓ
i can be completed before ECTℓ

i . Particularly,
ECTℓ

i � ESTℓ
i + cℓi .

In addition to EST and ECT, ∀τℓ ∈ Γ, each fragment
fℓ

i ∈ τℓ is characterized by the two following types of time:

(i) Latest Start Time (LST) of fℓ
i is denoted by LSTℓ

i ,
where LSTℓ

i � dℓ − 􏽐
qℓ
u�i cℓu. If fℓ

i fails to start before
LSTℓ

i , τℓ cannot end by its due date dℓ, and thus this
task becomes worthless to the system.

(ii) Latest Completion Time (LCT) of fℓ
i is denoted by

LCTℓ
i , where LCTℓ

i � dℓ − 􏽐
qℓ
u�i+1 cℓu. Particularly,

LCTℓ
i � LSTℓ

i + cℓi .

Note that, in the above four critical time points, ECT is
unrelated to our WPM encoding. Nevertheless, it is indis-
pensable in the previous work [38], which will be discussed
in Section 4..

3.2. WPM Formulation. ,is section introduces how to
encode the scheduling problem as aWPM problem. AWPM
instance consists of a number of clauses that need to be
managed by the WPM solver. To formulate all the necessary
constraints that characterize the scheduling model, we in-
troduce the three following Boolean variables:

(i) saℓi,t, which is true if fℓ
i starts at time t or later

(ii) prℓ,ki,j , which is true if fℓ
i precedes fk

j

(iii) ebℓ, which is true if τℓ ends by its due date dℓ

Table 1: Notations and descriptions in scheduling model.

Notation Description
Γ Finite set of real-time tasks
n Number of real-time tasks. n � |Γ|
τℓ Task in Γ, where ℓ is its index
rℓ Release date of τℓ
cℓ Execution time of τℓ
dℓ Due date of τℓ
fℓ

i ith fragment of τℓ
qℓ Number of fragments in τℓ
cℓi Execution time of fℓ

i

τk ≺ τℓ τℓ succeeds τk

Rdp Set of task pairs that have dependency relations
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Based on the generated Boolean variables, the WPM
encoding can be implemented. In what follows, several rules
are presented to encode the features of fragments into a set of
hard clauses. ,e main encoding is derived and enhanced
from previous work [35, 36, 38]. Logical implication a⟶ b

is equivalent to a∨b in classical logic.

(i) (C1) ∀τℓ ∈ Γ, the first fragment of τℓ, that is, fℓ
1,

starts at or after ESTℓ
1:

saℓ1,ESTℓ
1
. (1)

(ii) (C2) ∀τℓ ∈ Γ and ∀fℓ
i , fℓ

i+1 ∈ τℓ, fℓ
i precedes fℓ

i+1:

prℓ,ℓi,i+1. (2)

(iii) (C3) ∀τk, τℓ ∈ Γ, ∀fk
i ∈ τk, and ∀fℓ

j ∈ τℓ, if k≠ l,
τk ≺ τℓ, τℓ ≺ τk, EST

k
i < LCT

ℓ
j and EST

ℓ
j < LCT

k
i , and

then fk
i and fℓ

j may require the processor at the
same time. In this condition, fk

i precedes fℓ
j or fℓ

j

precedes fk
i :

prk,ℓ
i,j ∨ pr

ℓ,k
j,i . (3)

(iv) (C4) ∀(τk, τℓ) ∈ Rdp, if τk fails to be completed by
its due date, then τℓ cannot even start at LSTℓ

1:

ebk⟶ saℓ1,LSTℓ
1+1. (4)

(v) Furthermore, if dk >ESTℓ
1, the first fragment of τℓ

cannot start until the last fragment of τk finishes.
,at is, if dk >ESTℓ

1, then the constraint that fk
qk

precedes fℓ
1 is enforced:

prk,ℓ
qk,1. (5)

(vi) (C5)∀τℓ ∈ Γ and ∀fℓ
i ∈ τℓ, if fℓ

i starts at or after
time t, then it starts at or after time t − 1:

saℓi,t⟶ saℓi,t−1, ESTℓ
i + 1≤ t≤ LSTℓ

i + 1􏼐 􏼑. (6)

(vii) (C6) ∀τℓ ∈ Γ, if τℓ ends before its due date dℓ, then
last fragment fℓ

qℓ
must start at or before time LSTℓ

qℓ
.

In other words, fℓ
qℓ

cannot start at or after time
LSTℓ

qℓ
+ 1:

ebℓ⟶ saℓqℓ ,LSTℓ
qℓ

+1. (7)

(viii) (C7) ∀τk, τℓ ∈ Γ, ∀fk
i ∈ τk, and ∀fℓ

j ∈ τℓ, if fk
i

starts at or after time t and fℓ
j follows fk

i , then fℓ
j

cannot start until fk
i is finished. ,at is, for each

prk,ℓ
i,j asserted by (C2) ∼ (C4), one clause is

generated:
sak

i,t ∧ pr
k,ℓ
i,j ⟶ saℓj,t′ , (8)

where t varies in [ESTk
i , LSTk

i + 1] and

t′ �

LSTℓ
j + 1, if t + c

k
i > LST

ℓ
j,

ESTℓ
j, if t + c

k
i <EST

ℓ
j,

t + c
k
i , Otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

,is formula reveals the following facts: First, if fk
i ends

after LSTℓ
j (i.e., t + ck

i > LST
ℓ
j), then fℓ

j cannot start at or
before LSTℓ

j. Second, if fk
i finishes before ESTℓ

j (i.e.,
t + ck

i <EST
ℓ
j), then fℓ

j starts at or after EST
ℓ
j. Otherwise, fℓ

j

must start at or after time fk
i finishes, that is, t + ck

i .
Up to this point, we have encoded the scheduling fea-

tures as Boolean formulas that can be converted to a set of
clauses. Since the scheduling features are intrinsic properties
inherent in the tasks and their fragments, such clauses are
specified as hard, indicating that all of them must absolutely
be satisfied. For convenience, we refer to the set of hard
clauses introduced in (C1) ∼ (C7) as C.

A task is said to be on time if and only if it is completed
before its due date. ,us, the scheduling objective can be
directly encoded by the following rule:

(O) Maximizing the sum of the weights of on-time tasks:

Scheduling
features

Scheduling
objective

Hard clauses

Weighted
soft clauses

WPM
solver

Scheduling
problem

Optimal
schedule

Feature preprocessing WPM encoding Problem solving

All satisfied

Maximize the total weight
of satisfied soft clauses

>

Figure 1: Overview of the WPM-based scheduling method.
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ebℓ, wℓ( 􏼁, (1≤ ℓ ≤ n). (10)

Equation (10) indicates that if clause ebℓ is satisfied (i.e.,
evaluating to true), then weight wℓ is gained; otherwise, the
gain is zero. To simplify the discussion, we introduce O to
denote the set of clauses in equation (10). In an overloaded
system, not all tasks can be completed before their due dates.
To handle such situations, we declare the clauses in O to be
soft, indicating that completing all the tasks by their due
dates is a soft constraint. Conjunct with C, the problem is
then C,O{ }. ,is leads to a WPM problem, which tries to
find an assignment of variables to satisfy all the hard clauses
inC and to maximize the sum of the weights of the satisfied
soft clauses in O, that is, to maximize 􏽐

n
ℓ�1 wℓ · ebℓ.

3.3. A Pedagogical Example. Let us consider a simple
scheduling problem to describe how WPM formulation
works. As shown in Figure 2(a), there are a set of real-time
tasks Γ � τ1, τ2, τ3􏼈 􏼉, where both τ1 and τ3 rely on the
computed result of τ2, represented as τ2≺τ1 and τ2≺τ3; that
is, Rdp � (τ2, τ1), (τ2, τ3)􏼈 􏼉. ,e release dates, the execution
times, the due dates, and the weights of these tasks are,
respectively, defined as τ1 � (0, 2, 3, 1), τ2 � (0, 1, 1, 2), and
τ3 � (0, 1, 2, 3). Suppose that τ1 has two fragments, that is,
〈f1

1, f1
2〉. τ2 and τ3 each have one, denoted by f2

1 and f3
1,

respectively. ,e execution time of each fragment is 1.
,e refined problem exhibition and the critical time

points after feature preprocessing are summarized in
Figure 2(b) and Table 2, respectively. Since ECT has nothing
to do with the WPM encoding, we omit this entry in Table 2
for conciseness.

,e MaxSAT formulation applied to the scheduling
problem is shown in Figure 3. Constraint (C1) states that
each task starts at or after its EST. Constraints (C2) and (C3)
work together to specify the execution sequence of the
fragments. (C2) forces all the fragments in a single task to be
executed sequentially, and (C3) guarantees no overlap of the
execution times of any two fragments in different tasks. In
the three tasks, only τ1 has more than one fragment, and
hence constraint (C2) only applies to τ1, ensuring that f1

1
precedes f1

2. Constraint (C3) applies to pairs of fragments fk
i

and fℓ
j(k≠ l) satisfying ESTk

i < LCT
ℓ
j and ESTℓ

j < LCT
k
i . If

both conditions are met, then fk
i and fℓ

j may simultaneously
occupy the processor, and thus we need to decide in what
order to execute them. Constraint (C3) tackles this ordering
dilemma, which states that either one can precede the other.
Consider f1

1 and f3
1. As seen in Table 2, EST1

1 < LCT
3
1 and

EST3
1 < LCT

1
1; hence, we must explicitly specify that f1

1
precedes f3

1 or f3
1 precedes f1

1; otherwise, the execution time
of these two fragments may overlap. Constraint (C4) applies
to a situation where tasks have dependency relations. In the
example, τ2 is the predecessor of both τ1 and τ3; thus we
should give up processing τ1 and τ3 if τ2 misses its due date.
In addition, given d2 � EST1

1 and d2 � EST3
1, there is no need

to explicitly specify the execution sequence of the prede-
cessor and successors since τ2 must have finished before τ1
and τ3 start. Constraints (C5) ∼ (C7) are partially extracted
from a collection of coherence conditions [35] on the

introduced variables for all the fragments of all the tasks.
Finally, constraint (O) gives the problem’s objective, that is,
completing the last fragment of each task by its due date.

All the clauses are conjunct with ∧ to form a WPM
problem in CNF, where clauses (C1) ∼ (C7) are declared
hard and those in (O) are soft. ,en the CNF formula is
input to a WPM solver. ,e solver’s output includes the
maximum sum of the weights of the satisfied soft clauses as
well as the corresponding assignment of all the Boolean
variables.

In the exemplified problem, the assigned truth values of
all the Boolean variables are listed in Figure 4, from which
the exact start time of each fragment can be derived.
Consider f2

1. sa
2
1,0 � 1 and sa21,1 � 0 indicate that f2

1 starts at
or after time 0, but it does not start at or after time 1.,en we
can readily determine that f2

1 starts at time 0. A similar
reference can be made on f3

1, which starts at time 1. Both τ2
and τ3 can be completed by their due dates. ,is is ensured
by eb2 � 1 and eb3 � 1. Now, consider f1

1. Figure 4 shows
that sa11,1 � 1 and sa11,2 � 1. Since LST1

1 � 1, that sa11,2 � 1
means that f1

1 cannot start at or before LST1
1. Similarly, as

indicated by the fact that sa12,3 � 1, f1
2 cannot start at or

before LST1
2 either. ,us, we infer that τ1 cannot finish on

time. ,is is confirmed by eb1 � 0. As a result, the maxi-
mized total weight of the completed on-time tasks is
2 + 3 � 5, achieved by completing τ2 and τ3 by their due
dates.

4. Theoretical Discussion

Recall that, in the scheduling model described in Section 2,
each task τℓ is represented as a 4-tuple τℓ � (rℓ, cℓ, dℓ, wℓ).
Consider a special case where the weights of all the tasks are
equal to a constant w, that is, ∀τℓ ∈ Γ, wℓ � w. According to
Section 3.2, to encode this problem, a set of weighted soft
clauses O � (ebℓ, w)􏼈 􏼉 are introduced, where 1≤ ℓ ≤ n.
Conjunct with hard clauses C, problem C,O{ } becomes a
specialWPM problemwith equal weights, which tries to find
an assignment of variables to satisfy all hard clauses inC and
to maximize w · 􏽐

n
ℓ�1 ebℓ. Obviously, the essence of maxi-

mizing w · 􏽐
n
ℓ�1 ebℓ is equivalent to maximizing 􏽐

n
ℓ�1 ebℓ.

,is is a PM problem encoded by [38], where each task τℓ is
modeled as a 3-tuple τℓ � (rℓ, cℓ, dℓ), and the scheduling goal
is to maximize the total number of on-time tasks. In this
section, we make theoretical comparisons between PM-
based [38] and our WPM-based optimization frameworks
when all the tasks have equal weights.

4.1. Similarities of PM and WPM Formulations.
Essentially, the purpose of solving the scheduling problem is
to determine the start time of each fragment to construct an
optimal scheduling solution. To describe such crucial in-
formation, ∀τℓ ∈ Γ and ∀fℓ

i ∈ τℓ, a set of Boolean variables
saℓi,t(EST

ℓ
i ≤ t≤ LSTℓ

i + 1) are introduced to indicate whether
fℓ

i starts at or after time t. As long as the truth values of sa
variables are all assigned, we can readily determine the exact
start time of each fragment. To be specific, if we find a certain
time t′∈ [ESTℓ

i , LST
ℓ
i ] such that saℓi,t � 1 for t≤ t′ and saℓi,t �
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0 for t> t′, then we can determine that the start time of fℓ
i is

t′. If sa
ℓ
i,t is constantly true when t varies in [ESTℓ

i , LST
ℓ
i + 1],

we can conclude that τℓ is late. Note that it is impossible to
designate saℓi,t as true while making saℓi,t−1 false, since if fℓ

i

starts at or after time t, fℓ
i must start at or after t − 1. ,is

constraint is interpreted by rule (C5) in our encoding. In
addition, ∀τℓ ∈ Γ and ∀fℓ

i ∈ τℓ, the start time of fℓ
i should be

at or after ESTℓ
i . Compared with PM, WPM encodes this

constraint in a more concise way by (C1). We postpone the
discussion later in Section 4.2.

Aside from the inherent properties of a fragment’s start
time specified in (C1) and (C5), whether a fragment can start
at a certain time is constrained by two other factors. ,e first
is the execution order of the fragments, which should be
explicitly pointed out in the following two situations: if two
fragments belong to the same task, then they should be
executed sequentially; if two fragments from different tasks
may simultaneously occupy the processor, then either one
can precede the other.,e execution order of two fragments,
fk

i and fℓ
j, is characterized by Boolean variable prk,ℓ

i,j , and the
constraints specified in the above two cases are interpreted
by rules (C2) and (C3), respectively. If the execution order of
the two fragments is determined, the relation of their start
times should be specified. To be specific, if fk

i precedes fℓ
j,

then fℓ
j must start after fk

i finishes. ,is constraint is
guaranteed by rule (C7). Up to this point, all the Boolean
variables and clauses introduced by PM and WPM are
identical. ,at is, rules (C2), (C3), (C5), and (C7) are all
consistent with those introduced in PM.

0 1 2 3

τ3 = (0, 1, 2, 3)

τ2 = (0, 1, 1, 2)

τ1 = (0, 2, 3, 1)

t

(a)

0 1 2 3
t

τ3 = (0, 1, 2, 3)

τ2 = (0, 1, 1, 2)

τ1 = (0, 2, 3, 1)

(b)

Figure 2: A simple scheduling example. (a) Original problem. (b) Problem after feature preprocessing.

Table 2: Critical time points of each fragment in three tasks.

Task Fragment EST LST LCT

τ1
f1
1 1 1 2

f1
2 2 2 3

τ2 f2
1 0 0 1

τ3 f3
1 1 1 2

(C1)

(C2)

(C3)

(C4) eb2 ∨ sa1
1,2

(eb1, 1)

(eb2, 2)

(eb3, 3)eb2 ∨ sa3
1,2

¬sa1
1,2 ∨ sa1

1,1

¬sa2
1,1 ∨ sa2

1,0

¬sa3
1,2 ∨ sa3

1,1

¬sa1
2,3 ∨ sa1

2,2

¬sa1
2,3 ∨ ¬eb1

¬sa2
1,1 ∨ ¬eb2

¬sa3
1,2 ∨ ¬eb3

sa3
1,1

sa2
1,0

sa1
1,1

(C5)

(C6)

(C7)

(O)

>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>

¬sa1
1,1 ∨ ¬pr1,2 ∨ sa1

2,2

¬sa1
1,1 ∨ ¬pr1,1 ∨ sa3

1,2

¬sa1
1,2 ∨ ¬pr1,2 ∨ sa1

2,3

¬sa1
1,2 ∨ ¬pr1,1 ∨ sa3

1,2

¬sa3
1,2 ∨ ¬pr1,1 ∨ sa1

1,2

¬sa3
1,1 ∨ ¬pr1,1 ∨ sa1

1,2pr1,2
1,1

pr1,1 ∨ pr1,1
1,3 3,1

1,1

1,1

1,3

1,3

3,1

3,1

Figure 3: WPM formulation for exemplified problem.

eb1 = 0

eb2 = 1

eb3 = 1

sa1
1,1 = 1

sa1
1,2 = 1

sa1
2,2 = 1

sa1
2,3 = 1

sa2
1,0 = 1

sa2
1,1 = 0

sa3
1,1 = 1

sa3
1,2 = 0

pr1,2 = 11,1

pr1,1 = 01,3

pr1,1 = 13,1

Figure 4: Assignment of all Boolean variables in the exemplified
problem.
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4.2. WPM Improvement. As mentioned in Section 4.1,
∀τℓ ∈ Γ and ∀fℓ

i ∈ τℓ, the start time of fℓ
i cannot be earlier

than ESTℓ
i . PM interprets this constraint by introducing one

hard clause saℓ
i,ESTℓ

i

for 1≤ i≤ qℓ; thus, a total of qℓ clauses are
generated for τℓ. In comparison, as described by (C1) in
Section 3.2, WPM generates only one clause saℓ1,ESTℓ

1
for each

task τℓ ∈ Γ no matter how many fragments τℓ contains. By
combining (C1) with constraints (C2) and (C7), we can
easily obtain saℓ

i,ESTℓ
i

� 1 for 1≤ i≤ qℓ, which is the same as
that declared by PM. ,erefore, the updated rule (C1) re-
duces the number of generated clauses while maintaining the
correctness of the encoding.

For tasks with dependency relations, their execution
sequence may be explicitly or implicitly specified. In par-
ticular, ∀(τk, τℓ) ∈ Rdp, PM indistinguishably generates
prk,ℓ

qk,1 for the dependency relation τk ≺ τℓ. In fact, if the due
date of τk is no later than the ESTof τℓ, that is, dk ≤ESTℓ

1, τℓ
naturally starts after τk is completed; thus the constraint that
is explicitly imposed on the execution sequence is unnec-
essary and can be omitted safely. WPM formulation refined
the encoding in (C4) by introducing prk,ℓ

qk,1 to interpret the
constraint that τk precedes τℓ only when dk >ESTℓ

1; thus,
redundant variables and clauses are eliminated.

Another factor that affects a fragment’s start time is the
completion time of a task. In general, if a task is expected to
be completed by a particular time, then each fragment of the
task should not start later than its LST. ,e relation of
completion time and LST is encoded by PM and WPM
in different ways. In PM, for each fragment
fℓ

i (1≤ ℓ ≤ n, 1≤ i≤ qℓ), a set of Boolean variables
ebℓi,t(ECT

ℓ
i − 1≤ t≤ LCTℓ

i ) are introduced to indicate
whether fℓ

i finishes at or before time t. ,en a set of hard
clauses are generated to restrict the values of the eb variables.

(i) (H1) If fℓ
i ends by t, then it ends by time t + 1:

ebℓi,t⟶ ebℓi,t+1, ECTℓ
i − 1≤ t≤ LCTℓ

i − 1􏼐 􏼑, (11)

(ii) (H2) if τℓ is completed by its due date, then,
∀fℓ

i ∈ τℓ, fℓ
i should finish by LCTℓ

i :
ebℓqℓ ,dℓ
⟶ ebℓi,LCTℓ

i
, 1≤ i≤ qℓ − 1( 􏼁, (12)

(iii) (H3) if fℓ
i starts at or after time t, then it cannot end

before time t + cℓi − 1:
saℓi,t⟶ ebℓi,t+cℓ

i
−1, ESTℓ

i ≤ t≤ LSTℓ
i + 1􏼐 􏼑, (13)

In fact, not all the variables and clauses in (H1) ∼ (H3)
are requisite. Given a task, instead of generating variables to
characterize each fragment’s completion time, it suffices to
create only one variable to declare the task’s due date and
introduce one clause to clarify how the task’s due date both
restricts and is restricted by its start time. In particular,
∀τℓ ∈ Γ, WPM introduces Boolean variable ebℓ to describe
whether τℓ can finish by its due date. ,en a constraint is set
to correlate the due date and the start time of τℓ as follows: if
τℓ ends by dℓ, then fℓ

qℓ
must start at or before LSTℓ

qℓ
. In other

words, if fℓ
qℓ
fails to start at or before LSTℓ

qℓ
, then it cannot

end by dℓ. ,is constraint is encoded by just one clause
described in rule (C6), as declared in Section 3.2:

ebℓ⟶ saℓqℓ ,LSTℓ
qℓ

+1. (14)

Theorem 1. Given task τℓ ∈ Γ, if eb
ℓ
qℓ ,dℓ

in PM (resp., ebℓ in
WPM) is evaluated as true, then saℓ

i,LSTℓ
i +1 for 1≤ i≤ qℓ in both

PM and WPM are false.

Proof. In PM, according to (H2), ebℓqℓ ,dℓ
� 1 makes ebℓi,LCTℓ

i
�

1 for 1≤ i≤ qℓ − 1. ,is indicates that, ∀fℓ
i ∈ τℓ, fℓ

i should
finish by LCTℓ

i . Combined with (H3), it can be inferred that
saℓ

i,LSTℓ
i+1

� 0 for 1≤ i≤ qℓ.
In WPM, that ebℓ � 1 leads to saℓ

qℓ ,LSTℓ
qℓ

+1 � 0 by (C6). In
addition, based on (C2) and (C7), it is clear that
saℓ

qℓ−1,LSTℓ
qℓ−1+1⟶ saℓ

qℓ ,LST
ℓ
qℓ

+1 holds. Under the condition

where saℓ
qℓ ,LST

ℓ
qℓ

+1 � 0, it can be immediately inferred that

saℓ
qℓ−1,LSTℓ

qℓ−1+1 � 0. By repeatedly substituting (C2) into (C7),

we finally obtain saℓ
i,LSTℓ

i+1
� 0 for 1≤ i≤ qℓ. □

Theorem 2. Given task τℓ ∈ Γ, if ∃fℓ
i ∈ τℓ that makes

saℓ
i,LSTℓ

i +1 be evaluated as true, then ebℓqℓ ,dℓ
in PM (resp., ebℓ in

WPM) is false.

Proof. In PM, by (H3), saℓ
i,LSTℓ

i +1 � 1 makes ebℓ
i,LCTℓ

i
� 0.

Combined with (H2), it is obvious that ebℓqℓ ,dℓ
� 0.

In WPM, we discuss the two following cases:

(1) If critical fℓ
i , which makes saℓ

i,LSTℓ
i +1 � 1, is the last

fragment in τℓ, that is, i � qℓ, it is obvious that ebℓ �

0 by (C6).
(2) If 1≤ i≤ qℓ − 1, according to (C2) and (C7), we have

saℓ
i,LSTℓ

i +1⟶ saℓ
i+1,LSTℓ

i+1+1. Since saℓ
i,LSTℓ

i +1 � 1, it is

clear that saℓ
i+1,LSTℓ

i+1+1 � 1. ,e step of substituting
(C2) into (C7) can be repeated until i + 1 � qℓ. Fi-
nally, we have saℓ

qℓ ,LST
ℓ
qℓ

+1 � 1. ,en, by (C6), ebℓ � 0

is obtained.

,eorem 1 shows that if ebℓqℓ ,dℓ
� 1 in PM (resp., ebℓ � 1),

both PM and WPM guarantee that saℓ
i,LSTℓ

i+1
� 0 for 1≤ i≤ qℓ.

,eorem 2 shows that when there exists a fragment fℓ
i ∈ τℓ

that leads to saℓ
i,LSTℓ

i +1 � 1, both PM and WPM come to the
same conclusion that τℓ cannot finish by τℓ, pointed out by
ebℓqℓ ,dℓ

� 0 and ebℓ � 0 in PM and WPM, respectively.
,erefore, the eb variables introduced in PM and WPM have
the same impact on the sa variables and vice versa. Note that,
∀fℓ

qℓ
∈ τℓ, if saℓqℓ ,LSTℓ

qℓ
+1 � 0, a WPM solver always prefers

ebℓqℓ ,dℓ
� 1 in PM (resp., ebℓ � 1 inWPM) to satisfy soft clause

ebℓqℓ ,dℓ
(resp., (ebℓ, w)). In other words, a WPM solver never

prefers ebℓqℓ ,dℓ
� 0 in PM (resp., ebℓ � 0 inWPM) as long as all

the hard clauses input to the solver are satisfied. □

Example 1. ,is example shows the differences between the
PM and WPM formulations when dealing with the com-
pletion time. Assume that τ1 � (0, 2, 3, 1) is a task in Γ,
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which contains two fragments 〈f1
1, f1

2〉. Each fragment has
execution time 1. Table 3 shows the Boolean variables and
the hard clauses introduced by PM andWPM to characterize
the fragments’ completion times.

First, we can determine that ECT1
1 � 1, LCT1

1 � 2,
ECT1

2 � 2, and LCT1
2 � 3. To encode τ1, PM introduces a

series of Boolean variables, eb11,0, eb
1
1,1, eb

1
1,2􏽮 􏽯 and

eb12,1, eb
1
2,2, eb

1
2,3􏽮 􏽯 for f1

1 and f1
2, respectively, representing

whether each fragment is completed by time point t, where
ECT1

i − 1≤ t≤ LCT1
i for 1≤ i≤ 2. ,e relation of eb1i,t and

eb1i,t+1 is specified by rule (H1). To make τ1 finish by its due
date, f1

1 should be completed no later than time 2. ,is is
guaranteed by rule (H2). Finally, the relation between a
fragment’s start and completion times is indicated by rule
(H3). ,erefore, to constrain the completion time of each
fragment, six Boolean variables and eleven hard clauses are
generated by PM. By contrast, WPM introduces only one
variable eb1 to indicate whether τ1 is completed by its due
date. ,en a hard clause is generated to constrain τ1’s due
date and its last fragment’s start time. In this way, both the
Boolean variables and clauses generated by the WPM for-
mulation are reduced.

,e experimental comparison of these two encodings is
demonstrated in Subsection 5.3.

5. Experiments

In this section, we scrutinize the performance compari-
sons of the presented WPM formulation and two sat-
isfiability-based formulations on a set of randomly
generated problems. ,e experimental design is described
in Section 5.1, followed by the evaluation of WPM, SMT
[39], and PM formulations [38] in Section 5.2 and Section
5.3. All tests were conducted on a 3.4 GHz Intel E3-1230
processor with 8 GB RAM. ,e selected solver to evaluate
WPM and PM is QMaxSAT [40], which is a SAT-based
solver using the CNF encodings of cardinality constraints.
,e solver for SMT is Z3 [41], which is a high-perfor-
mance theorem prover chosen by the previous SMT
formulations [33, 39].

5.1.ExperimentalDesign. ,e procedure for generating test
instances is similar to [33, 38, 39], with a variety of pa-
rameter values. Tasks’ release times are randomly gen-
erated following a discrete uniform distribution with an
arriving rate λ, which represents the number of tasks that
arrive during 100 time units. Clearly, a larger λ indicates
that more tasks arrive in the system during a specific
period of time, thus causing heavier overload. For each
task τℓ, the execution time cℓ and the number of fragments
in τℓ (denoted by qℓ) are also randomly generated
according to a discrete uniform distribution. ,e value of
deadline dℓ is calculated by the formula dℓ � rℓ + sfℓ · cℓ,
where sfℓ is a slack factor that reflects the tightness of the
due date. Weight wℓ of task τℓ is randomly chosen from 1
to n in Section 5.2 and is taken as constant 1 in Section 5.3.
,e number of rule pairs with dependency relations is set
10% to the total number of tasks.

We study the factors that may affect the performance of
the satisfiability-based formulations. ,ese factors include
the number of tasks n, the task density (determined by λ), the
execution time cℓ, the number of fragments qℓ, and the slack
factor sfℓ. In the rest of this section, we run different types of
experiments to test the possible changes on these parame-
ters. Table 4 provides a summary of the experimental design,
where DU(i, j) means the discrete uniform distribution over
integer interval [i, j]. For each individual scenario, 100
problem instances are generated. For each instance and
solver, we set a time limit of 300 seconds. If the solver fails to
output the optimal result of an instance within the time
limit, we terminate the procedure and move to the next
problem instance.

5.2.ComparisononWeightedCase. ,is subsection evaluates
the behavior of WPM and SMT formulations [39] for
maximizing the total weight value of on-time tasks. ,e
main metrics for comparison include (1) the proportion of
instances solved within the given time limit and (2) the
average computation time spent on solved instances. ,e
performances of these two formulations in different types of
scenarios are shown in Figure 5. Each data point is the
average computation time of the solved problem instances.
A number with an arrow in the figures denotes the pro-
portion of instances solved within the time limit and is
omitted if the solver addresses all the 100 instances. When
the proportion of the solved instances drops to zero, the
corresponding curve is omitted.

As shown in Figure 5, both formulations perform worse
with the increasing values of all parameters. Nevertheless, in
all the varied scenarios, WPM substantially outperforms
SMT in terms of both the average computation time and the
proportion of successfully solved instances.

5.3. Comparison on Unweighted Case. A Partial MaxSAT
(PM) formulation for optimal scheduling on a single ma-
chine was recently presented [38]. ,e scheduling objective
tackled by PM differs from our WPM formulation in that
PM aims to maximize the total number of on-time tasks,
whileWPM tries to maximize the total weight of the on-time
tasks. When all the tasks have equal weights, these two
objectives become identical, and thus formulations on these
two objectives are directly comparable. In this subsection, we
compare the SMT, PM, and WPM formulations on the
objective of maximizing the number of on-time tasks.

Table 3: Encodings related to eb variables in PM and WPM
formulations.

Variables PM [38] WPM
eb11,0, eb

1
1,1, eb11,2, eb12,1, eb12,2, eb12,3 eb1

Clauses

(H1) eb11,0 ∨ eb
1
1,1, eb

1
1,1 ∨ eb

1
1,2, eb

1
2,1 ∨ eb

1
2,2,

eb12,2 ∨ eb
1
2,3

eb1 ∨ sa12,3
(H2) eb12,3 ∨ eb

1
1,2

(H3)
sa11,0 ∨ eb

1
1,0, sa

1
1,1 ∨ eb

1
1,1, sa

1
1,2 ∨ eb

1
1,2

sa12,1 ∨ eb
1
2,1, sa

1
2,2 ∨ eb

1
2,2, sa

1
2,3 ∨ eb

1
2,3
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Table 4: Experimental design.

Scenario n λ cℓ qℓ sfℓ

S1 50, 100, . . . , 300 10 DU(1, 30) DU(1, 3) DU(1, 4)

S2 100 5, 10, . . . , 25 DU(1, 30) DU(1, 3) DU(1, 4)

S3 100 10 DU(1, α) DU(1, 3) DU(1, 4)

α � 10, 20, . . . , 100

S4 100 10 DU(1, 30) DU(1, β) DU(1, 4)

β � 2, 4, . . . , 12

S5 100 10 DU(1, 30) DU(1, 3) DU(1, c)

c � 1, 2, . . . , 7
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Figure 5: Continued.
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Figure 5: Performance comparison of WPM and SMT for weighted cases in scenarios 1–5. (a) S1: varied number of tasks n; (b) S2: varied
task arriving rate λ; (c) S3: varied execution time cℓ; (d) S4: varied number of fragments qℓ; (e) S5: varied slack factor sfℓ.
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Figure 6: Continued.
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,e overall results with varied n, λ, cℓ, qℓ, and sfℓ are
shown in Figure 6. MaxSATencodings (both PM andWPM)
solved substantially more instances than SMT within the
time limit in all cases. As to the performance comparison
between PM andWPM, the completion percentage of WPM
is always no less than that of PM no matter how the ex-
perimental parameters change. To be specific, with the
number of tasks n increasing from 50 to 300, both PM and
WPM solved all the instances within the time limit
(Figure 6(a)). In comparison, as any of the parameters λ, cℓ,

qℓ, and sfℓ increases, WPM formulation gradually surpasses
PM with more completed schedules (Figures 6(b)–6(e)).

To compare the performances of PM and WPM more
clearly, we provide more criteria for evaluation. ,e first
criterion is the average runtime of PM and WPM formu-
lations on their respective completed schedules. Note that
when PM and WPM solve different numbers of instances
within the time limit, the average runtime on solved in-
stances may not clearly reflect the efficiency of these two
formulations. For example, when qℓ ∼ DU(1, 12), WPM
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Figure 6: Completion percentage of formulations for unweighted cases in scenarios 1–5. (a) S1: varied number of tasks n; (b) S2: varied task
arriving rate λ; (c) S3: varied execution time cℓ; (d) S4: varied number of fragments qℓ; (e) Scenario 5: varied slack factor sfℓ.
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Figure 7: Comparison statistics of PM and WPM for unweighted cases in Scenario 4. (a) Average runtime (s) (b) Number of variables. (c)
Number of clauses.
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solved more instances than PM (as shown in Figure 6(d))
and meanwhile consumed longer time on solved instances
(as shown in Figure 7(a)). In this case, the average runtime is
on longer the proper metric to indicate the performance. On
the other hand, we notice that, in all the tested scenarios, the
instances that were solved by PM could also be addressed by
WPM. ,erefore, we provide a secondary criterion on
runtime, that is, the average runtime of WPM, in solving the
same set of instances as PM solved. Furthermore, since the

computation time of MaxSAT-based methods is closely
related to the numbers of variables and clauses, we collect
such information for reference. ,e comparison results are
illustrated in Figures 8–11 . Criteria for evaluating PM and
WPM are summarized as follows:

(i) ,e average runtime of MaxSAT formulations on
their respective completed schedules. ,e corre-
sponding information of PM and WPM is depicted
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Figure 9: Comparison statistics of PM and WPM for unweighted cases in Scenario 2. (a) Average runtime (s). (b) Number of variables. (c)
Number of clauses.
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in Figures 8(a), 9(a), 10(a), 7(a), and 11(a) labeled
“PM” and “WPM,” respectively.

(ii) ,e average runtime of WPM in solving the same
set of instances as PM solved. ,e corresponding
information is depicted with label “WPM on
InstPM.” If the percentages of schedules completed
by PM and WPM are the same, then “WPM on
InstPM” is omitted (e.g., Figure 7(a)).

(iii) ,e average number of variables generated by
MaxSAT formulations.

(iv) ,e average number of clauses generated by Max-
SAT formulations.

Overall, theWPM formulation is more efficient than PM
in both runtime criteria. ,e only exception appears in
Figure 7(a), where the average runtime of WPM and PM on
solved instances when qℓ ∼ DU(1, 12) is around 140 and 80
seconds, respectively. Although the average computation
time taken by WPM is longer than that by PM, Figure 6(d)
shows that WPM managed to solve 14 instances, while PM
solved only 8 within the time limit. In this case, we resort to
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the secondary criterion on runtime. As shown in Figure 7(a),
WPM consumed merely 60 seconds to solve all the instances
completed by PM. ,us, it is correct to say that WPM can
make a considerable improvement to the solving time. In
addition, WPM achieved more compact encodings by sig-
nificantly reducing the number of Boolean variables and
slightly decreasing the number of clauses. In general, the
computation time increases as the numbers of variables and
clauses grow. ,is in turn explains why WPM achieves
higher efficiency in our experiment.

6. Adaption for Parallel-Machine
Scheduling Problem

While the WPM formulation is designed for single-machine
scheduling, the encoding can be extended to parallel
identical machines with minor changes. ,is section shows
how to apply the WPM formulation to parallel identical
machine scheduling problems.

,e parallel-machine scheduling involves processing n

tasks Γ � τ1, . . . , τn􏼈 􏼉 on m identical machines
M � M1, M2, . . . , Mm􏼈 􏼉. Each machine can handle only one
task at a time, and each task cannot be processed in parallel.
Other settings of the problem are consistent with the single-
machine scheduling problem described in Section 2. Given a
set of tasks Γ and that of machines M, the optimization
problem is not only to find a schedule that gives the start
execution time of each fragment fℓ

i ∈ τℓ in Γ but also a
mapping for fℓ

i to a machine in M.
To indicate on which machine a fragment is executed,
∀τℓ ∈ Γ, ∀fℓ

i ∈ τℓ, and ∀Mu ∈M, we extend the single-
machine scheduling formulation by introducing one more
Boolean variable bℓi,u. bℓi,u � 1 if fℓ

i is executed by Mu and
bℓi,u � 0 otherwise. Correspondingly, rule (C3) in Section 3.2
is replaced with the two following additional constraints:

(i) (R1) ∀τℓ ∈ Γ and ∀fℓ
i ∈ τℓ, fℓ

i is allocated and ex-
ecuted on a single machine:

∨
u�1,...,m

b
ℓ
i,u, 1≤ ℓ ≤ n, 1≤ i≤ qℓ( 􏼁. (15)

(ii) (R2) ∀τk, τℓ ∈ Γ, ∀fk
i ∈ τk, and ∀fℓ

j ∈ τℓ, if k≠ l,
τk ≺τℓ, τℓ ≺τk, EST

k
i < LCT

ℓ
j and ESTℓ

j < LCT
k
i , and

thenfk
i andfℓ

j may require the processor at the same
time. In this condition, fk

i precedes fℓ
j or fℓ

j pre-
cedes fk

i :

b
k
i,u ∧ b

ℓ
i,u⟶ prk,ℓ

i,j ∨ pr
ℓ,k
j,i . (16)

We refer to the set of hard clauses introduced in (R1) and
(R2) as R and rules in (C1) ∼ (C7) excluding (C3) as C′.
Conjunct with the set of weighted soft clauses O defined in
Section 3.2, the problem is C′,R,O􏼈 􏼉, which tries to find an
assignment of variables to satisfy all the hard clauses in
C′ ∪R and to maximize the sum of the weights of the
satisfied soft clauses in O. ,ereby, the parallel identical
machine scheduling problem of maximizing the total weight
of on-time tasks can be optimally solved with any off-the-
shelf weighted Partial MaxSAT solver.

7. Conclusions and Perspective

We concentrated on a Weight Partial MaxSAT (WPM)
formulation for optimal scheduling in overloaded situations.
,e aim is to maximize the (weighted) number of on-time
tasks. Motivated by the WPM feature that distinguishes
between hard clauses and weighted soft clauses, we encoded
the properties of tasks as hard clauses and the goal of
completing tasks on time as a set of weighted soft clauses.
,en an off-the-shelf WPM solver was employed to satisfy
all the hard clauses and maximize the total weight of the
satisfied soft clauses. From the output of the WPM solver,
the optimal schedule can be obtained.

,e WPM formulation’s performance was compared
with that of the recent SMT and Partial MaxSAT (PM)
formulations. First, we compared the performance of WPM
and SMT, demonstrating that WPM is significantly superior
to SMT.,en, we considered a special case where WPM and
PM formulations are directly comparable. Results indicate
that theWPM formulation achieves more compact encoding
and higher efficiency than PM. Finally, we applied the WPM
formulation to parallel identical machines with very little
modification, highlighting the flexibility and scalability of
the encoding.

,e restricted preemptive scheduling model considered
in this paper is built upon earlier works [33, 38, 39], where
each task is split into several nonpreemptive fragments, and
preemptions can only take place at the fragments’ bound-
aries. ,is preemptive model with fixed points is too rigid to
apply in many practical systems. Our future work is to
design exact methods to adapt to variations of preemptive
models. One example is to execute tasks continuously
without interruption for at least a certain portion of time
[42–44]. Instead of splitting tasks into fragments in advance,
this restricted preemptive model only guarantees the min-
imum “granularity” of preemption without predefined
subtasks and thus is more suitable for real-world
applications.
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