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In the case of insufficient quantitative data, qualitative evaluation information is very important for investment decision-making.
However, if it is completely based on qualitative evaluation information, the results may be subjective. In response to this problem,
this paper proposes a method, namely, probabilistic hesitant fuzzy cross-efficiency evaluation (PHFCEE) method, based on
probabilistic hesitant fuzzy theory, cross-efficiency data envelopment analysis (CEDEA). -is method uses probabilistic hesitant
fuzzy sets to collect qualitative evaluation information and then uses the cross-efficiency DEAmodel to fuse quantitative data and
qualitative information. And finally, an investment portfolio is built based on the cross-efficiency value and its variance. In
addition, this article gives the specific operating steps of the PHFCEE method and uses the construction of a portfolio of 10 stocks
in the China CSI 300 Index as an example to illustrate the effectiveness of this method.

1. Introduction

-e investment portfolio can effectively diversify risks [1]. At
present, a large number of suitable tools and sophisticated
models have been used for portfolio construction and se-
lection research [2]. However, most of the methods that have
been constructed require sufficient quantitative data [3, 4].
In fact, in the research process, there are situations where
important indicators are difficult to quantify, there is no
data, or there is little data [5, 6]. For example, the level of the
team is difficult to measure with quantitative data, and the
company that has just gone public has no financial data, etc.
In addition, quantitative data are almost all historical data,
which has certain limitations and one-sidedness in reflecting
expected information and uncertain information. Based on
the consideration of the above issues, we constructed the
PHFCEE model and apply it to portfolio selection. We use
expert evaluation to measure some qualitative indicators and
then use CEDEA to fuse quantitative data and expert
evaluation information and finally build an investment
portfolio based on cross-efficiency values and constraints.
-is article will use probability fuzzy theory to describe the

expert’s evaluation information. It is an interesting method
to combine qualitative evaluation with quantitative data to
construct a portfolio. Because experts have knowledge, ex-
perience, wisdom, and thinking and judgment capabilities
that far exceed those of ordinary investors, they can grasp the
essence and key points from complex information and give a
more objective evaluation. -e quantitative data can effec-
tively reflect historical information and further ensure the
objectivity of the model results.

At present, according to the type and quantity of data
required by the model, the research of portfolio model can
be roughly divided into the following three categories: First,
a portfolio model that requires a large amount of time-series
data to calculate statistical indices. Representative methods
are Markowitz’s portfolio model and its extended models,
such as Huang [7], Zhao and Xiao [8], and Kuzmanovic et al.
[9]. Second, the investment portfolio model proposed is
based on the nonstatistical model, which requires relatively
little data. Nonstatistical methods used in portfolio models
include neural networks [10], CEDEA [11], genetic algo-
rithms [12], and fuzzy theory [13, 14]. -ird, some quali-
tative portfolio models were developed based on fuzzy
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environments, such as Wang and Zhu [15], Chiarawongse
et al. [16], and Zhou and Xu [3, 4].

However, fuzzy data is usually used to describe uncertain
information provided by experts, investors, or decision-
makers [17, 18], which is subjective. -erefore, we believe
that integrating some quantitative data into the model can
build a more effective investment portfolio. Fuzzy theory is
widely used in various fields because it can describe un-
certain information. In the field of investment, interval fuzzy
sets [19–21], hesitant fuzzy sets [22, 23], intuitionistic fuzzy
sets [24, 25], and probabilistic hesitant fuzzy sets [18, 26] are
often used to describe all kinds of evaluation information.
-ese documents provide a theoretical basis for this article to
describe qualitative information using fuzzy theory. Taking
into account the inconsistent preferences of the expert group
when making complex multiattribute decision-making, this
paper chooses to use probabilistic hesitant fuzzy sets to
describe the evaluation information of the expert group.

In addition, there are differences between the evaluation
information of experts and the measurement methods of
quantitative data.-erefore, it is necessary to find a model to
fuse the two kinds of information. Sexton et al. [27] pro-
posed a CEDEA model that can consider both self-evalu-
ation and mutual evaluation, which provides an effective
method for this paper to evaluate efficiency using data
covering both quantitative and qualitative information. -e
CEDEA model has the characteristics of dimensionless, and
it is also a method of measuring the overall organizational
efficiency on multiple metrics and synthesizing a single
index. -ese characteristics provide a theoretical basis for
the fusion of data in this paper. In addition, the CEDEA
model has been applied to portfolio evaluation or selection
[11, 28, 29]. -ese articles provide a valuable reference for us
to use the calculation results of cross-efficiency DEA to
construct investment portfolios.

Based on the above background and literature review,
this paper will combine probabilistic hesitant fuzzy the-
ory, CEDEAmodel, and mean-variance to construct a new
portfolio method. Its main function is to construct a
portfolio based on quantitative data and qualitative
evaluation information. As an illustration of the meth-
odology presented in this article, we report a case study
involving 10 companies in the China CSI 300 Index. In
addition, the possible advantages of this article are as
follow: First, the model uses both quantitative data and
qualitative evaluation to describe important information
about investment products or projects, which will show
product features more comprehensively. -is will help
decision-makers or investors to make more accurate
judgments. Second, the model uses the cross-efficiency
DEA model to fuse two forms of data. -ird, the model
can be used for portfolio construction with only one data
form or mixed data information form.

-e rest of this article is structured as follows: Section
2 introduces the basic knowledge of hesitant fuzzy,
probabilistic hesitant fuzzy, and CEDEA model. In Sec-
tion 3, we build a method, named PHFCEE model, and
introduce the steps to use it for portfolio selection. Section
4 provides a practical case to demonstrate the effectiveness

and operability of this model. Section 5 introduces the
conclusions, shortcomings, and prospects of this article.

2. Preliminary Concepts

As an effective multicriteria decision-making method, the
cross-efficiency DEA is often used in portfolio selection and
construction. But when using this method, it is mostly based
on objective statistical data, and the statistical data has
certain one-sidedness and limitations. In order to overcome
this shortcoming, this paper introduces the probabilistic
hesitant fuzzy data with subjective information into the
CEDEA model to form a new method of portfolio con-
struction based on comprehensive information. -is part
will briefly introduce the basic theories and concepts in-
volved in the new method, that is, hesitant fuzzy, proba-
bilistic hesitant fuzzy, and the CEDEA model.

2.1.Hesitant Fuzzy Set (HFS) andProbabilisticHesitant Fuzzy
Set (PHFS). To solve the problem of inconsistent prefer-
ences of experts in complex multiattribute decision-making,
Torra [30, 31] proposed the hesitant fuzzy set, whose core
idea is that all the preferences of experts are taken as
membership values. -is concept is expressed as follows:

Definition 1 (see [30, 31]). Given any nonempty set S, the
hesitant fuzzy set H(s)defined in the collection S can be
expressed as

H(s) � < s, h(s)> |s ∈ S{ }, (1)

where h(s) � (cτ|τ � 1, 2, · · · , ℓ), s is an element in the set
S,h(s) is the hesitant fuzzy element, c ∈ [0, 1] is the degree of
membership, and arranged in ascending order, and τ rep-
resents the sort position of c. H(s) is the set of h(s), and h(s)

is the set of c.

Example 1. If an expert’s rating on the return on assets of an
enterprise is 0.5 or 0.6, the corresponding hesitant fuzzy
element can be expressed as h(s) � 0.5, 0.6{ }.

According to Definition 1 and Example 1, all mem-
bership degrees in HFS have the same importance or the
same probability. However, when evaluating assets, it is
usually carried out by multiple experts, and experts have a
certain tendency to score. Example 2. If the expert’s score for
a certain company’s return on assets is more inclined to 0.6,
this means that the degree of membership of 0.6 is more
important or the probability of occurrence is greater. Ex-
ample 3. Suppose that the set of scores given by Expert 1 and
Expert 2 on the return on assets of a certain enterprise are
0.5, 0.6{ } and 0.6, 0.7{ }, respectively. -en, the hesitant fuzzy
element composed of the comprehensive information of
Expert 1 and Expert 2 is denoted as h(s) � 0.5, 0.6, 0.7{ }.
Among them, 0.6 appears in both score sets, indicating that
it has a more important degree.

From the above analysis, it can be seen that the degree of
membership in the HFS, that is, the expert score, fails to
reflect the tendency of the expert score and the number of
experts. -is will result in the loss of a large amount of
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decision-making information. -erefore, this paper further
uses PHFS to synthesize the evaluation information of the
expert group. -is concept can be expressed as follows.

Definition 2 (see [32]). Given any nonempty set S, the
probabilistic hesitant fuzzy set _H(s) defined on set S can be
expressed as

_H(s) � < s, h(p(s)) > |s ∈ S􏼈 􏼉, (2)

where h(p(s)) � (cτ|pτ|τ � 1, 2, · · · ℓ), s is an element in the
set S , h(p(s)) is the hesitant probabilistic fuzzy element,
c ∈ [0, 1] is the degree of membership arranged in ascending
order, and τ represents the sort position ofc. When
pτ � c,c � 1/ℓ(τ � 1, 2, · · · ℓ), the probabilistic hesitant fuzzy
set _H(s) degenerates into the hesitant fuzzy set H(s).

Example 4. Based on Example 3, the probabilistic hesitant
fuzzy element can be expressed as
h(p(s)) � 0.5|0.25, 0.6|0.5, 0.7|0.25{ }, where the member-
ship degrees are 0.5, 0.6, and 0.7, respectively. -e proba-
bility of 0.5 is 0.25, the probability of 0.6 is 0.5, and the
probability of 0.7 is 0.25. It is found that the probability of 0.6
is higher than other membership degrees.

2.2. Cross-Efficiency DEAModel (CEDEA). CEDEA can not
only effectively measure efficiency, but also provides a
method to systematically choose a weight when there are
multiple metrics. All these provide the basis for this article to
build a portfolio based on objective data and subjective
judgments. -e calculation steps of the CEDEA model are
briefly described as follows [27].

Suppose that there are as many as l DMUs whose effi-
ciency needs to be measured, denoted as
DMUr, (r � 1, 2, · · · , l); each DMU evaluated hasm kinds of
inputs and n kinds of outputs, denoted asxi(i � 1, 2, · · · , m)

and yj(j � 1, 2, · · · , n), respectively; the weights of inputs
and outputs are αi(i � 1, 2, · · · , m) and βj (j � 1, 2, · · · , n),
respectively.

First, solve the efficiency value ett of DMUt based on the
linear programming form of the CCR model [33]:

ett � Max 􏽘

n

j�1
βjyjt,

s.t.

􏽘

n

j�1
βjyjt − 􏽘

n

j�1
αixir ≤ 0,

􏽘

m

i�1
αixit � 1,

αi ≥ 0, βj ≥ 0,

i � 1, 2, · · · , m, j � 1, 2, · · · , n, t, r � 1, 2, · · · , l,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where ett is the efficiency value of DMUt and xit, xir are the
m kinds of inputs of DMUtand DMUr, respectively, and yjt,
yjr are the n outputs of DMUt and DMUr, respectively, αi

and βj are the weights of input and output, respectively,
t, r � 1, 2, · · · , l, i � 1, 2, · · · , m and j � 1, 2, · · · , n.

Second, the optimal weights α∗it and β∗jt of DMUt cal-
culated in model (3) are substituted into the following
equation to calculate the mutual evaluation efficiency value
etr between DMUt and DMUr:

etr �
􏽐

n
j�1 β
∗
jtyjr

􏽐
m
i�1 α
∗
itxir

, t, r � 1, 2, . . . , l; t≠ r. (4)

-ird, to calculate the cross-efficiency value er of DMUr,
the formula is as follows:

er �
1
l

􏽘

l

t�1
etr �

1
l

􏽘

l

t�1

􏽐
n
j�1 β
∗
jtyjr

􏽐
m
i�1 α
∗
itxir

. (5)

In addition, calculate the degree of deviation of cross
efficiency of DMUr, that is, the variance. -e formula is as
follows:

σ2r �
1
l

􏽘

l

t�1
etr − er( 􏼁

2
. (6)

-is section briefly introduces the definitions of hesitant
fuzzy set and probabilistic hesitant fuzzy set and the ap-
plication steps of the CEDEA model. -is provides a the-
oretical basis for constructing the PHFCEE method.

3. PHFCEE Model Construction and
Portfolio Selection

At present, portfolio selection and efficiency evaluation are
mostly based on objective statistical data, ignoring the one-
sidedness and limitations of statistical data. However, the
probabilistic hesitant fuzzy theory can effectively deal with
the fuzzy subjective evaluation information of experts.
-erefore, this paper introduces it into the CEDEA model
and puts forward the PHFCEE model. -e essence of the
model is to take the multiangle and multifactor fuzzy
evaluation data of the expert group as the output or input in
the CEDEA model at the same time. -en, the portfolio is
constructed based on the efficiency value and its variance,
which is estimated by the PHFCEE model.

In the whole method, first of all, each expert evaluates the
attributes of the asset to form a hesitant fuzzy set, and then
based on all the hesitant fuzzy sets obtained by the expert
group, a comprehensive hesitant fuzzy set is formed. Finally,
the probabilistic hesitant fuzzy set is formed by calculating
the probability. Definitions 4–6 are proposed to show more
clearly how the model integrates information and obtains
the probability of membership. -e relevant definitions are
as follows.

Definition 4. Given that S is a nonempty set. -e com-
prehensive hesitant fuzzy set 􏽥H defined on set S can be
expressed as

􏽥H � < s, h′(s)> |s ∈ S􏼈 􏼉, (7)
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where h′(s)(h′(s) � 1h(s)∪ 2h(s)∪ · · · ∪ kh(s)􏼈 􏼉 is the
comprehensive hesitant fuzzy element and kh(s) represents
a hesitant fuzzy element.

Definition 5. Given any comprehensive hesitant fuzzy ele-
ment h′(s) � (cτ|τ � 1, 2, · · · ℓ), let h′ � h′(s), where
membership degrees can be defined as follows:

c
τ′ ∈ c

τ1
1 ∪ c

τ2
2 ∪ · · · ∪ c

τk

k􏽮 􏽯,

􏽘

k

a�1
τa ≥ ℓ′ ≥ ℓ τa � 1, 2, · · · ℓ; a � 1, 2, · · · k( 􏼁.

(8)

where cτ′ is membership degrees of the comprehensive
hesitant fuzzy element, c

τk

k corresponds to the hesitant fuzzy
element of the kth expert, τa, τ′ is the ranking of the
membership degree, which is sorted by default from small to
large, and ℓ , ℓ′ are the number of membership degree and
comprehensive membership degree, respectively.

Definition 6. Given an arbitrary probabilistic hesitant fuzzy
element h(p(s)) � (cτ|pτ|τ � 1, 2, · · · ℓ), let 􏽥h′ � h(p(s))

such that the probability corresponding to its membership
degree can be defined as

p
τ′

�
N c

τ′
􏼒 􏼓

􏽐
k
a�1 τa

, (9)

where N(cτ′) represents the frequency of the same mem-
bership value s in the k hesitant fuzzy elements of the at-
tribute and 􏽐

k
a�1 τa represents the sum of the number of all

the subhesitant fuzzy elements.
Because the CEDEA model cannot effectively deal with

the fuzzy data of probabilistic hesitant degree, this paper
obtains its expected value based on probability to represent

the expert group’s score of asset attributes. Above, the S

nonempty collection defined represents the property col-
lection of the asset.

Definition 7. Given an arbitrary probabilistic hesitant fuzzy
element h(p(s)) � (cτ′ |pτ′ |tτ′n � q1, 2h,··· xℓ′), the score
function is defined as

E 􏽥h′􏼒 􏼓 � 􏽘
ℓ

τ�1
c
τ′

p
τ′

. (10)

Definition 8. Given any nonempty set Y, defining the
corresponding set Y of scores on the sets(s ∈ S), it can be
expressed as

Y � < s, E 􏽥h′􏼒 􏼓> |s ∈ S􏼚 􏼛. (11)

-en, the score set of all assets can be represented by a
matrix, and at the same time, y′ � E( 􏽥h′):

s11 s12 · · · s1b

s21 s22 · · · s2b

⋮ ⋮ · · · ⋮

sl1 sl2 · · · slb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y11′ y12′ · · · y1n″′

y21′ y22′ · · · y2n″′

⋮ ⋮ · · · ⋮

yl1′ yl2′ · · · yln″′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where it corresponds slb to ylb one by one. slb represents the l

attribute of the b asset; then ylb
′ corresponds to the com-

prehensive score given by the expert group.
Secondly, based on the above definition and formula, the

PHFCEEmethod containing probabilistic fuzzy information
data is constructed, and its linear programming form is as
follows:

e
∗
tt � Max 􏽘

n′

j�1
βjyjt + 􏽘

n″

b�1
βbybt
′,

s.t.

􏽘

n′

j�1
βjyjt + 􏽘

n″

b�1
βbybt
′ − 􏽘

m

i�1
αixir ≤ 0,

􏽘

m

i�1
αixit � 1,

αi ≥ 0, βj ≥ 0, βb ≥ 0

i � 1, 2, · · · , m; j � 1, 2, · · · n′; b � 1, 2, · · · , n″; t, r � 1, 2, · · · , l; t≠ r,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where e∗tt is the optimal efficiency value of the t asset
(DMUt), xit and xir have m kinds of inputs of assets, yjt and
yjr have n′ kinds of the objective statistical data output of
assets, ybt, ybr are n″ kinds of the subjective fuzzy data
output of assets, αi is input weights, and βj and βb are output
weights.

-rough model (13), the optimal efficiency value e∗tt and
the corresponding optimal weights α∗it, β

∗
jt, β
∗
bt DMUt are

obtained, and the mutual evaluation efficiency _etr of DMUr,
as shown in Table 1, is further calculated.

_etr �
􏽐

n′
j�1 β
∗
jtyjr + 􏽐

n″
b�1 β
∗
btybr
′

􏽐
m
i�1 α
∗
itxir

, t, r � 1, 2, · · · , l; t≠ r.

(14)

-e cross-efficiency 􏽥er of DMUr and its variance 􏽥σ2r are
calculated as follows:
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􏽥er �
1
l

􏽘

l

t�1
etr �

1
l

􏽘

l

t�1

􏽐
n′
j�1 β
∗
jtyjr + 􏽐

n″
b�1 β
∗
btybr
′

􏽐
m
i�1 α
∗
itxir

,

􏽥σ2r �
1
l

􏽘

l

t�1
_etr − 􏽥er( 􏼁

2
.

(15)

Finally, the cross-efficiency value 􏽥er and its variance 􏽥σ2r
are defined as the return and risk of financial assets,

respectively [11]. Based on the mean-variance framework, a
portfolio selection method including probability model
information and cross efficiency can be established. We
provide the portfolio selection method of maximizing return
and the portfolio selection method of minimizing risk, as
follows.

-e revenue maximization under constraint conditions:

e
#

� max􏽘
l

r�1
wr

􏽥er

s.t 􏽘

l

r�1
wr

􏽥er ≥
1
l

􏽘

l

r�1

􏽥er, 􏽘
l

r�1
w

2
r 􏽥σ2r ≤

1
l
2 􏽘

l

r�1
􏽥σ2r , 􏽘

l

r�1
wr � 1, wr ≥ 0, r � 1, 2, · · · , l.

⎧⎨

⎩

(16)

Risk minimization under constraints:

e
◇

� min􏽘
l

r�1
w

2
r 􏽥σ2r

s.t 􏽘

l

r�1
wr

􏽥er ≥
1
l

􏽘

l

r�1

􏽥er, 􏽘
l

r�1
w

2
r 􏽥σ2r ≤

1
l
2 􏽘

l

r�1
􏽥σ2r , 􏽘

l

r�1
wr � 1, wr ≥ 0, r � 1, 2, · · · , l,

⎧⎨

⎩

(17)

where wr is the weight of the DMUr, that is, the investment
proportion of the corresponding financial assets; l is the
number of assets; the purpose function is to maximize the
return e#and minimize the market risk e◇; the constraint
conditions mean that the expected return of the portfolio
should not be lower than the average return, and the risk
should not be higher than the average risk, so the sum of the
investment proportion of the assets is 1.

To better illustrate the operability and practicability of
the above method, this paper gives specific steps. Suppose
there are as many as l decision-making units (DMUr,
r � 1, 2, · · · , l), among which there are m inputs (xi,
i � 1, 2, · · · , m), and there are n′ objective outputs (yj,
j � 1, 2, · · · , n′) and n″ subjective fuzzy inputs (yb

′,
b � 1, 2, · · · , n″). At the same time, fuzzy input corresponds
to the comprehensive evaluation of attributes of the
n″decision-making units by the expert group (G), in which
the attributes are (sb, b � 1, 2, · · · , n″), k members of the
expert group (Ga, a � 1, 2, · · · , k), the comprehensive score is
(Eb(#h′), b � 1, 2, · · · n″), the hesitant fuzzy set is Hk, the
comprehensive hesitant fuzzy set is 􏽥H, and the probabilistic
hesitant module set _H.

(i) -e first step is to obtain the hesitant fuzzy set of all
attributes of the decision-making unit from the
members of the expert group.

s1 s2 · · · sn″

Ha �

DM U1

DM U2

⋮

DM Ul

ah s11( 􏼁 ah s12( 􏼁 · · · ah s1n″( 􏼁

ah s21( 􏼁 ah s22( 􏼁 · · · ah s2n″( 􏼁

⋮ ⋮ · · · ⋮
ah sl1( 􏼁 ah sl2( 􏼁 · · · ah sln′( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(18)

whereah(srb) � (c
τa

ln″ |τa � 1, 2, · · · u; a

� 1, 2, · · · k; r � 1, 2, · · · , l; b � 1, 2, · · · , n″).
(ii) the second step, according to Definition 4 and

Definition 5, the hesitant fuzzy set
Ha(a � 1, 2, · · · k) of the expert members is com-
bined to form a comprehensive hesitant fuzzy set
􏽥H for all attributes of all decision-making units.
And then,
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h′(s) �
1
h(s)∪ 2h(s)∪ · · · ∪ k

h(s)􏽮 􏽯,

􏽥H �

1h s11( 􏼁∪ · · · ∪ kh s11( 􏼁􏼈 􏼉 · · · 1h s1n″( 􏼁∪ · · · ∪ kh s1n″( 􏼁􏼈 􏼉
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whereh′(srb) � (cτ|τ � 1, 2, · · · , ℓ; r

� 1, 2, · · · , l; b � 1, 2, · · · , n″).
(iii) -e third step is to calculate the probability of the

membership degree in the comprehensive hesitant

fuzzy element according to Definition 6, that is,
equation (10), to form a probabilistic hesitant fuzzy
set _H as follows:
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(iv) In the fourth step, according to Definition 7 and
Definition 8, the probabilistic hesitant fuzzy set _His
calculated, and the comprehensive evaluation

information of the expert group is obtained, which
is shown as follows:

E( _H) �

E #h11′( 􏼁 E #h12′( 􏼁 · · · E #h1n″′( 􏼁

E #h21′( 􏼁 E #h22′( 􏼁 · · · E #h2n″′( 􏼁

⋮ ⋮ ⋮ ⋮
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where yrb
′ � E(#hrb

′), (r � 1, 2, · · · , l; b � 1, 2, · · · ,

n″).
(v) In the fifth step, xi, yj,

yb
′(i � 1, 2, · · · , m; r � 1, 2, · · · , l; b � 1, 2, · · · , n″) is

substituted into model (12) to estimate the optimal
efficiency value DMUt(t � 1, 2, · · · , l) of the eval-
uated asset e∗tt and its corresponding optimal
weight α∗it, β

∗
jt, β
∗
bt.

(vi) In the sixth step, the optimal weight of
DMUt(t � 1, 2, · · · , l) is substituted into equation
(13) to calculate the mutual evaluation efficiency of
_etr(r≠ t), as shown in Table 1.

(vii) In the seventh step, the crossover efficiency values
􏽥er and variance 􏽥σ2r are calculated according to
equations (14) and (15), as shown in Table 2.

(viii) In the eighth step, the cross-efficiency value 􏽥er and
variance 􏽥σ2r estimated by the cross-efficiency DEA
are defined as the return and risk of the investment,
respectively, and then the investment weight is

calculated based on the investor’s investment
purpose model (16) or (17). Model (16) maximizes
the profit and model (7) minimizes the risk.

4. Illustrated Example

Investors often build their portfolios based on quantitative
data and information and lack of adoption and analysis of
qualitative information. -e main reason is that qualitative
information is difficult to quantify. To solve this problem, the
method of expert evaluation is introduced to evaluate the
attribute information that cannot be quantified, and the
fuzzy methods of hesitant and probabilistic hesitant are used
to collect and quantify the evaluation information with
preference. To fuse and analyze the quantitative data and
qualitative information, this paper further introduces the
CEDEA model, which has the advantage of dimensionless.
Based on this, this paper proposes the PHFCEE model to
measure the cross-efficiency (benefit) and variance (risk)
containing quantitative and qualitative information. Finally,
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the calculation results of the PHFCEE model are substituted
into the portfolio model constructed in the third part to
calculate the final portfolio components and weights.

To demonstrate the effectiveness of themethod proposed
in this paper, we select 10 stocks in the CSI 300 index for a
case study. -e corresponding enterprises (code/variable
life) are Industrial and Commercial Bank of China (601398/
DMU1), China Pacific Insurance (601601/DMU2), Shanghai
Pharmaceutical (601607/DMU3), China Zhongzhi (601618/
DMU4), China Life Insurance (601628/DMU5), China
Construction (601668/DMU6), Shanghai Electric (601727/
DMU7), Everbright Securities (601788/DMU8), China Ex-
emption (601888/DMU9), and Zijin Mining (601899/
DMU10). In addition, because the general CEDEA model
cannot deal with data with negative values, this paper ex-
cludes enterprises with missing values and negative values
when screening sample data. Finally, the ten enterprises
shown above are formed as samples. According to the an-
nual report of the enterprise in 2020, the relevant financial
data are obtained to calculate the input and output indi-
cators required by the PHFCEE model. Indicators that will
reflect the operational ability, solvency, and growth ability of
the enterprise [11, 34, 35] are considered as input to the
PHFCEE model. -e profitability of the enterprise and the
market reaction of the stock is taken as the output of the
objective data of the model. In addition, this paper also takes
the output of the subjective data of the model through the
evaluation of experts from the aspects of enterprise prospect,
enterprise innovation, team level, and so on. Specific in-
formation on the relevant indicators is shown in Table 3.

In Table 3, except for the expert evaluation section, the
corresponding financial data in other sectors can be cal-
culated from the annual report data published by enterprises
between March and April each year. -is paper takes the
annual report data of 10 enterprises in 2020 as an example.
-e expert evaluation section consists of a team of three
experts to evaluate the selected enterprises from three as-
pects: enterprise prospect, enterprise innovation, and team
level, in which the evaluation result of each expert is
expressed in the form of the hesitant fuzzy set. -e evalu-
ation result of the expert group is expressed by the com-
prehensive hesitant fuzzy set, and the evaluation result of the
expert group considering the importance of membership is

expressed by the probabilistic hesitant fuzzy set. According
to the specific steps of the method given in the third part of
the article, the analysis of this case is as follows.

-e first step is to obtain the evaluation results of 10
enterprises by three experts from three aspects: enterprise
prospect, enterprise innovation, and team level, using hes-
itant fuzzy set H1, H2, and H3 Express. -e correspondence
is shown in Tables 4–6, respectively. -e second step, based
on Definitions 4 and 5, merges the hesitant fuzzy elements
for the same attribute in the hesitation fuzzy set and of the
three experts and finally combines the comprehensive
hesitation fuzzy set, which contains the evaluation results of
all attributes of 10 enterprises, as shown in Table 7.

-e third step is to calculate the probability of each
membership degree in the comprehensive hesitant fuzzy set
according to equation (10), to form a probabilistic hesitant
fuzzy set _H that contains more expert group evaluation
information, as shown in Table 8.

-e fourth step is based on Definitions 7 and 8 and
probabilistic hesitant fuzzy set _H. -e comprehensive scores
for each attribute of 10 enterprises are calculated, respec-
tively, and the results are shown in Table 9.

In the fifth step, the input and output data of 10 enter-
prises are substituted into model (12) to estimate the optimal
self-evaluation efficiency value e∗tt and the optimal weight α∗it,
β∗jt, β

∗
bt, and substitute it into model (13) to calculate the

mutual evaluation efficiency between enterprises _etr(r≠ t).
-e estimated results run through MATLAB are shown in
Table 10. In this table, the value on the diagonal is the self-
evaluation efficiency of the enterprise, and the nondiagonal
data of each row is the mutual evaluation efficiency of other
enterprises to the corresponding enterprises of the bank.

-e sixth step is to calculate the cross-efficiency value 􏽥er

and variance 􏽥σ2r between enterprises according to equation
(15) and equation (16) and sort them from large to small, as
shown in Table 11.

According to Table 11, the three enterprises with the
largest cross-efficiency values are DMU1, DMU5, and
DMU2, and their corresponding variances are 0.2031 (10),
0.3457 (4), and 0.3428 (5), respectively. -us, it can be seen
that except for the relatively high return and relatively low
risk of enterprise DMU1, the income and risk of other
enterprises show different characteristics.

In the seventh step, the cross-efficiency value 􏽥er and
variance 􏽥σ2r are regarded as the risk and return of the in-
vestment, respectively, and substituted into model (17) or
model (18) to calculate the investment weight w. It is assumed
that there are no taxes, no transaction costs, no short selling,
and full liquidity when constructing the investment portfolio.

Table 1: Mutual evaluation efficiency matrix among decision-making units.

Assets DMU1 DMU2 · · · DMUl

DMU1 _e11 _e12 · · · _e1l

DMU2 _e21 _e22 · · · _e2l

⋮ ⋮ ⋮ · · · ⋮
DMUl _el1 _el2 · · · _ell

Note. -e diagonal is the self-evaluation efficiency of the asset; the nondiagonal element is the mutual evaluation efficiency between the assets.

Table 2: Cross efficiency and variance.

Assets DMU1 DMU2 · · · DMUl

er
􏽥e1

􏽥e2 · · · 􏽥el

􏽥σ2r 􏽥σ21 􏽥σ22 · · · 􏽥σ2l
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In this paper, 5, 6, 7, and 8 enterprises with high cross-
efficiency are selected to construct the investment portfolio,
and the investment weights under different constraints are
obtained, as shown in Tables 12 and 13. From the obser-
vation, we can see something important. First, with the

increase of the number of stocks in the portfolio, the weight
of the corresponding stocks of each enterprise is decreasing
accordingly. Second, no matter how many stocks are in-
cluded in the investment portfolio, whether the purpose of
the portfolio construction is to maximize the return or

Table 3: Details of input and output metrics.

Types Aspect Financial indicators or evaluation indicators Variable abbreviation

Input
Operation ability Asset turnover rate x1
Debt paying ability Asset-liability ratio x2
Growth ability Income growth rate x3

Output

Profitability Net profit margin y1
Stock Stock price y2

Expert evaluation
Enterprise prospect (s1) y3
Enterprise innovation (s2) y4

Team level (s3) y5

Table 4: Results of Expert 1 assessment.

Enterprises s1 s2 s3
DMU1 (0.5, 0.6) (0.3, 0.4) (0.5, 0.6)
DMU2 (0.6, 0.7) (0.6) (0.4, 0.5, 0.6)
DMU3 (0.6, 0.7) (0.4) (0.5)
DMU4 (0.7, 0.8) (0.6, 0.7) (0.5, 0.7)
DMU5 (0.6, 0.7) (0.5, 0.6) (0.4, 0.6)
DMU6 (0.6, 0.75) (0.3) (0.4, 0.3)
DMU7 (0.4, 0.5) (0.4, 0.45) (0.4)
DMU8 (0.55) (0.3) (0.4, 0.50)
DMU9 (0.7) (0.5, 0.6) (0.5)
DMU10 (0.4, 0.5) (0.4, 0.5) (0.5, 0.4)

Table 5: Results of Expert 2 assessment.

Enterprises s1 s2 s3
DMU1 (0.3, 0.5) (0.6, 0.9) (0.4, 0.6, 0.8)
DMU2 (0.4, 0.6, 0.7) (0.2, 0.6) (0.3, 0.7)
DMU3 (0.4, 0.5) (0.5, 0.8) (0.4, 0.5)
DMU4 (0.7, 0.8) (0.5, 0.6, 0.7) (0.2, 0.4)
DMU5 (0.4, 0.7) (0.5) (0.5, 0.8)
DMU6 (0.65) (0.5, 0.6) (0.6)
DMU7 (0.3, 0.5) (0.6, 0.7) (0.45, 0.7)
DMU8 (0.6, 0.75) (0.3, 0.65) (0.55)
DMU9 (0.4, 0.6) (0.7) (0.65)
DMU10 (0.5) (0.4) (0.4, 0.85)

Table 6: Results of Expert 3 assessment.

Enterprises s1 s2 s3
DMU1 (0.5, 0.6) (0.3) (0.4, 0.6, 0.7)
DMU2 (0.3) (0.6, 0.8) (0.5)
DMU3 (0.5, 0.7) (0.4) (0.6)
DMU4 (0.5, 0.6) (0.7) (0.4, 0.6)
DMU5 (0.4, 0.5) (0.6) (0.5, 0.55)
DMU6 (0.45, 0.7) (0.3, 0.5) (0.4, 0.65)
DMU7 (0.3, 0.4, 0.65) (0.55, 0.8) (0.4, 0.7)
DMU8 (0.3) (0.6) (0.4)
DMU9 (0.4) (0.35) (0.5, 0.75)
DMU10 (0.45) (0.4) (0.6)
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minimize the risk, the investment weight of the enterprise
DMU1 is the largest. -ird, under the condition of income
maximization, the investment right of DMU1 is more im-
portant than the investment weight of risk minimization.

Combined with the analysis of Tables 11 and 12, when
investors aim to maximize returns, each portfolio will in-
crease the investment weight of stocks with higher returns
on the premise of not exceeding the average risk. Similarly,
combined with the analysis of Tables 11 and 13, when in-
vestors aim to minimize risk, each investment portfolio will
increase the investment weight of less risky stocks on the
premise that the return is not lower than the average return.
-e above results are consistent with the facts, which shows
the rationality of the portfolio construction model.

In addition, the return and risk of the portfolio are cal-
culated according to the required weight and compared with
the return and risk of the equal weight investment; the results
are shown in Table 14.-e analysis shows that the investment
weight calculated based onmodel (16) andmodel (17) is lower
than the equal weight investment in terms of return and risk.
-e investment return of incomemaximization is higher than
that of risk minimization, and the risk of risk minimization is
lower than that of return maximization. -e comparison
results in Table 14 are in line with expectations, which once
again illustrates the rationality and effectiveness of the
portfolio construction in this paper.

Compared with the quantitative portfolio selection
methods such as modern portfolio theory [36–38], the

Table 7: Comprehensive evaluation results of the expert group.

Enterprises s1 s2 s3
DMU1 (0.3, 0.5, 0.6) (0.3, 0.4, 0.6, 0.9) (0.4, 0.5, 0.6, 0.7, 0.8)
DMU2 (0.3, 0.4, 0.6, 0.7) (0.2, 0.6, 0.8) (0.3, 0.4, 0.5, 0.6, 0.7)
DMU3 (0.4, 0.5, 0.6, 0.7) (0.4, 0.5, 0.8) (0.4, 0.5, 0.6)
DMU4 (0.5, 0.6, 0.7, 0.8) (0.5, 0.6,0.7) (0.2, 0.4, 0.5, 0.6, 0.7)
DMU5 (0.4, 0.5, 0.6, 0.7) (0.5, 0.6) (0.4, 0.5, 0.55, 0.6, 0.8)
DMU6 (0.3, 0.5, 0.6, 0.65, 0.75) (0.3, 0.5, 0.6) (0.3, 0.4, 0.6, 0.65)
DMU7 (0.3, 0.4, 0.5, 0.65) (0.4, 0.45, 0.55, 0.6, 0.8) (0.4, 0.45, 0.7)
DMU8 (0.3, 0.55, 0.6, 0.75) (0.3, 0.6, 0.65) (0.4, 0.50, 0.55)
DMU9 (0.4, 0.6, 0.7) (0.35, 0.5, 0.6, 0.7) (0.5, 0.65, 0.75)
DMU10 (0.4, 0.45, 0.5) (0.4, 0.5) (0.4, 0.5, 0.6, 0.85)

Table 8: Results of comprehensive evaluation of Expert groups with preferences ( _H).

Enterprises s1 s2 s3

DMU1 (0.3|0.17, 0.5|0.5, 0.6|0.33) (0.3|0.4, 0.4|0.2, 0.6|0.2, 0.9|0.2) (0.4|0.25, 0.5|0.375, 0.6|0.125, 0.7|0.125, 0.8|
0.125)

DMU2 (0.3|0.17, 0.4|0.17, 0.6|0.33, 0.7|0.33) (0.2|0.2, 0.6|0.6, 0.8|0.2) (0.3|0.17, 0.4|0.17, 0.5|0.34, 0.6|0.17, 0.7|0.17)
DMU3 (0.4|0.17, 0.5|0.33, 0.6|0.17, 0.7|0.33) (0.4|0.5, 0.5|0.25, 0.8|0.25) (0.4|0.25, 0.5|0.5, 0.6|0.25)
DMU4 (0.5|0.17, 0.6|0.17, 0.7|0.33, 0.8|0.33) (0.5|0.17, 0.6|0.33,0.7|0.5) (0.2|0.17, 0.4|0.34, 0.5|0.17, 0.6|0.17, 0.7|0.17)

DMU5 (0.4|0.33, 0.5|0.17, 0.6|0.17, 0.7|0.33) (0.5|0.5, 0.6|0.5) (0.4|0.17, 0.5|0.34, 0.55|0.17, 0.6|0.17, 0.8|
0.17)

DMU6 (0.3|0.2, 0.5|0.2, 0.6|0.2, 0.65|0.2, 0.75|
0.2) (0.3|0.4, 0.5|0.4, 0.6|0.2) (0.3|0.2, 0.4|0.4, 0.6|0.2, 0.65|0.2)

DMU7 (0.3|0.29, 0.4|0.29, 0.5|0.29, 0.65|0.14) (0.4|0.2, 0.45|0.2, 0.55|0.2, 0.6|0.2, 0.8|
0.2) (0.4|0.5, 0.45|0.25, 0.7|0.25)

DMU8 (0.3|0.25, 0.55|0.25, 0.6|0.25, 0.75|
0.25) (0.3|0.5, 0.6|0.25, 0.65|0.25) (0.4|0.5, 0.50|0.25, 0.55|0.25)

DMU9 (0.4|0.5, 0.6|0.25, 0.7|0.25) (0.35|0.25, 0.5|0.25, 0.6|0.25, 0.7|0.25) (0.5|0.5, 0.65|0.25, 0.75|0.25)
DMU10 (0.4|0.25, 0.45|0.25, 0.5|0.5) (0.4|0.75, 0.5|0.25) (0.4|0.4, 0.5|0.2, 0.6|0.2, 0.85|0.2)

Table 9: -e comprehensive score of each attribute of 10 enterprises.

Enterprises s1 s2 s3
DMU1 0.50 0.5 0.55
DMU2 0.47 0.56 0.51
DMU3 0.53 0.525 0.5
DMU4 0.61 0.633 0.476
DMU5 0.51 0.55 0.5695
DMU6 0.56 0.32 0.47
DMU7 0.44 0.56 0.4875
DMU8 0.55 0.4625 0.4625
DMU9 0.53 0.5375 0.6
DMU10 0.46 0.425 0.55
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PHFCEE model proposed in this paper uses more com-
prehensive information, and then the derived results meet
the real needs of investors and companies because this model
not only uses quantitative data reflecting historical infor-
mation but also uses hesitant fuzzy sets to describe some
qualitative factors that cannot be measured with quantitative

data. Compared with the qualitative portfolio model pro-
posed by Zhou and Xu [3, 4] and others, the givenmodel also
uses some quantitative financial data to ensure the objec-
tivity of the given results. -e incomplete rationality of
experts could lead to subjectivity in the evaluation infor-
mation provided by experts and decision-makers, which can

Table 10: Table of efficiency values among 10 enterprises.

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10
DMU1 1.0000 0.9638 0.6461 0.6414 0.9851 1.0000 0.6650 0.7968 0.4023 0.7068
DMU2 0.0273 1.0000 0.2707 0.6739 0.9719 0.8599 0.4330 0.4024 0.1481 0.6817
DMU3 0.0026 0.7010 1.0000 0.7823 0.7675 1.0000 0.1046 0.1231 0.0667 0.3541
DMU4 0.0033 0.9315 0.1510 1.0000 0.9513 1.0000 0.1949 0.2170 0.0642 0.4431
DMU5 0.0349 0.9592 0.2608 0.7115 1.0000 0.9156 0.4894 0.4971 0.1499 0.7432
DMU6 0.0068 0.4896 0.1281 0.5017 0.5548 0.9710 0.1065 0.2148 0.1264 0.4592
DMU7 0.0071 0.5451 0.0326 0.5156 0.7367 0.5156 1.0000 0.7148 0.1163 0.5809
DMU8 0.0401 0.4958 0.0442 0.5193 0.6546 0.6872 0.7149 1.0000 0.4085 0.5764
DMU9 0.0221 0.3701 0.0227 0.3975 0.6199 0.4619 0.3385 0.3840 1.0000 0.5624
DMU10 0.0340 0.6866 0.0748 0.7118 0.9283 0.8379 0.3749 0.4561 0.2667 1.0000

Table 11: Cross efficiency (benefit), variance (risk), and ranking.

Enterprises 􏽥er Sort 􏽥σ2r Sort

DMU1 0.7807 1 0.2031 10
DMU2 0.5469 3 0.3428 5
DMU3 0.4902 7 0.4008 2
DMU4 0.4956 6 0.4249 1
DMU5 0.5762 2 0.3457 4
DMU6 0.3559 10 0.2937 8
DMU7 0.4765 8 0.3273 6
DMU8 0.5141 5 0.2957 7
DMU9 0.4179 9 0.2839 9
DMU10 0.5371 4 0.3470 3

Table 12: Investment weight of income maximization.

Enterprises w Enterprises w Enterprises w Enterprises w

DMU1 0.3671 DMU1 0.3427 DMU1 0.3099 DMU1 0.2723
DMU2 0.1541 DMU2 0.1364 DMU2 0.1238 DMU2 0.1119
DMU5 0.1607 DMU5 0.1435 DMU5 0.1301 DMU5 0.1171
DMU10 0.1497 DMU10 0.1320 DMU10 0.1198 DMU10 0.1085
DMU8 0.1684 DMU8 0.1472 DMU8 0.1337 DMU8 0.1217
— — DMU4 0.0982 DMU4 0.0892 DMU4 0.0815
— — — — DMU3 0.0934 DMU3 0.0854
— — — — — — DMU7 0.1016

Table 13: Risk-minimized portfolio weight.

Enterprises w Enterprises w Enterprises w Enterprises w

DMU1 0.2897 DMU1 0.2545 DMU1 0.2254 DMU1 0.1977
DMU2 0.1716 DMU2 0.1508 DMU2 0.1335 DMU2 0.1172
DMU5 0.1702 DMU5 0.1495 DMU5 0.1324 DMU5 0.1162
DMU10 0.1696 DMU10 0.1489 DMU10 0.1319 DMU10 0.1157
DMU8 0.1990 DMU8 0.1748 DMU8 0.1548 DMU8 0.1358
— — DMU4 0.1216 DMU4 0.1077 DMU4 0.0945
— — — — DMU3 0.1142 DMU3 0.1002
— — — — — — DMU7 0.1227
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further affect the optimal results. -en, we add objective
quantitative data into the model. Concerning these com-
parisons, the investment portfolio derived by this model
could be more realistic and reasonable than that got by the
other two types of models.

5. Conclusions

A portfolio approach that utilizes qualitative information is
an effective venture capital technique when quantitative data
are scarce or unavailable. However, the approach of building
a portfolio using only qualitative information is somewhat
subjective. To solve this problem, this paper proposes the
PHFCEE model. -e acquisition of qualitative information
and the effective fusion of two data forms are the key
technologies for portfolio construction. -en, we introduce
probabilistic hesitant fuzzy set and the CEDEAmodel. Next,
based on the cross-efficiency value and its variance, the
investment portfolio ratios considering the investors’ risk
preferences are constructed. Lastly, a real example has been
provided to demonstrate the feasibility of the proposed
models.

-e mixed-data portfolio model based on the probabi-
listic hesitant fuzzy environment in this paper has some
disadvantages, such as simple modeling rules, simple
probabilistic calculation, and excessively ideal constraints.
-erefore, in future work, the research will further consider
the mixed-data portfolio model under the environment with
incomplete or no-probability information and intend to
develop a new probability solution algorithm. It will be
worthwhile and interesting work.
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