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Ride comfort and handling performances are known conflicts for off-road vehicles. Recent publications focus on passenger
vehicles on class B and class C roads, while, for off-road vehicles, they should be able to run on rougher roads: class D, class E, or
class F roads. In this paper, a quarter vehicle model with nonlinear damping is established to analyze the suspension performance
of a medium off-road vehicle on the class F road. ,e ride comfort, road holding, and handling performance of the vehicle are
indicated by the weighted root mean square (RMS) value of the vertical acceleration of the sprungmass, suspension travel, and tire
deflection. To optimize these objectives, the genetic algorithm (GA), particle swarm optimization (PSO), and a genetic algorithm
based on the particle swarm optimization (GA-PSO) are initiated.,e efficiency and accuracy of these algorithms are compared to
find the best suspension parameters. ,e effect of the optimized method is validated by the field test result. ,e ride comfort, road
holding, and handling performance are improved by approximately 20%.

1. Introduction

,e suspension system of a vehicle is a vital assembly and it is
crucial to the ride comfort, handling stability, and safety of
the car. However, the ride comfort conflicts with handling
stability; in a literal term, a better ride comfort means worse
handling stability, and vice versa. Hence, to improve vehicle
performance, some optimization algorithms are used to
modify the suspension parameters. Recent research focuses
on the passenger vehicle because it has more consumers, and
its vehicle performance has a direct impact on its con-
sumption. Liu et al. modified some parameters of the sus-
pension to reduce the vibration caused by the in-wheel
motor [1]. ,e improved particle swarm optimization

(IPSO) is used to determine the spring stiffness. Kanarachos
et al. provided a new enhanced fruit fly optimization (eFLO)
algorithm to improve the suspension shock without
degrading road holding and ride comfort [2]. In their re-
search, the optimization algorithm, differential evolution
(DE), artificial bee colony (ABC), and particle swarm op-
timization (PSO) are taken as benchmarks, and a class C
road was used in the simulation. Yang proposed an im-
proved genetic algorithm based on fitness evaluation to
analyze the ride comfort of an in-wheel motor vehicle on the
class B road; the RMS value of the vehicle weighted vertical
acceleration and the pitching angle acceleration are taken as
the objectives [3]. ,e PSO is initiated in Li’s research [4]
and an improved GA named KEMOGA is provided [5] to
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optimize the ride comfort of the passenger vehicle on class B
and class C roads. ,ey all take the RMS of the weight
vertical acceleration, suspension travel, and tire deflection as
their objectives. In these researches, passive suspension and
optimizing the suspension parameters can improve the
objectives by 5∼15%. Besides the traditional suspension
which suppresses the vibration, the regenerative suspension
that focuses on harvesting the vibration energy of the sus-
pension system also attracts the researchers’ attention [6];
Abdelkareem et al. acquired the energy that dissipated of an
SUV on class B road [7] and designed regenerative shock
absorbers to harvest the energy [8].

According to the ISO/TC108/SC2N67, roads can be
classified as classes B, C, D, E, and F by the road roughness
coefficient. ,e road roughness coefficient increases from
class B to class F, which means the class F road is the
roughest. ,e passenger vehicle usually runs on class B to
class D roads; off-road vehicles are capable of running on
class E and class F roads. Semiactive and passive suspension
systems are used for off-road vehicles on class F roads, which
provide an improved vehicle performance of 20∼40%, but
their reliability still needs to be verified [9]. Ghasemiazar and
Azadi purported an improved off-road vehicle performance
(17% during the simulation) by the design of experiment
(DOE) and response surface method (RSM) [10].

,e damper is taken as a linear parameter when the
vehicle runs on an urban road, while, on rough roads, the
nonlinear characteristic of damping should be taken into
consideration. Xudong et al. proved that the suspension with
nonlinear damping has better anti-impact performance than
the suspension with linear damping [11]. Zhao et al. ana-
lyzed the seat suspension system considering the nonlinear
characteristic; the result is validated by an experimental test
rig [12]. Nonlinear damping also allows the vehicle to have a
better adaptation to different road surfaces. Solomon and
Padmanabhan developed a semiactive suspension with
nonlinear damping to improve the ride comfort perfor-
mance without compromising the road holding and load
carrying of the vehicle [13]. Zhang et al. improved the mine
car ride comfort on class C road based on the improved
particle swarm optimization and approximation model [14].
Sun proposed a new algorithm based on cuckoo search (CS)
optimization and road estimation to investigate the char-
acteristics of the nonlinear parameters and improve ride
comfort [15]. Mahmoodi-Kaleibar optimized a suspension
system of an off-road vehicle with the curb weight of 1800 kg
according to optimized GA [16].

Most of the current researches validate the optimization
by simulations, and some of them use a test rig to verify the
result. ,e research about the mid-sized off-road vehicle on
the class F road is rare.

In this paper, the approximation model of the vehicle
performance indicators and the suspension parameter of a
mid-sized off-road vehicle are established according to the
RSM. ,ree multiobjective optimization methods are ini-
tiated and compared to gain the best solution for the vehicle
suspension system. At last, the optimization is validated by
the field test. Figure 1 shows the flow chart illustration
described in this paper. Compared to the passenger car on

class B and class C roads, the optimization of the off-road
vehicle can improve the vehicle performance with a higher
percentage. ,e optimized suspension parameters can not
only be useful to the design of passive suspension but also be
used in the semiactive or active suspension system to im-
prove vehicle performance.

,e quarter vehicle mathematical model is used in ve-
hicle performance analysis due to its efficiency [17, 18]. As
shown in Figure 2, which shows the classic quarter vehicle
model, the tire is modeled as a linear spring (Kt), which is a
fundamental representation of tires. In practice, vehicle ride
combines with tire characteristics that alter vehicle bounce
and particularly pitch dynamics. In this paper, very basic tire
behavior is assumed. For more representative tire behavior,
affecting pitch-plane dynamics, see Abdelkareem et al. [19].
,e tire receives the input of the road surface in the time
domain, q(t). ,e suspension, which connects the unsprung
mass (m1) with the sprung mass (m2), consists of linear
spring (K) and nonlinear damping (C). Equation (1) is the
governing equation of this model. z1 and z2 are the dis-
placements of the unsprung mass and sprung mass,
respectively.
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Figure 1: Flow chart of the work. A nonlinear model of the quarter
vehicle.
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m2 €z2 + C _z2 − _z1(  + K z2 − z1(  � 0, m2€z1 + C _z1 − _z2(  + K z1 − z2(  + Ktz1 � q(t). (1)

,e damping force during the compression and the
stretching process is different, and the nonlinear relationship
is the damping force and velocity. ,e nonlinear damping
characteristic can be described by a piecewise function,
shown in equation (2). In this equation, Fc is the damping
force, vc and vs are the velocities during the compression and
stretching process, respectively, and cc1, cc2, and cs are the
corresponding damping values.

Fc �

cc2 vc − vc1(  + cc1vc1; vc2 ≤ vc,

cc1vc;

csvs;
vc1 ≤ vc ≤ 0.

⎧⎪⎪⎨

⎪⎪⎩
(2)

According to the harmonized superposition method, the
random road surface can be described as follows:

_q(t) � −2πf0xz(t) + 2π
����
G0v


w(t), (3)

where G0 is the road roughness coefficient, v is the vehicle
velocity, w is the Gaussian white noise with zero mean value,
and f0 is the lower stopband edge frequency.

,is quarter vehicle model with a nonlinear damping
and random input road can be simulated by MATLAB/
Simulink, as Figure 3 shows. ,e parameters of this simu-
lation model are shown in Table 1.

,e suspension system is capable of isolating the
vehicle body (sprung mass) from road roughness and
provides the passengers and cargo good ride quality.
When the vehicle is simplified as a quarter model, the ride
comfort can be quantified by the vertical acceleration of
the sprung mass ( €z2). According to the ISO-2631 stan-
dard, which evaluates human exposure to whole-body
vibration, the ride comfort could be measured via the
weighted RMS acceleration (Aw).

Aw � 
80

0.5
W

2
(f)Ga(f) 

2
df 

(1/2)

, (4)

where Ga(f) is the power density function of €z2, which can
be gained through FFT (fast Fourier transform), W(f) is the
weight factor function, and f is the frequency.

,e suspension travel is taken as the indicator to
measure the ability to support the static weight of the
vehicle. ,e tire deflection, which is relevant to the
normal tire force, illustrates the road holding and the
vehicle handling performance. ,e RMS suspension
travel, st, and RMS tire deflection, td, can be acquired by
equations (5) and (6). Ft(t) is the tire load and acts as a
function of time.

st �
1
T


T

0
z2 − z1 

2dt 

(1/2)

, (5)

td �
1
T


T

0

Ft(t)

Kt

 

2

dt
⎧⎨

⎩

⎫⎬

⎭

(1/2)

. (6)

2. Field Test and Model Validation

To verify the effect of the quarter vehicle model, the field test
on the class F road is carried out in the Dingyuan test field.
,e gross vehicle mass of the vehicle is 5300 kg and the tire of
the front and rear axle is 335/80 R20. ,e structures of the
front and rear suspensions are similar; both of them have a
double wishbone, coil spring, and damper. ,e front sus-
pension is equipped with an antiroll bar, while the stabilizer
bar is mounted on the rear suspension. During the test, two
acceleration sensors are mounted on the lower suspension
arm and the upper spring mount seat, a seat acceleration
sensor is mounted on the driver’s seat, and a speed sensor
and a data acquisition system are equipped to collect the data
as shown in Figure 4. ,e off-road test field is illustrated in
Figure 5. ,e details of the sensors in the test are shown in
Table 2. Since the parameters of the quarter vehicle are the
equivalent value of the rear suspension, the sensors are
mounted on the rear right suspension.

During the test, the vehicle runs in the field with a speed of
15 km/h, the sampling frequency of the acceleration is 200Hz,
and the speed sensor is 20Hz. To avoid high-frequency in-
terference and energy leakage, the Hanning window is used to
process the signals. ,e cut frequency of the Hanning window
is set as 100Hz to ensure the reliability of the results.

,e tested and simulated acceleration signals on the
upper suspension mount and lower arm are shown in
Figures 6 and 7.

As shown in Figures 6 and 7, the trends of the test and
simulated accelerations are similar to each other. ,e
weighted RMS of the upper mount acceleration (body ac-
celeration in the quarter vehicle model) and the RMS of the
lower arm acceleration (wheel acceleration in the quarter
vehicle model) are calculated. For the upper mount, the
weight RMS accelerations of the test and simulation are 3.36
and 3.22m/s2; for the lower arm, the RMS accelerations of
the test and simulation are 34.91 and 38.76m/s2. ,e errors
between the test and the simulated results are −4.17 and
11.03%, respectively. ,e error of the lower arm acceleration
is caused by taking the tire as a linear spring model. Since the
errors are in a relatively low range, the quarter vehicle model
can be used in further analysis.
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Figure 2: A quarter vehicle model.
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Figure 3: A quarter vehicle model with a random road.

Table 1: Parameters of the simulation model.

Vehicle parameters
m2 (kg) 137.5 Kt (N/m) 205000
m1 (kg) 1262.5 K (N/m) 56000
cs (N·s/m) 9600 cc1/cc2 (N·s/m) 4800/1200
Road parameters
G0 (m3) 0.016384 f0 (Hz) 0.1
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3. Establishment of the Approximation Model

,e approximation model of these three objectives of the
suspension parameters can be established through the re-
sponse surface method (RSM); the validity of this method
has been validated by [20, 21].,e approximation model can

also reduce the optimization time. Taking the tire stiffness
Kt, spring stiffness K, compression dampings cc1 and cc2,
and stretch damping cs as the factors, three functions have
been established as follows:

Aw � 4.83 + 2.1e
− 5

Kt − 2.51e
− 4

K + 2.65e
− 4

cs + 4.4e
− 5

cc1 − 5.9e
− 5

cc2 + 1.61e
− 9

Kcc2

+ 2.09e
− 9

cscc1 + 8.66e
− 9

cscc2 + 1.54e
− 8

cc1cc2 + 2.29e
− 9

K
2

− 9.42e
− 9

c
2
c1

− 1.24e
− 8

c
2
c2,

(7)

st � 12.57 + 2e
− 5

Kt − 6.55e
− 4

K + 3.45e
− 4

cs + 6.66e
− 5

cc1 − 5.9e
− 5

cc2

− 1.66e
− 9

cc1cc2 + 5.06e
− 9

K
2

− 1.69e
− 8

c
2
c1 − 2.98e

− 8
c
2
c1 − 1.16e

− 7
c
2
c2,

(8)

td � 6.39e
− 2

− 9.26e
− 8

Kt − 1.03e
− 9

K − 8.11e
− 8

cs − 8.07e
− 6

cc1 − 5.9e
− 5

cc2 + +5.81e
− 10

c
2
c2. (9)

,e coefficient of determination, R2, is used for its
validation check. R2 means the similarity between the
predicted value and the sample value, the closer to 1, means
the higher accuracy of the prediction equation is. It can be
generated by the following equation:

R
2

� 1 −


n
i�1 Ti − Ti 

2


n
i�1 Ti − T( 

2 , (10)

where Ti is the value of sample i and Ti is the predicted value
based on sample i. ,e number of the samples is n and T is
the mean value of n samples.

In this case, R2 of equations (7), (8), and (9) are 0.87,
0.86, and 0.93, respectively.

As can be seen in Figures 8–10, despite a singular point,
most of the data points in these figures are approximately
linear. ,erefore, these functions can be used for further
analysis.

4. Optimization Algorithms

4.1. Genetic Algorithm (GA). GA is an optimization prob-
lem-solving method that is inspired by natural selection.,e
idea of this algorithm is to adapt a population to environ-
mental conditions like what happens to genes in nature [22].
Each individual of the population has its characteristic; in
the optimization process, the effective traits are improved,
while the undesired characteristics are eliminated. In each
iteration, new populations are generated by selection,

crossover, and mutation. In the selection stage, the first
generation of the population or the individuals with good
traits from the last generation is chosen to be the new parents
to start a new loop. ,e crossover is the process of two
individuals (parents) producing new individuals (children).
,e mutation stage is a random change in one gene of the
new individuals (children) from its initial state, which is
inherent from their parents.,e iteration keeps process until
the object meets the fitness or the iteration limits to find the
optimized value of the factors.

In the multiobjective genetic algorithm process, the
whole population is checked, and the nondominated indi-
viduals are identified and assigned with dummy fitness.,en
the individuals are selected based on dummy fitness. ,e
following crossover and mutation processes are the same as
the classic GA method.

4.2. Particle Swarm Optimization (PSO). PSO algorithm is a
population-based stochastic approach that uses the velocity and
a position searchmodel, including a certain number of particles
that are used to represent candidates; the position of each
particle is used to represent a solution of space, and the velocity
is used to update the particle position [23]. Each particle
searches for better positions in the search space according to its
local best position and global best position [24]. At the be-
ginning, the particle’s velocity and position are arbitrarily
assigned in a proposed range. ,en, the particle’s velocity vk

and position xk can be improved via the following equations:

vk(i + 1) � w(i) × vk(i) + c1 × r1 pbestk(i) − xk(i)(  + c2 × r2 gbest(i) − xk(i)( , (11)

xk(i + 1) � vk(i + 1) + xk(i), (12)

where k is the particle’s index, ranging from 1 to Np, Np is
the population of the particle, i is the iteration number,

ranging from 1 to imax, r1 and r2 are two numbers that are
generated randomly between 0 and 1, c1 and c2 are
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learning factors, pbest is the best experience of each
particle, and gbest is the best experience of all particles in
the population. ,e position and value of the objective
function for pbest and gbest must be stored after each
iteration. ,e iteration begins after the initial evaluation if
the termination criterion is satisfied, the optimal solution
reaches gbest, and the calculation is ended; otherwise, the
iteration repeats.

For the multiobjective problem, the optimal solutions
are called the Pareto solution. In the multiobjective
particle swarm optimization process, each particle of the
population should select one of the Pareto solutions as its
global best particle, called the best local guide. ,e
analysis of the sigma method provided by Mostaghim is
used in this paper [25]. According to the sigma method,
the fitness of the particles is calculated and ranked before
the next iteration.

4.3. GA-PSO Algorithm. Although GA is one of the most
popular methods for solving the multiobjective problem,
its main disadvantage is the low convergence rate. PSO

has a quicker convergence, but its limitation is easy to get
stuck in local extremes [26]. To overcome its weakness, the
hybrid GA-PSO algorithm is provided by [27]. As shown
in Figure 11, this algorithm begins with a main iterative
loop, which has a stop criterion of max it to show the
iterations of the whole algorithm. After that, the PSO loop
gets started. In PSO iteration, the fitness of each particle is
evaluated and the particles’ best is chosen; then the
specific particle assigned to that would be the best ex-
perience of that particle (pbest). ,en the global best
position (gbest) will be acquired. For the next stage, the
position and velocity of each particle are updated
according to equations (11) and (12).

,e particles prepare to be acted in GA iteration after the
first loop ends. For the first operator in GA, two random
particles are selected and updated using the following
equations, if the probability condition is met.

x1(i + 1) � αx1(i) +(1 − α)x2(i),

x2(i + 1) � αx2(i) +(1 − α)x1(i).
(13)

,e above equations represent the crossover stage in GA,
α ∈ [0, 1]D is a random vector, and D is the dimension size,
which could be the factor’s size in the proposed method.

In themutations stage, the particle mutates via the following
equation, if the mutation probability condition is satisfied.

x(i + 1) � x(i) + randn × σ, (14)

σ �
(maximumdomain − minimumdomain)

10
,

(15)

where randn is a normal random integer and σ is a constant
value generated by equation (15).

,e crossover and mutation had been modified re-
garding obtaining better results than the original GA [28]. At
last, the algorithm checks for the updates of pbest for each
particle and gbest for the whole particles.

Data acquisition unit
Seat acceleration

sensor Speed sensor Acceleration sensor

Figure 4: Sensors and data acquisition unit on the tested vehicle.

Figure 5: Test field.
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5. Simulation Result and Discussion

To identify the performances of these three algorithms in
terms of accuracy and efficiency, they are applied to estimate
the best parameters of the quarter model. In the process of
optimization, the population sizes of the algorithms are set
in the range from 5 to 800, and the iteration number is 1000.
,e computation time and fitting value are listed in Table 3.

To illustrate the differences between the above
methods, Figure 12 further displays the fitness value of
them. ,e fitness value of GA sharply drops from 3.637 to
2.191 at the population size of 400, while the fitness value
of PSO is almost stable at the population size of 600. For
the GA-PSO, the fitness value seems to be stable with a

value of 2.178 at the population size of 50. Since the
computation time of GA-PSO is far larger than those of
the other two algorithms, only GA and PSO are compared
in Figure 13. ,e computation times of GA and PSO are
close to each other when the population size is lower than
200; after that size, the GA takes about 10∼20% longer
computation time than the PSO. Taking the fitness value
into consideration, the fitness value of the GA is stable at
the population size of 400, and the corresponding com-
putation time is 8.128 s; for the PSO, the computation time
is 8.52 s at the population size of 600; for GA-PSO, the
time is 12.433 s at the size of 50. GA-PSO converges at a
lower population with a longer computation time due to
the more complicated process.
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Figure 6: Comparison of the acceleration at the suspension upper mount.
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Table 2: Details of the sensor in the field test.

No. Sensor Type Sampling frequency (Hz)
1 Acceleration sensor PCB 356A45 0.4∼1000
2 Seat acceleration sensor PCB 356B40 0.5∼1000
3 Speed sensor V-box speed sensor range 5/10/20/100
4 Data acquisition unit B&K LAN-XI

Mathematical Problems in Engineering 7



,e search range of the parameters is shown in Table 4.
,eminimum stiffness and maximum stiffness of the tire are
taken as the search range. For the damping coefficient of the
damper, 50% and 200% of the original values are taken as
search limits.,e search range of the stiffness of the spring is
set to 31000 to 81000N/m based on the advice of the
component manufacturers.,e objectives are constrained as
higher than 85% of the original value.

,e population size is set as 600, the iteration gen-
eration as 1000 in the three algorithms, the crossover
operator as 0.7, and the mutation operator as 0.3 in the
GA. ,e learning factor is taken as 1.5 in the PSO. In GA-
PSO, the operators and learning factors are set the same as
in the GA and PSO. ,e Pareto solutions are gained and
shown in Figures 14–16, respectively.

Taking the solution with a lower value of the three objects as
the solution in the Pareto solutions (the red dot in the solutions),
the corresponding optimized parameters are shown in Table 4.
To validate the effectiveness of them, these parameters are set in
the quarter vehicle model to generate the objectives at speeds of
5, 10, 15, 20, and 25km/h, and the figures are shown below.

All the optimized parameters have improved the objectives
compared to the original values (Figures 17–19).

For Aw, the optimized results acquired by GA and GA-PSO
methods are similar and better than those of the PSO method
and the original. For st, the optimized parameters gained by PSO
are similar to those gained byGA-PSO, which are lower than the
others. For tf, the PSO and GA have lower values than those in
the GA-PSO at 5km/h; the result gained by GA-PSO has the
lowest value when the speed is within 10 to 25km/h.
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Figure 8: ,e normal plot of residuals of weight RMS acceleration.
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Figure 9: ,e normal plot of residuals of RMS suspension travel.
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Figure 11: Flow chart of the GA-PSO algorithm.

Table 3: Computation time and fitting value of GA, PSO, and GA-PSO.

Population size
GA PSO GA-PSO

Time (s) Fitness Time (s) Fitness Time (s) Fitness
5 0.801 3.637 0.534 2.443 0.851 2.179
25 0.958 2.673 0.545 2.243 3.898 2.179
50 1.196 3.367 0.926 2.307 12.433 2.178
100 1.600 2.432 1.892 2.243 43.346 2.178
200 2.559 2.294 2.236 2.243 164.688 2.178
400 8.128 2.191 6.119 3.307 1033.632 2.178
600 10.106 2.190 8.520 2.243 3673.503 2.178
800 12.849 2.193 11.447 2.243 8033.114 2.178
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In general, the GA-PSO method has the lowest optimized
objectives; hence, the average optimized percentages of the
three objectives (Aw, st, and tf) by GA are 8.41, 17.04, and
14.38%, and, for the PSO, the percentages are 3.14, 22.61, and
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Figure 12: Comparison of the fitness values of PSO, GA, and GA-
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Figure 13: Comparison of PSO and GA’s computation times.

Table 4: Search range and optimized value of the parameters in
GA, PSO, and GA-PSO.

Parameters Search range
Optimized value

GA PSO GA-PSO
Kt (N/m) [205000, 435000] 217218.01 205000 225901.19
K (N/m) [31000, 81000] 52035.0 61932 56612.8
cs (N.s/m) [4800, 19200] 6094.30 4800 5668.45
cc1 (N.s/m) [2400, 9600] 7670.64 2400 6966.20
cc2 (N.s/m) [1200, 4800] 3088.93 4800 3724.31
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Figure 14: Pareto solutions of GA.
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Figure 16: Pareto solutions of GA-PSO.

10 Mathematical Problems in Engineering



12.00%. ,e corresponding percentages of the GA-PSO are
9.82, 28.29, and 18.79%. ,erefore, the parameters gained by
GA-PSO are used to improve the suspension system.

6. Comparison of the Test before
and after Optimization

,e vehicle with the optimized suspension parameters is
used to conduct the field again in the same test field in “Field
Test and Model Validation.” Only the vehicles with GA-PSO

optimized suspension parameters and original parameters
are tested in the field test. ,e test result of the two ex-
periments is marked as after optimization and before op-
timization, respectively.

,e vertical accelerations at the upper spring seat before
and after optimization are compared in Figure 20.,e power
spectral density (PSD) curves of the vertical acceleration are
shown in Figure 21.

According to Figure 21, the frequency is in the ranges of
0∼4 and 8∼20Hz; for the PSD of vertical acceleration, the
vehicle with optimized parameters is similar to the vehicle
before optimization. ,e vertical acceleration PSD after
optimization is lower than that before the optimization of
4∼8Hz. In the frequency range of 20∼100Hz, the vertical
acceleration PSD of the vehicle with optimized parameters is
much lower than that of the vehicle with parameters before
optimization. Even though in the human sensitive frequency
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Figure 17: Weighted RMS acceleration at a different speed.
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0.005

0.01

0.015

0.02

0.025

0.03

Ti
re

 d
efl

ec
tio

n 
(m

)

0 5 10 15 20 25 30
Speed (km/h)

Original
GA

PSO
GA-PSO

Figure 19: RMS tire deflection at a different speed.

0 100 200 300 400 500

Time (s)

−50

−25

0

25

50

Before optimization
A�er optimization

A
cc

el
er

at
io

n 
(m

/s
2 )

Figure 20: Comparison of acceleration before and after
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range of 4 to 8Hz the PSD after optimization is lower than
that before optimization, the acceleration weighted RMS
after optimization is higher than that before optimization;
thus, the ride comfort after optimization is improved.

,e suspension travel and tire deflection curves are
calculated based on the acceleration signals and shown in
Figures 22 and 23.

In Figures 22 and 23, the suspension travel and tire
deflection of the vehicle with parameters after optimization
are lower than those of the vehicle with parameters before
optimization. For the tire deflection, the negative value
means that the wheel is not in contact with the road surface
at that time.

,e weighted RMS acceleration of the seat, Aww, is
gained based on the data acquired by the seat acceleration
sensor. To compare these values more intuitively, the ac-
celeration weighted RMS and RMS of the suspension travel
and tire deflection are calculated and compared in Table 5.

After the parameter optimization, the RMS values of the
vertical weighted acceleration, suspension travel, tire

deflection, and RMS acceleration on the seat are improved
by 18.24, 21.95, 21.34, and 15.19%, respectively. ,e ride
comfort, road holding, and handling performance of the
vehicle are substantially improved.

,ere are some vibration assessmentmethods in ISO 2631 :
1 [29]. According to Annex B, the health guidance caution
zones as shown in Figure 24 are used to access the vibration
exposure time. In Figure 24, the zone is determined by two
dashed lines. For the exposures below the lower line, health
effects have not been clearly documented or observed; in the
zone, caution concerning potential health risks is indicated and
above the upper line health risks are likely.

,e seat acceleration RMS before (blue dot) and after
(red dot) optimization is added in Figure 24. ,e exposure
duration after optimization is 25min, while the time du-
ration before the optimization is 16mins. ,e duration time
is improved by 56.25%.

According to Annex C, the acceleration translated to the
human body greater than 2m/s2 causes extreme discomfort.
,e weighted acceleration before and after optimization lies
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Figure 22: Comparison of suspension travel before and after optimization.
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in this range. Because the roughness of the class F road is
hard to overcome, a lower acceleration after optimization
still improves the vehicle ride comfort.

7. Conclusion

To improve the performance of a military off-road vehicle on
the class F road, three multiobjective optimization algo-
rithms are initiated based on a quarter vehicle model. ,e
ride comfort, road holding, and handling performance of the
vehicle are chosen as the objectives, while some suspension
parameters are taken as the variables. ,ree approximation
models are built by RSM to establish the relationships be-
tween them. By comparing the results of GA, PSO, and GA-
PSO, GA-PSO represents the closest convergence solution to
the global optimum, while the GA represents the quickest
convergence to the solution.

Furthermore, based on the optimized parameters, the
weight RMS acceleration, RMS suspension travel, and RMS
deflection are simulated and compared. ,e GA-PSO al-
gorithm offers the biggest improvement in the amount of
ride comfort, road holding, and handling performance of the
vehicle.,e effect of the optimization method is validated by
field tests. According to the comparison of the field test
result, after optimization, the RMS values of the vertical
weighted acceleration, suspension travel, and tire deflection
are improved by 18.46, 21.95, and 21.34%, respectively.
Although the acceleration still means extreme discomfort,
the duration time is improved by 56.25%.

According to the test result, the performance of the off-
road vehicle is fully improved by the multiobjective opti-
mization methods. Compared to the performance improved

percentage (5∼15%) of passenger vehicles on class B and
class C roads, the performance of the off-road vehicle on the
class F road can be improved with a higher percentage
(15.19∼21.95%). ,e different optimization methods may
lead to various suspension parameters and vehicle perfor-
mance. More MOO methods should be used in this area to
acquire a better solution.

For vehicles with passive suspension, additional working
conditions can be taken into consideration to improve ve-
hicle performance on different roads. ,is method can be
further used in either semiactive or active suspension. ,e
optimized suspension parameters can be adjusted in the
corresponding condition to maintain a better ride comfort,
road holding, and handling performance of the vehicle.
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