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)is paper utilizes the consumers’ reference price in prospect theory to analyze an omnichannel retailer’s multiperiod pricing and
inventory management problem in which consumers can cancel their orders before payment and return the products after
payment if the products do not meet their expectation. )e omnichannel retailer’s optimal equilibrium pricing and ending
inventory level are derived under reference price effects by maximizing the discounted total profit over the infinite planning
horizon, where the optimal decisions we discussed under two scenarios: loss neutrality and loss aversion. )e analysis shows that
the convergence of the pricing and ending inventory level toward their equilibrium is from above or below, depending on the
relative location of the initial reference price with respect to the unique equilibrium price. Moreover, a set of sensitivity analyses is
discussed to characterize the impacts of system parameters on the optimal decisions. )is research fills the gap of behavioral
operation in the field of omnichannel joint pricing and inventory management.

1. Introduction

With the vigorous development of mobile Internet tech-
nology, great changes have taken place in the communi-
cation between retailers and consumers. In order to
improve the probability of successful marketing and in-
crease market share, retailers have emerged a series of new
retail modes, such as online, mobile, e-mail, and QQ, and a
new retail model that opens up various channels, “omni-
channel retail” came into being. For example, facing the
competition from JD.com, both Suning and Gome, the two
largest traditional physical home appliance retailers in
China, launched their online businesses in 2009. Addi-
tionally, the world-famous e-commerce retailers, such as
Amazon, Google, and eBay, have also built their tech-
enabled physical stores. Omnichannel retail focuses on “a
truly integrated approach across the whole retail operation
that delivers a seamless response to the consumer expe-
rience through all available shopping channels” (see, for
example, [1, 2]). )rough channel integration, not only can
the trust and satisfaction of consumers be improved but

also the competitive advantage and channel synergy of
retailers can be improved, so as to better match the
channels and consumers. Data show that the global
e-commerce sales reached $1.86 trillion in 2016 and
reached $3.88 trillion in 2018, with a growth rate of over
10% [3]. With the strong support for e-commerce, the
innovative business model based on Internet plus has
developed rapidly in China, domestic retail giants such as
Suning, JD, and Taobao have emerged, and they are
constantly exploring new omnichannel business models. At
present, pay-and-buy-online-pick-up-in-store (BOPS) is a
retail mode that is widely adopted by omnichannel retail.
Taking Suning as an example, consumers can enjoy store
pick up, store appraisal, and store return and exchange
services at any physical store across the country after
placing an order on the Suning cloud platform [4]. In
addition, BOPS can also bring potential additional trans-
actions for offline stores, which is called cross-selling profit
[5]. A recent United Parcel Service (UPS) study shows that
45% of consumers will have new purchase when they pick
up goods offline [6]. )e implementation of the BOPS gives
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full play to the offline advantages of traditional retailers and
enhances retailers’ competitive advantages via offline
professional services, convenience, and experience
advantages.

As an important practice of omnichannel retail, BOPS
has been adopted by many retailers, but it also faces many
technical challenges. )ese challenges mainly come from
two levels: retailers and consumers. First of all, at the retailer
level, omnichannel retail online and offline inventory
sharing, in order to ensure the availability of goods pur-
chased by consumers at any time, it is particularly important
to formulate a reasonable inventory and a balanced price
strategy, which will help improve consumers’ loyalty and the
reputation of retailers. Secondly, at the consumer level, it is
mainly manifested in the purchase behavior of consumers.
Consumers’ purchase decision will be affected by the ref-
erence price. Behavioral science pointed out that consumers
will remember the past price information of a product in
their mind when they repeatedly purchase a product, thereby
establishing the concept of “fair price,” which is called ref-
erence price [7]. When a new purchase decision is made for
the same product, consumers will take the reference price as
the benchmark of the current selling price of the product. If
the current selling price is lower (higher) than the reference
price, they will think that they have “earned” (“lost”) and are,
therefore, more likely (unwilling) to buy.)is phenomenon is
called reference price effects. Research shows that the joint
pricing and inventory strategies based on the reference price
effects can greatly increase the profits of retailers [8]; thirdly,
the common phenomenon of consumer return under the
BOPS mode will also affect the decision making of retailers
[5].)us, the following technical problems will arise: (1) How
will the BOPS mode affect an omnichannel retailer’ market
demand and profitability? (2) What pricing and inventory
decisions should the retailer make to realize the product price
advantage, save inventory cost, and improve profit? )ese are
the practical problems that need to be solved urgently when
the retailer implements the BOPSmode.)e solution of these
problems meets the current development needs and has
important practical significance.

In order to solve the abovementioned problems, this
paper studies the pricing and inventory strategies of an
omnichannel retailer with BOPS mode based on the in-
fluence of consumers’ reference price. By analyzing the
mechanism of the influence of consumer reference price on
the pricing and inventory of the omnichannel retailer, it
provides theoretical suggestions for omnichannel retailers to
implement the pricing and inventory management of the
BOPS mode, whereas recent research on joint pricing and
inventory decisions of omnichannel retailers mainly focused
on single ordering cycle and ignored the consumers’ ref-
erence price effects (see, for example, [5, 9]). Besides, pre-
vious literature on multiperiod coordination pricing and
inventory control problem with reference price effects
mainly focused on the single-channel supply chain, and little
attention has been paid to the omnichannel field (see, for
example, [8, 10, 11]).)is paper studies themultiperiod joint
pricing and inventory strategies of omnichannel retailers
considering the impact of consumers’ reference price and

tries to fill the gap in the decision making of multiperiod
joint pricing and inventory in an omnichannel environment.

)e rest of the paper is organized as follows. Section 2
reviews the related literature. Section 3 presents a theoretical
model to formulate the omnichannel under reference price
effects. Section 4 investigates several structural properties of
the optimal strategies. Numerical results of sensitivity
analysis are represented in Section 5. Some managerial in-
sights are provided in Section 6. Section 7 concludes our
paper. All the proofs are presented in Appendix.

2. Literature Review

)is paper is related to two streams of literature: one delves
into omnichannel retail operations, while the other discusses
the multiperiod pricing-inventory model with reference
price effects. We review the related areas below.

Studies on omnichannel retailing are emerging, most of
which are exploratory. At present, the omnichannel BOPS
operation management has attracted extensive attention from
the academic community. According to Retail Systems Re-
search (RSR), as of June 2013, 64% of the retailers provided
consumers with the option to BOPS [12], and they benefit
from allowing consumers to pick up their online orders in
store. According to a recent UPS study, among those who
have used an in-store pick up option, 45% of them have made
a new purchase when picking up the product in store (UPS,
2015). Such an additional profit is called the cross-selling
benefit [6, 13]. Actually, such cross selling can generate a
substantial amount of store sales: it is estimated that, on
average, when a consumer comes to the store intending to buy
$100 worth of merchandise, he/she leaves with $120 to $125
worth of merchandise [14]. Some recent works explore the
pricing strategies of the omnichannel retailer. Zhang et al. [15]
analyze the pricing problem when retailers who implement
the BOPS model compete with those who only implement
network channel operation. Harsha et al. [16] consider the
pricing strategy of online and offline inventory sharing.
However, there are few studies that consider coordination of
pricing and inventory decisions. Fan et al. [17] discuss the
problem of pricing and inventory decision making where an
online retailer and an offline retailer cooperate to implement
the BOPS mode. Moreover, it is worth mentioning that the
BOPS mode requires consumers to pay at the moment of
ordering online, and they know the exact value of the product
only after receiving/picking it, which may cause many
product returns [18]. )us, Liu and Xu [9] investigate an
omnichannel BOPS retailer’s pricing and ordering model
considering online returns. Zhang et al. [5] consider the
omnichannel BOPS mode that allows both online and offline
consumers to return and cancel orders. )eir mode allows a
consumer who places an order online to choose to (i) pay
online and wait for the package delivered via an express
company or (ii) visit the physical stores to touch and feel the
product before payment and then buy and pick up it. )e
BOPS mode in our paper follows the assumption of [5], i.e., a
consumer who places an order online can choose to (i) or (ii)
according to personal preference. )e main differences be-
tween our’s and [5] are as follows: First, we consider the
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multiperiod joint pricing and inventory model, while they
consider the single-period setting; second, we consider the
consumers’ behavior, i.e., reference price effects, which is
ignored in their study. )e abovementioned studies have a
common characteristic that none of them consider the
consumers’ behavior. In reality, consumers’ behaviour has a
significant impact on retailers’ operation and marketing
strategies. )us, it is necessary to consider the consumers’
behaviour when making the joint pricing and inventory
strategies.

)e second stream of related research is on the periodic
review joint pricing and inventory model with reference price
effects. )is line of research started with Gimpl-Heersink [19],
who proves the optimality of the base-stock-list-price for the
single-period and two-period models when the customers are
loss neutral. However, the optimality of the base-stock-list-price
is stricter for the multiperiod setting. Urban [20] analyzes a
single-period joint pricing and inventory model with symmetric
and asymmetric reference price effects and shows that the
consideration of the reference price has a substantial impact on
the firm’s profitability. Taudes and Rudloff [21] provide an
application of the two-period model from the work of Gimpl-
Heersink [19] to electronic commodities. Zhang [22] uses a class
of transformation techniques to prove the optimality of the base-
stock-list-price policy, even if the single-period profit function is
nonconcave. Güler et al. [10] extend the model of [19] to the
concave demand function, and they address the nonconcavity of
the revenue function by combining the transformation tech-
nique proposed by Zhang [22] and the inverse demand function.
)e optimality of the state-dependent order-up-to strategy is
proved for the transformed concave revenue function model.
Güler et al. [11] use the safety stock as a decision variable to
characterize the steady state solution to the problem when the
planning horizon is infinite. Chen et al. [8] introduce a new
concave transform technique to ensure that the profit function is
concave by using the preservation property of supermodularity
in parameter optimization problems with the nonlattice struc-
ture proposed in [23] and then prove the optimality of the base-
stock-list-price strategy. Li and Teng [24] investigate the mul-
tiperiod pricing and inventory decisions for perishable goods
when demand depends on selling price, reference price, product
freshness, and displayed stocks. For other related works in this
stream of research, interested readers may refer to the review by
Ren and Huang [25]. In summary, the abovementioned studies
have shown that reference price effects have important effects on
retailer decision making, but the retailer’s joint pricing and
inventory strategies considering reference price effects are still
inadequate in an omnichannel retail environment. )is gives a
reason for us to investigate this gap.

3. Model Description

3.1. Modeling the Omnichannel under Reference Price Effects.
We consider a retailer (“he”), initially an online retailer, who
previously operated a single online channel that only allowed
consumers to shop online directly. Currently, he has added a
physical store and implemented the omnichannel strategy,
which allows consumers to place orders online without
paying immediately. With this allowance, a consumer

(“she”) who places an order online can choose to (i) pay
online and wait for the package delivered or (ii) visit the
physical stores to touch and feel the product before payment
and then buy and pick up it (i.e., choose “BOPS”). )e
buying procedure of a consumer who orders online is
depicted in Figure 1, where 1 − σ and σ are the fractions of
consumers who place orders online by choosing to (i) and
(ii), respectively.

As shown in Figure 1, after placing an order online, if a
consumer chooses to (i), she knows the exact value of the
product only after receiving it. If the actual value does not
meet her expectation, she can return the product with a full
refund [26], but she needs to pay the return shipping fee for
each unit of the product [27]. Suppose the forward shipping
fee is paid by the retailer while the return shipping fee is paid
by the consumer and the express company charges the same
shipping fee m for both of them. If an online consumer
chooses to (ii), she needs to pay a travelling cost t(t> 0) to
visit the store and then decide whether to keep the product
or cancel the order in store. )e cancellation of the orders
does not pay anything. Moreover, assume that there is an
additional cross-selling profit l from every consumer visiting
the store [6].

)e omnichannel retailer orders and sells a single item
over an infinite planning horizon. Suppose the inventory
periods are identical with equal length T and the shortages
are not allowed. )e inventory is shared across channels
[28], and the replenishment rate is complete and instanta-
neous. Let Ii(t) be the inventory level at time t in the ith
period. Demand rate is proportional to [Ii(t)]a, where
0≤ a< 1 implies the diminishing marginal effect of inven-
tory level on demand. )e retailer charges the same price
pi(p ≤pi ≤p) in the ith period over the physical and online
channels. )e cost of purchase is c per unit, and let h be the
holding cost per unit and s be the salvage value per unit
satisfying pi > c> s. Let vi be the consumer’s valuation for the
product in the ith period which is random and follows the
cdf G(·) (also the pdf g(·) ). Without loss of generality, we
assume that vi > c.)e reference price depends on past prices
and the current price. A commonly used model for the
evolution of the reference price is the exponential smoothing
model (see, for example, [8, 10, 11]):

ri � αri− 1 +(1 − α)pi− 1 � αi− 1
r1 +(1 − α) 

i− 1

j�1
αi− 1− j

pj,

i � 2, 3, 4, . . . ,

(1)

where the initial reference price r1 is known and α(0≤ α< 1)

is the memory factor. )e larger the α, the longer the
memory. If α is high, then consumers have a long memory
and the past price effect is larger. If α is small, then the
current price has a greater effect than the past on the ref-
erence price. )e initial reference price is given by
r1 ∈ [p, p], and then, all rt belong to the interval.

)e demand rate at time t in the ith period, denoted
by X(pi, ri, t), is a multiplicative form of the selling price
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pi, reference price ri, and inventory level Ii(t), which is
given by

X pi, ri, t(  � β0 − β1pi − λ × max pi − ri, 0 

− c × min pi − ri, 0  Ii(t) 
a
,

(2)

where the nonnegative parameters λ and c measure the sen-
sitivities of demand associated with the perceived losses and
gains, respectively. Demand is classified as loss averse, loss
neutral, or loss seeking, depending on whether λ> c, λ � c or
λ< c. Let k(0< k< 1) be the fraction of the demand served
under the single online channel, i.e., the demand was
kX(pi, ri, t) at time t in the ith period when the retailer used to
operate a single offline channel. However, the omnichannel
strategy will lead to an incremental demand (1 − k)X(pi, ri, t)

for the retailer from both the online and offline channels at
time t in the ith period [17]. Let ρ and 1 − ρ be the fractions of
the incremental demand coming from the online and the

offlinemarket, respectively.)en, at time t in the ith period, the
online channel demand is increased from kX(pi, ri, t) to
[k + ρ(1 − k)]X(pi, ri, t), and offline channel demand is in-
creased from 0 to (1 − ρ)(1 − k)X(pi, ri, t).

During the ith period, the depletion of the inventory due
to the effect of demand, Ii(t) can be expressed by the fol-
lowing differential equation:

Ii
′(t) � − X pi, ri, t(  − β0 − β1pi − λ × max pi − ri, 0 

− c × min pi − ri, 0  Ii(t) 
a
,

(3)

with the boundary condition Ii(T) � Ei, where Ei is the
ending inventory level in the ith period. Without loss of
generality, we assume that Ei > 0. Solving differential
equation (3) gives

Ii(t) � E
1− a
i +(1 − a)(T − t) β0 − β1pi − λ × max pi − ri, 0  − c × min pi − ri, 0   

(1/1− a)
, (4)

0≤ t≤T. )e time-weighted inventory during the ith period
is as follows:


T

0
Ii(t)dt � 

T

0
E
1− a
i +(1 − a)(T − t) β0 − β1pi − λ × max pi − ri, 0  − c × min pi − ri, 0   

(1/1− a)
. (5)

In an omnichannel retail environment, the exact in-
ventory information is available to the consumers when they
place orders online, and they will not order the products for
those out of stock. Hence, a consumer who places an order
online does not suffer a utility loss from the stock-out risk. In
the following sections, we start with the case of loss neutral
demand (i.e., λ � c) and then extend our analysis to the case
of loss averse demand. )us, we give the utility of a con-
sumer at different trading times for both online and offline
payment under the omnichannel strategy with the case of
loss neutral demand in Table 1.

As can be seen from Table 1, the consumer utility of buy
online directly and BOPS is max vi − pi + λ(ri − pi), − m 

and max vi − pi + λ(ri − pi) − t, − t , respectively. Accord-
ing to the principle of utility maximization, if a consumer
chooses the buy online directly channel, then the proba-
bilities that he/she keeps and returns the product are
G(pi − m − λ(ri − pi)) and G(pi − m − λ(ri − pi)), respec-
tively. If a consumer chooses the BOPS, the probabilities that
he/she chooses to buy or not buy the product are
G(pi − c(ri − pi)) and G(pi − c(ri − pi)), respectively.
Similarly, the probabilities that an offline consumer chooses

Place 
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order 
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Pay online and 
wait for product 

shipment

Visit store to 
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product 
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product
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Figure 1: Buying procedure of a consumer who orders online under the omnichannel environment.
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to buy or not buy are G(pi − c(ri − pi)) and
G(pi − c(ri − pi)), respectively.

Based on the abovementioned analysis, the omnichannel
retailer’s total profit during the ith period can be written as

π pi, ri, Ei( ,

� pK1(1 − σ)G pi − m − λ ri − pi( (  + sK1(1 − σ)G pi − m − λ ri − pi( (  − mK1(1 − σ)

+ pK1σG pi − λ ri − pi( (  + sK1σG pi − λ ri − pi( (  + lK1σ + pK2G pi − λ ri − pi( (  + sK2G pi − λ ri − pi( (  + lK2

· Ii(0) − Ei  − cIi(0) + sEi − h 
T

0
Ii(t)dt

� λ1A pi, ri(  + λ2B pi, ri(  + s  · Ii(0) − Ei  − cIi(0) + sEi − h 
T

0
Ii(t)dt,

(6)

where K1 � ρ(1 − k) + k, K2 � (1 − ρ)(1 − k), and
K1 + K2 � 1. λ1 � (1 − σ)K1, λ2 � σK1 + K2, and
λ1 + λ2 � 1.

Due to the complexity of h 
T

0 Ii(t)dt, following [24, 29],
we use the average inventory holding cost
(hT [Ii(0) + Ei]/2) to estimate the holding cost during the
period. )en, the total profit (6) becomes

π pi, ri, Ei(  � λ1A pi, ri(  + λ2B pi, ri(  − (c − s)  · φλ
pi, ri, Ei(  

(1/1− a)

− λ1A pi, ri(  + λ2B pi, ri(  Ei −
hT

2
φλ

pi, ri, Ei(  
(1/1− a)

+ Ei 

� λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −
hT

2
  · φλ

pi, ri, Ei(  
(1/1− a)

− λ1A pi, ri(  + λ2B pi, ri(  +
hT

2
 Ei,

(7)

where A(pi, ri), B(pi, ri) are defined in Section 3.2 and

ϕλ pi, ri, Ei(  � E
1− a
i +(1 − a)T β0 − β1pi − λ pi − ri(  .

(8)

We notice from (7) that λ1A(pi, ri) + λ2B(pi, ri) − (c −

s) − (hT/2) represents the gross unit profit, and we assume
that λ1A(pi, ri) + λ2B(pi, ri) − (c − s) − (hT/2) > 0
throughtout the paper. Moreover,

Table 1: Consumer utility under two different channels when demand is loss neutral.

Demand source Purchase channels
At the time of placing the order At the time of receiving the product

Place order Keep (buy) product Return product/cancel
order/leave store

Online consumers Buy online directly − pi vi − pi + λ(ri − pi) − m

BOPS 0 vi − pi + λ(ri − pi) − t − t

Offline consumers Buy offline directly 0 vi − pi + λ(ri − pi) − t − t
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lim
Ei⟶∞

λ1A pi, ri(  + λ2B pi, ri(  − (c − s) − (hT/2)  · ϕλ pi, ri, Ei(  
(1/1− a)

Ei λ1A pi, ri(  + λ2B pi, ri(  +(hT/2) 

� lim
Ei⟶∞

λ1A pi, ri(  + λ2B pi, ri(  − (c − s) − (hT/2)  · E
1− a
i +(1 − a)T β0 − β1pi − λ pi − ri(   

(1/1− a)

Ei λ1A pi, ri(  + λ2B pi, ri(  +(hT/2) 

� lim
Ei⟶∞

λ1A pi, ri(  + λ2B pi, ri(  − (c − s) − (hT/2)  · 1 + (1 − a)T β0 − β1pi − λ pi − ri(  /E1− a
i  

(1/1− a)

λ1A pi, ri(  + λ2B pi, ri(  +(hT/2) 

�
λ1A pi, ri(  + λ2B pi, ri(  − (c − s) − (hT/2)

λ1A pi, ri(  + λ2B pi, ri(  +(hT/2)
< 1,

(9)

which implies that limEi⟶∞π(pi, ri, Ei) � − ∞. )erefore,
Ei is bounded, and we assume that 0≤Ei <E<∞, where E is
a large number.

Let Π(Ρ,Ε) denote the omnichannel retailer’s dis-
counted total profit over the infinite planning horizon.
Given the initial reference price r1 and discount factor
z ∈ (0, 1), the profit-maximizing problem is formulated as
follows:

max
(Ρ,Ε)∈Ω
Π(Ρ,Ε) � 

∞

i�1
z

i− 1π pi, ri, Ei( , (10)

where Ρ � p1, p2, p3, . . . , Ε � E1, E2, E3, . . .  and

Ω � (Ρ, Ε): p ≤pi ≤p
2∗
i ri( <p, 0≤Ei ≤E . (11)

It is worth mentioning that pi ≤p2∗
i (ri) follows from

Assumption 1 and Lemma 2 in Section 3.2, where p2∗
i (ri) is

the solution of L2(pi, ri) � 0. In addition, we can obtain the
following result, which indicates that the omnichannel re-
tailer’s discount total profit increases as the initial reference
price increases.

Lemma 1. Π(Ρ,Ε) is increasing in r1.

3.2. Notations andAssumptions. )e related parameters and
variables used in this paper are summarized in Table 2; other
notations will be defined as needed.

To facilitate the analysis, we define the following
functions:

L1 pi, ri(  � G pi − m − λ ri − pi( (  − pi − s( (1 + λ)g pi − m − λ ri − pi( ( ,

L3 pi, ri(  � G pi − λ ri − pi( (  − pi − s( (1 + λ)g pi − λ ri − pi( ( ,

L2 pi, ri(  � λ1L1 pi, ri(  + λ2L3 pi, ri( ,

A pi, ri(  � pi − s( G pi − m − λ ri − pi( (  − m,

B pi, ri(  � pi − s( G pi − λ ri − pi( (  + l,

(12)

where λ1 � (1 − σ)[1 − (1 − ρ)k] and λ2 � σ[1 − (1 − ρ)k] +

(1 − ρ)k.
Furthermore, we need the following assumptions.

Assumption 1. Suppose λ1A(pi, ri) + λ2B(pi, ri) − (c − s) −

(hT/2)> 0 and L2(pi, ri)> 0.

Assumption 2. Suppose

− g pi − m − λ ri − pi( (  − (1 + λ) pi − s( g′ pi − m − λ ri − pi( ( < 0

− g pi − λ ri − pi( (  − (1 + λ) pi − s( g′ pi − λ ri − pi( ( < 0
(13)

throughout the paper.
Assumption 2 ensures the omnichannel retailer’s dis-

counted total profit (10) to be concave with respect to retail
price p and ending inventory level E, and thus, the optimal p
and E are unique. Moreover, the following lemmas can be
obtained.

Lemma 2. Lj(pi, ri), j � 1, 2, 3, is decreasing in pi and
increasing in ri. �us, for each fixed reference price ri,
Lj(pi, ri) � 0, j � 1, 2, 3 has an unique solution p

j∗
i (ri).

Lemma 3. (zA(pi)/zpi) � L1(pi,ri), (zB(pi)/zpi) �

L3(pi,ri), and (z[λ1A(pi,ri) +λ2B(pi,ri)]/zpi) � L2(pi,ri).
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4. Structural Analysis of the Optimal
Omnichannel Strategies

In this section, we analyze structural properties of the
omnichannel retailer’s optimal pricing and ending inventory
level. In what follows, we first analyze the case of loss neutral
demand. Secondly, we extend the loss neutral demand to the
other case of loss averse demand.

4.1. Loss Neutral Demand. In this subsection, we analyze the
omnichannel retailer’s optimal pricing and ending inventory
level when demand is loss neutral. First, in order to prove the

uniqueness of the optimal pricing and ending inventory
level, the concavity of Π(Ρ, Ε) is needed.

Proposition 1. Π(Ρ,Ε) is concave in pi and Ei, and thus, the
optimal p∗i and E∗i in the ith period are unique.

Next, we investigate the initial reference price r1 on the
optimal pricing and ending inventory level decisions, and
the following lemma is needed.

Lemma 4. If β0 − β1p − λ(p − p)>max M1, M2 , where

M1 �
a

1 − a
β1 + λ( 

λ1A p, ri(  + λ2B p, ri(  − (c − s) − (hT/2)

L2 p, ri( 
,

M2 �
β1 + λ( 

(1 − a)T
·
λ1(p − s)g p − m − λ ri − p( (  + λ2(p − s)g p − λ ri − p( (   + aT λ1A p, ri(  + λ2B p, ri(  − (c − s) − (hT/2) 

L2 pri( 
,

(14)

then

ϕλ pi, ri, Ei( > a β1 + λ( T
λ1A pi, ri(  + λ2B pi, ri(  − (c − s) − (hT/2)

L2 pi, ri( 
,

ϕλ pi, ri, Ei( > β1 + λ( 
λ1 pi − s( g pi − m − λ ri − pi( (  + λ2 pi − s( g pi − λ ri − pi( (   + aT λ1A pi, ri(  + λ2B pi, ri(  − (c − s) − (hT/2) /2  

L2 pi, ri( 
.

(15)

Table 2: Summary of notations.

Notation Description
Decision
pi )e omnichannel retailer’s retail price in the ith period
Ei )e ending inventory level in the ith period
Parameters
Di )e demand rate in the ith period
Π(·) )e omnichannel retailer’s discounted total profit over the infinite horizon
πi(·) )e omnichannel retailer’s total profit in the ith period
z )e discount factor (0< z< 1)

λ, c
)e reference price effects coefficient implies the sensitivity of consumers to the gap between the reference price and the retail

price. )e demand is called loss neutral if λ � c, loss averse if λ> c, and loss seeking if λ< c

α )e memory factor (0≤ α< 1)

vi

)e valuation of the product by the consumer in the ith period, random values that follow distribution G(·) and density g(·), and
G(·) � 1 − G(·)

c )e unit inventory and procurement cost
m )e unit shipping fee
t )e unit travelling cost of consumers to visit the store
s )e salvage price for a leftover unit
l )e cross-selling benefit

σ )e fraction of online consumers choosing to BOPS, and 1 − σ is the fraction of online consumers choosing to buy online
directly

ρ )e fraction of the incremental demand (brought by the omnichannel strategy) coming from the online market, and 1 − ρ is the
fraction of the incremental demand coming from offline market

k )e fraction of the market demand served under the single online channel strategy
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Proposition 2. When the demand is loss neutral, then
p∗i 
∞
i�1 and E∗i 

∞
i�1 both increase as r1 increases if

β0 − β1p − λ(p − p)>max M1, M2 .

Proposition 2 indicates that both the optimal price and
ending inventory level sequences p∗i 

∞
i�1 and E∗i 

∞
i�1 in-

crease with the initial reference price r1. )is can be intu-
itively illustrated as follows: With the increase of consumers’
initial reference price, i.e., when consumers’ initial valuation
of the product increases, the demand will increase and the
optimal price will rise as well. )e omnichannel retailer
orders more to raise the inventory level so as to meet the
demand as much as possible. As a result, the ending in-
ventory level will increase. )e following result shows the
monotonicity behavior of the optimal decisions depending
on the initial reference price.

Proposition 3. When the demand is loss neutral, the fol-
lowing results hold:

(i) If p∗1 > r1, then p∗i 
∞
i�1 and E∗i 

∞
i�1 are both

increasing
(ii) If p∗1 < r1, then p∗i 

∞
i�1 and E∗i 

∞
i�1 are both

decreasing
(iii) If p∗1 � r1, then r1 � p∗1 � p∗2 � p∗3 � · · · and

E∗1 � E∗2 � E∗3 � · · ·

Proposition 3 shows that both the optimal price and
ending inventory level sequences p∗i 

∞
i�1 and E∗i 

∞
i�1 are

monotonic in the same direction depending on the initial
reference price r1. �us, both p∗i 

∞
i�1 and E∗i 

∞
i�1 are con-

vergent due to their boundness. Let pe and Ee denote the
equilibrium selling price and ending inventory level when
demand is loss neutral. �en, pe and Ee can be characterized
via the following result.

Proposition 4. If an interior equilibrium exists, pe and Ee
can be simultaneously determined by

L2 pe, pe( 
λ1A pe, pe(  + λ2B pe, pe(  +(hT/2)

λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2)
 

(1/a)

− 1

�
β1 + λ(1 − z/1 − αz)(  λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2) 

(1 − a) β0 − β1pe( 

×
λ1A pe, pe(  + λ2B pe, pe(  +(hT/2)

λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2)
 

(1/a)

−
λ1A pe, pe(  + λ2B pe, pe(  +(hT/2)

λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2)
 ⎡⎣ ⎤⎦,

Ee �
(1 − a)T β0 − β1pe( 

λ1A pe, pe(  + λ2B pe, pe(  +(hT/2)/λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2)( 
(1− a/a)

− 1
⎡⎣ ⎤⎦

(1/1− a)

,

(16)

respectively.

)e next proposition characterizes the impact of the
strength of reference price effects coefficient (λ), memory
factor (α), unit shipping feem, and cross-selling benefit l on
the optimal pricing and ending inventory level.

Proposition 5. If an interior equilibrium exists, then

(i) pe and Ee are both decreasing in λ
(ii) pe and Ee are both decreasing in α
(iii) pe and Ee are both increasing in m
(iv) pe and Ee are both increasing in l

Proposition 5 indicates that both equilibrium selling price
pe and ending inventory level Ee decrease with the initial
reference price λ and α. )is can be intuitively interpreted as
follows: First, when λ increases, it implies that consumers are
more sensitive to the gap between the selling price and the
reference price. )e retailer should reduce the selling price in
order to make the selling price closer to the consumers’ ref-
erence price and reduce the inventory level at the same time.
)us, pe and Ee are both decreasing. Second, when α increases,

consumers have a long memory and the past price effect is
larger. )is means that consumers adapt to the new price
information at a lower rate and behave less loyaly; then, the
retailer should decrease its selling price while reducing the
inventory level. Hence, the equilibrium selling price pe and
ending inventory levelEe also decrease.)ird, since the forward
shipping feem is paid by the retailer, if the forward shipping fee
increases, the selling price will naturally increase.Moreover, the
high return shipping feemwill reduce the consumers’ desire to
buy, which leads to an increase in the retailer’s ending in-
ventory. Fourth, when the cross-selling benefit l increases, it
indicates that there are more consumers who patronize the
physical stores (including offline consumers and BOPS con-
sumers), and retailers can increase inventory to meet the needs
of these consumers. Additionally, the retailer will increase the
corresponding service cost for the extreme experience service
provided by the physical store, which will make the retailer
increase the sales price of goods. Combining Propositions 3–5,
we can get the following conclusion.

Proposition 6. If an interior equilibrium exists, then

(i) If p∗1 > r1, then p∗i 
∞
i�1 and E∗i 

∞
i�1 both increase

monotonically and converge to pe and Ee, respectively
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(ii) If p∗1 > r1, then p∗i 
∞
i�1 and E∗i 

∞
i�1 both decrease

monotonically and converge to pe and Ee, respectively
(iii) If p∗1 � r1, then pe � p∗1 � p∗2 � p∗3 � · · · and

Ee � E∗1 � E∗2 � E∗3 � · · ·

4.2. Loss Averse Demand. In this section, we extend the case
of loss neutral demand to that of loss averse, i.e., λ>c.
Following the analysis similar to that in [24, 29], for
Ρ� p1,p2,p3, . . . , Ε� E1,E2,E3, . . . , and Ω� (Ρ,Ε): p ≤

pi≤p
2∗
i (ri)<p,0≤Ei≤E}, the profit-maximizing problem

for the loss averse demand is formulated as follows:

max
(Ρ,Ε)∈Ω
Π(Ρ, Ε) � max

(Ρ,Ε)∈Ω


∞

i�1
z

i− 1π pi, ri, Ei( ,

� max
(Ρ,Ε)∈Ω



∞

i�1
z

i− 1 min πλ
pi, ri, Ei( , πc

pi, ri, Ei(  ,

� min max
(Ρ,Ε)∈Ω
Πλ(Ρ,Ε), max

(Ρ,Ε)∈Ω
Πc

(Ρ,Ε) ,

(17)

where Πx(Ρ,Ε) � 
∞
i�1 zi− 1πx(pi, ri, Ei), x � λ or c, and

πx
pi, ri, Ei(  � λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −

hT

2
  · ϕx

pi, ri, Ei(  
(1/1− a)

− λ1A pi, ri(  + λ2B pi, ri(  +
hT

2
 Ei, x � λ or c,

ϕx
pi, ri, Ei(  � E

1− a
i +(1 − a)T β0 − β1pi − x pi − ri(  .

(18)

Similar to the analysis in Section 4.1, we first prove the
uniqueness of the optimal pricing and ending inventory
level.

Proposition 7. �e omnichannel retailer’s discounted total
profit (16) is concave in pi and Ei, and thus, the optimal p∗i
and E∗i in the ith period are unique.

Since

πλ
pi, ri, Ei(  − πc

pi, ri, Ei( ,

�

λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −
hT

2
  ϕλ pi, ri, Ei(  

(1/1− a)
− ϕc

pi, ri, Ei(  
(1/1− a)

 < 0, pi > ri,

0, pi � ri,

λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −
hT

2
  ϕλ pi, ri, Ei(  

(1/1− a)
− ϕc

pi, ri, Ei(  
(1/1− a)

 > 0, pi < ri,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

it follows from Proposition 3 that both the selling price p∗i 
∞
i�1

and ending inventory level E∗i 
∞
i�1 are monotonic in the same

direction as the reference price path. )en, both p∗i 
∞
i�1 and

E∗i 
∞
i�1 are convergent due to their boundness. Let px

e and Ex
e

denote the equilibrium selling price and ending inventory level
when demand is loss averse, x � λ or c. Moreover, since λ> c,
pλ

e <p
c
e and Eλ

e <E
c
e by applying Proposition 6. We can, thus,

obtain the following structural properties of the optimal de-
cisions for the case of loss averse demand.

Proposition 8. If an interior equilibrium exists, then

(i) If p
c
e < r1, then max(Ρ,Ε)∈ΩΠ(Ρ,Ε) � max(Ρ,Ε)∈Ω

Πc(Ρ,Ε), and p∗i 
∞
i�1 and E∗i 

∞
i�1 both decrease
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monotonically and converge to p
c
e and E

c
e ,

respectively
(ii) If pλ

e > r1, then max(Ρ,Ε)∈ΩΠ(Ρ,Ε) � max(Ρ,Ε)∈Ω
Πλ(Ρ,Ε), and p∗i 

∞
i�1 and E∗i 

∞
i�1 both increase

monotonically and converge to pλ
e and Eλ

e ,
respectively

(iii) If pλ
e ≤ r1 ≤p

c
e , then max(Ρ,Ε)∈ΩΠ(Ρ,Ε) � max(Ρ,Ε)∈Ω

Πλ(Ρ,Ε) � max(Ρ,Ε)∈Ω Πc(Ρ,Ε), r1 � p∗1 � p∗2 �

p∗3 � · · ·, and

Ei �
(1 − a)T β0 − β1r1( 

λ1A pe,pe(  +λ2B pe,pe(  +(hT/2)/λ1A pe,pe(  +λ2B pe,pe(  − (c − s) − (hT/2)( 
(1− a/a)

− 1
⎡⎣ ⎤⎦

(1/1− a)

, i � 1,2,3, . . . .

(20)

5. Numerical Analysis

In this section, we carry out several numerical experiments
to illustrate the abovementioned theoretical results and gain
some managerial insights. )e following analysis considers
the loss of neutral consumers because, according to (16), the
situation when consumers are loss aversion can be similarly
analyzed. All experiments below are performed in MATLAB
R2014b on a laptop with an Intel(R) Core (TM) i5-7200U
central processing unit (CPU) (2.50GHz, 2.70GHz) and
8.0GB of RAM running 64 bit Windows 10 Enterprise.

We consider an omnichannel inventory system with the
following initial parameter values: β0 � 160, β1 � 2, c � 10,
h � 2, s � 1, m � 1, l � 2, α � 0.8, a � 0.2, z � 0.6, σ � 0.3,
k � 0.6, ρ � 0.6, T � 1, p � 20, p � 40, and vi∼U[10, 30].
)e optimal equilibrium price, ending inventory level, and
optimal discounted total profit for the different values of λ
and r1 can be obtained by Proposition 4, which are presented
in Table 3. Furthermore, the sensitivity analysis of the key
system parameters, including the memory factor α, the ratio
of BOPS consumers σ, the cross-selling profit l, and the
shipping feem, is presented on the optimal equilibrium price
pe and ending inventory level Ee, as well as the optimal
discounted total profit Π(Ρ∗,Ε∗), and the corresponding
computational results are shown in Tables 4–7.

As shown in Table 3, the optimal equilibrium price pe
and ending inventory level Ee both are decreasing in λ, which
is consistent with Proposition 5 (i). Furthermore, the op-
timal discounted total profit, Π(Ρ∗,Ε∗), increases with the
initial reference price r1, which is also consistent with
Lemma 1.)is can be intuitively illustrated as follows. When
λ is large, which means that the consumers are more sen-
sitive to the gap between the consumers’ reference price and
the retailer’s actual selling price is large, the retailer should
decrease the selling price in order to reduce this gap,
stimulating demand. )is increases the retailer’s profit
Π(Ρ∗,Ε∗) and reduces the ending inventory level Ee.

Table 4 presents the impact of memory factor α on the
optimal equilibrium price pe, ending inventory level Ee and
optimal discounted total profit Π(Ρ∗,Ε∗). As shown in
Table 4, the optimal equilibrium price pe and ending in-
ventory level Ee both are decreasing in α, which is consistent
with Proposition 5 (ii). We can also see from Table 4 that
when the initial reference price r1 is high, the retailer’s profit

increases with α. )e intuition is that when α is large, the
consumers have a long-term memory of the initial reference
price r1. If the current price is high enough, consumers will
not be willing to buy. Hence, the retailer should decrease the
selling price below the initial reference price r1 in order to
reduce the gap between the consumers’ reference price and
the retailer’s actual selling price, thus stimulating demand,
which increases the retailer’s total profit Π(Ρ∗,Ε∗) and
reduces the ending inventory level Ee.

Table 5 provides the impact of the ratio of BOPS con-
sumers’ σ on the optimal equilibrium price pe, ending in-
ventory level Ee, and optimal discounted total profit
Π(Ρ∗,Ε∗). It follows from Table 5 that the optimal equi-
librium price pe and ending inventory level Ee both are
decreasing in σ. )is implies that the increase of the ratio of
consumers who choose BOPS will make the retailer reduce
the selling price, which will not only attract more consumers
to patronize the physical store but also make the retailer earn
more cross-selling profit, thus increasing the total profit
Π(Ρ∗,Ε∗).

Table 6 shows the impact of shipping fee m on the
optimal equilibrium price pe, ending inventory level Ee and
optimal discounted total profit Π(Ρ∗,Ε∗). As shown in
Table 6, the optimal equilibrium price pe and ending in-
ventory level Ee both are increasing inm, which is consistent
with Proposition 5 (iii). )e intuitive explanation is that
when the shipping fee increases, the retailer will inevitably
increase the selling price, which in turn will reduce the
demand and increase the ending inventory level, which is
not conducive to the retailer’s profit Π(Ρ∗,Ε∗).

Table 7 presents the impact of cross-selling profit l on the
optimal equilibrium price pe, ending inventory level Ee and
optimal discounted total profit Π(Ρ∗,Ε∗). As shown in Ta-
ble 7, the optimal equilibrium price pe and ending inventory
level Ee both are increasing in l, which is consistent with
Proposition 5 (iv). Table 5 implies that when the cross-selling
profit increases, if the retailer increases the selling price, the
demand will be restrained, resulting in the increase of ending
inventory and the decrease of profit Π(Ρ∗,Ε∗).

6. Managerial Insights

In this section, some managerial insights are derived from
the numerical analysis, which can be adopted by an
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omnichannel retailer to formulate its pricing and ending
inventory strategies with the reference price effects.

)e parameter λ has a negative impact on selling price
and positive impact on profit. When the reference price
effects on demand are great, which means that the gap
between the reference price and the retailer’s actual selling
price is large, the retailer should adopt low selling price to
reduce this gap and stimulate demand so that the retailer can
raise its profit and reduce the ending inventory level.

)e memory parameter α has a negative impact on
selling price and positive impact on profit. As α increases,
consumers have a long-term memory of the initial reference
price r1. If the current selling price is high enough, con-
sumers will not be willing to buy. Hence, the retailer should
decrease the selling price in order to reduce the gap between
the reference price and the retailer’s selling price, thus
stimulating demand, which helps to increase the retailer’s
profit and reduce the ending inventory level.

Table 3: )e optimal solutions with respect to different values of λ
and r1.

λ r1 Π(Ρ∗,Ε∗) pe Ee
1 35 108.66 30.8677 1.5071
1 40 1197.4 30.8677 1.5071
1 45 3622.7 30.8677 1.5071
1 48 5791.5 30.8677 1.5071
1 55 13111 30.8677 1.5071
1.25 35 247.87 30.8341 1.4344
1.25 40 2163.5 30.8341 1.4344
1.25 45 6295.4 30.8341 1.4344
1.25 48 9955.7 30.8341 1.4344
1.25 55 22234 30.8341 1.4344
1.50 35 443.80 30.8066 1.3755
1.50 40 3445.4 30.8066 1.3755
1.50 45 9794.8 30.8066 1.3755
1.50 48 15387 30.8066 1.3755
1.50 55 34072 30.8066 1.3755

Table 4: Effect of change in α for the dynamic model with
λ � c � 1.25.

r1 α Π(Ρ∗,Ε∗) pe Ee
35 0.750 244.59 30.8426 1.4527
35 0.775 246.21 30.8384 1.4437
35 0.800 247.87 30.8341 1.4344
35 0.825 249.57 30.8297 1.4249
35 0.850 251.35 30.8251 1.4151
45 0.750 6280.3 30.8426 1.4527
45 0.775 6287.7 30.8384 1.4437
45 0.800 6295.4 30.8341 1.4344
45 0.825 6303.2 30.8297 1.4249
45 0.850 6311.3 30.8251 1.4151
55 0.750 22208 30.8426 1.4527
55 0.775 22221 30.8384 1.4437
55 0.800 22234 30.8341 1.4344
55 0.825 22247 30.8297 1.4249
55 0.850 22262 30.8251 1.4151

Table 5: Effect of change in σ for the dynamic model with
λ � c � 1.25.

r1 σ Π(Ρ∗,Ε∗) pe Ee
35 0.1 102.47 31.0677 1.9531
35 0.3 247.87 30.8341 1.4344
35 0.5 459.16 30.5985 0.9473
35 0.7 744.14 30.3608 0.5031
35 0.9 1105.9 30.1208 0.1282
45 0.1 4104.3 31.0677 1.9531
45 0.3 6295.4 30.8341 1.4344
45 0.5 8735.9 30.5985 0.9473
45 0.7 11424 30.3608 0.5031
45 0.9 14346 30.1208 0.1282
55 0.1 15110 31.0677 1.9531
55 0.3 22234 30.8341 1.4344
55 0.5 29779 30.5985 0.9473
55 0.7 37731 30.3608 0.5031
55 0.9 46059 30.1208 0.1282

Table 6: Effect of change in m for the dynamic model with
λ � c � 1.25.

r1 m Π(Ρ∗,Ε∗) pe Ee
35 1 247.87 30.8341 1.4344
35 2 149.63 31.1084 2.0644
35 3 66.290 31.3900 2.7163
35 4 1.1265 31.6790 3.4398
35 5 -42.368 31.9753 4.2151
45 1 6295.4 30.8341 1.4344
45 2 5812.8 31.1084 2.0644
45 3 5317.3 31.3900 2.7163
45 4 4820.2 31.6790 3.4398
45 5 4322.5 31.9753 4.2151
55 1 22234 30.8341 1.4344
55 2 21386 31.1084 2.0644
55 3 20492 31.3900 2.7163
55 4 19575 31.6790 3.4398
55 5 18632 31.9753 4.2151

Table 7: Effect of change in l for the dynamic model with
λ � c � 1.25.

r1 l Π(Ρ∗,Ε∗) pe Ee
40 2 2163.5 30.8341 1.4344
40 3 494.88 32.6087 1.4366
40 4 294.13 33.0113 7.1432
40 5 89.083 33.4010 8.3197
40 6 − 64.894 33.7791 9.4956
45 2 6295.4 30.8341 1.4344
45 3 2983.4 32.6087 1.4366
45 4 2723.9 33.0113 7.1432
45 5 2184.4 33.4010 8.3197
45 6 1697.9 33.7791 9.4956
55 2 22234 30.8341 1.4344
55 3 17057 32.6087 1.4366
55 4 15386 33.0113 7.1432
55 5 14188 33.4010 8.3197
55 6 13042 33.7791 9.4956
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When the BOPS is considered, as the ratio of BOPS
consumers σ increases, the retailer should adopt a low-price
strategy, which will not only attract more consumers to
patronize the physical store by means of the advantages of
in-store experience but also make the retailer earn more
cross-selling profit, thus increasing its profit. In addition,
Table 5 indicates that the retailer should not increase the
selling price when the cross-selling profit increases because
this will restrain the demand. Finally, the shipping feem has
a negative impact on selling price and profit. )e reason is
that a higher unit shipping fee can decrease the consumers’
willingness to pay for the product, which in turn will reduce
the demand and increase the ending inventory level, which is
not conducive to the retailer’s profit.

7. Conclusions

Our research complements the existing research stream in
coordinating pricing and inventory replenishment decisions
under an omnichannel retail environmental by taking into
the consideration of consumers’ reference price effects.
Specifically, this paper considers an omnichannel retailer’s
multiperiod pricing and inventory retail operations under
reference price effects in which consumers can cancel their
order before payment and return the product after payment
if the product does not meet their expectation. )e omni-
channel retailer’s optimal equilibrium pricing and ending
inventory level are derived under the reference price effects
by maximizing the discounted total profit over the infinite
planning horizon, where the optimal decisions we discussed
are under two scenarios: loss neutrality and loss aversion. In
addition, the impact of system parameters on the optimal
price and ending inventory level is studied. Our main results
are summarized as follows. First, our analysis shows that the
convergence of the pricing and ending inventory level to-
ward their equilibrium is from above or below, depending
on the relative location of the initial reference price with
respect to the unique equilibrium price. Second, we inves-
tigate how key system parameters affect the optimal deci-
sions. When consumers are more sensitive to the gap
between the selling price and the reference price or

consumers have a long memory of the past price, both
equilibrium selling price pe and ending inventory level Ee
decrease. Furthermore, when the shipping fee m or the
cross-selling benefit l increases, both equilibrium selling
price pe and ending inventory level Ee increase.)is research
fills in the gap of behavioral operation management in the
study of pricing and inventory in omnichannel retail
operations.

)ough this paper has identified the effects of reference
price on the coordination of pricing and inventory deci-
sions for an omnichannel retailer, there are still some
shortcomings that can be investigated in the future. First,
this paper analyzes the pricing and inventory decisions of
an omnichannel retailer under consumers’ reference price
effects, unaware of the influence of loss aversion on the
omnichannel retailer. An interesting future research topic
is to examine the pricing and inventory decisions for
considering the reference point and loss aversion of an
omnichannel retailer. Second, in our study, the customers’
reference price can be observed by retailers. However, the
information on the reference price is difficult to obtain in
reality. )erefore, demand learning can be incorporated
into formulating pricing and inventory strategies in the
presence of the reference price effects under the omni-
channel environment. )ird, the government subsidy is
necessary because the high shipping fee will increase the
selling price, thus restraining the increase of demand and
profit (see, for example, [30]). Hence, government subsidy
for the shipping fee is another factor that can be incor-
porated into formulating pricing and inventory strategies
in the presence of the reference price effects under the
omnichannel environment.

Appendix

Proof of Lemma 1. Since ϕ(pi, ri, Ei) is increasing in r1,
π(pi, ri, Ei) is increasing in r1. )us, Π(Ρ,Ε) �


∞
i�1 zi− 1π(pi, ri, Ei) is increasing in r1. □

Proof of Lemma 2. Since

zL1(p, r)

zp
� − (1 + c) g(p − m − c(r − p)) +(p − s)(1 + c)g′(p − m − c(r − p)) ,

zL3(p, r)

zp
� − (1 + c) g(p − c(r − p)) +(p − s)(1 + c)g′(p − c(r − p)) ,

zL1(p, r)

zr
� c g(p − m − c(r − p)) +(p − s)(1 + c)g′(p − m − c(r − p)) ,

zL3(p, r)

zr
� c g(p − c(r − p)) +(p − s)(1 + c)g′(p − c(r − p)) ,

(A.1)
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it follows from Assumption 2 that (zL1(p,r)/zp)<0,

(zL3(p,r)/zp)<0,(zL1(p,r)/zr)>0 and (zL3(p,r)/zr)>0,
which yields the results. □

Proof of Proposition 1. Since

zΠ(Ρ, Ε)
zp

2
i

� z
i− 1zL2 pi, ri( 

zpi

ϕλ pi, ri, Ei(  
(1/1− a)

− Ei 

− z
i− 1 2 β1 + λ( TL2 pi, ri(  ϕλ pi, ri, Ei(  

(1/1− a)− 1


+ a β1 + λ( 
2
T
2 λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −

hT

2
  ϕλ pi, ri, Ei(  

(1/1− a)− 2
,

(A.2)

noting that ϕλ(pi,ri,Ei)
(1/1− a) − Ei>0 and (zL2(pi,ri)/

zpi)<0, we thus, obtain (zΠ(Ρ,Ε)/zp2
i )<0.

Moreover,

zΠ(Ρ,Ε)
zE

2
i

� z
i− 1

aE
− a− 1 λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −

hT

2
  ϕλ pi, ri, Ei(  

(1/1− a)− 2

× E
1− a

− ϕλ
pi, ri, Ei(  < 0.

(A.3)

Hence, Proposition 1 can be obtained. □ Proof of Lemma 4.

ϕλ pi, ri, Ei(  � E
1− a
i +(1 − a)T β0 − β1pi − λ pi − ri(  

>(1 − a)T β0 − β1p − λ p − p  

> a β1 + λ( T
λ1A p, ri(  + λ2B p, ri(  − (c − s) − (hT/2)

L2 p, tri( 

> a β1 + λ( T
λ1A pi, ri(  + λ2B pi, ri(  − (c − s) − (hT/2)

L2 pi, ri( 
,

(A.4)

where the last inequality follows from the fact that
(λ1A(pi, ri) + λ2B(pi, ri) − (c − s) − (hT/2)/L2(pi, ri)) is
increasing in pi. Moreover, since
([λ1(pi − s)g(pi − m − λ(ri − pi)) + λ2(pi − s)g(pi −

λ(ri − pi))] + aT[λ1A(pi, ri) + λ2B(pi, ri) − (c − s) −

(hT/2)]/L2(pi, ri)) is also increasing in pi, the second in-
equality is similar to provable. □

Proof of Proposition 2.

z
2Π(Ρ, Ε)
zpizr1

� z
i− 1 zL2 pi, ri( 

zri

αi− 1 ϕλ
pi, ri, Ei(  

(1− a/1)
+ λαi− 1

TL2 pi, ri(  ϕλ pi, ri, Ei(  
(1/1− a)− 1

 

− z
i− 1 λ1 pi − s( g pi − m − λ ri − pi( (  + λ2 pi − s( g pi − λ ri − pi( (  

× λαi− 1 β1 + λ( T ϕλ pi, ri, Ei(  
(1/1− a)− 1

− λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −
hT

2
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× aλαi− 1 β1 + λ( T
2 ϕλ pi, ri, Ei(  

(1/1− a)− 2
−

zL2 pi, ri( 

zri

αi− 1
Ei

+ 
∞

n�i+1
z

n− 1λ2(1 − α)α2n− 2− i
T
2 λ1A pn, rn(  + λ2B pn, rn(  − (c − s) −

hT

2
 

× ϕλ pi, ri, Ei(  
(1/1− a)− 2

+ 
∞

n�i+1
z

n− 1λ(1 − α)α2n− 2− i
T ϕλ pi, ri, Ei(  

(1/1− a)− 1

× λ1 pn − s( g pn − m − λ rn − pn( (  + λ2 pn − s( g pn − λ rn − pn( (  

� z
i− 1αi− 1zL2 pi, ri( 

zri

ϕλ
pi, ri, Ei(  

(1/1− a)
− Ei  + z

i− 1λαi− 1
T ϕλ pi, ri, Ei(  

(1/1− a)− 2

× L2 pi, ri( ϕλ pi, ri, Ei(  − β1 + λ( 

λ1 pi − s( g pi − m − λ ri − pi( (  + λ2 pi − s( g pi − λ ri − pi( (  

− a β1 + λ( T λ1A pn, rn(  + λ2B pn, rn(  − (c − s) −
hT

2
 

+ 
∞

n�i+1
z

n− 1λ2(1 − α)α2n− 2− i
T
2 λ1A pn, rn(  + λ2B pn, rn(  − (c − s) −

hT

2
  ϕλ pi, ri, Ei(  

(1/1− a)− 2

+ 
∞

n�i+1
z

n− 1λ(1 − α)α2n− 2− i
T λ1 pn − s( g pn − m − λ rn − pn( (  + λ2 pn − s(  × g pn − λ rn − pn( (   ϕλ pi, ri, Ei(  

(1/1− a)− 1

> 0,

zΠ(Ρ, Ε)
zEizr1

� z
i− 1λαi− 1 λ1 pi − s( g pi − m − λ ri − pi( (  + λ2 pi − s( g pi − λ ri − pi( (  

× E
− a
i φλ

pi, ri, Ei(  
(1/1− a)− 1

− 1 

+ z
i− 1

aλαi− 1
TE

− a
i λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −

hT

2
  φλ

pi, ri, Ei(  
(1/1− a)− 2

> 0,

zΠ(Ρ, Ε)
zpizpj

�
z

zpj



∞

n�i+1
z

n− 1λ(1 − α)αn− 1− i
T λ1A pn, rn(  + λ2B pn, rn(  − (c − s) −

hT

2
 

× ϕλ pn, rn, En(  
(1/1− a)− 1

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

� z
j− 1λ(1 − α)αj− 1− i

TL2 pj, rj  ϕλ pi, ri, Ei(  
(1/1− a)− 1

− z
j− 1

aλ(1 − α)αj− 1− i β1 + λ( 

× T
2 λ1A pj, rj  + λ2B pj, rj  − (c − s) −

hT

2
  ϕλ pj, rj, Ej  

(1/1− a)− 2

+ 

∞

n�j+1
z

n− 1
aλ2(1 − α)

2α2n− i− j− 2
T
2 λ1A pn, rn(  + λ2B pn, rn(  − (c − s) −

hT

2
 

× ϕλ pn, rn, En(  
(1/1− a)− 2

+ 

∞

n�j+1
z

n− 1λ(1 − α)
2α2n− i− j− 2

TL2 pn, rn(  ϕλ
pn, rn, En(  

(1/1− a)− 1

� z
j− 1λ(1 − α)αj− 1− i

T
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L2 pj, rj  ϕλ pi, ri, Ei(   − a β1 + λ( T × λ1A pj, rj  + λ2B pj, rj  − (c − s) −
hT

2
  ϕλ pi, ri, Ei(  

(1/1− a)− 2
 

+ 
∞

n�j+1
z

n− 1
aλ2(1 − α)

2α2n− i− j− 2
T
2 λ1A pn, rn(  + λ2B pn, rn(  − (c − s) −

hT

2
 

× ϕλ pn, rn, En(  
(1/1− a)− 2

+ 
∞

n�j+1
z

n− 1λ(1 − α)
2α2n− i− j− 2

TL2 pn, rn(  ϕλ pn, rn, En(  
(1/1− a)− 1

> 0,

zΠ(Ρ,Ε)
zpizEj

�

0, i> j,

− z
i− 1

L2 pi, ri(  + z
i− 1

L2 pi, ri(  ϕλ pi, ri, Ei(  
(1/1− a)− 1

E
− a
i − z

i− 1
a β1 + λ( 

× T λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −
hT

2
  ϕλ pi, ri, Ei(  

(1/1− a)− 2
E

− a
i ,

i � j,

z
j− 1

aλ(1 − α)αj− 1− i
T λ1A pj, rj  + λ2B pj, rj  − (c − s) −

hT

2
 

× ϕλ
pj, rj, Ej  

(1/1− a)− 2
E

− a
j .

i< j,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.5)

and (zΠ(Ρ, Ε)/zEiEj) � 0, respectively. Because

− z
i− 1

L2 pi, ri(  + z
i− 1

L2 pi, ri(  ϕλ
pi, ri, Ei(  

(1/1− a)− 1
E

− a
i − z

i− 1
a β1 + λ( T

× λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −
hT

2
  ϕλ pi, ri, Ei(  

(1/1− a)− 2
E

− a
i

≥ − z
i− 1

L2 pi, ri(  + z
i− 1

L2 pi, ri(  ϕλ pi, ri, Ei(  
(1/1− a)− 2

E
− a
i ϕλ pi, ri, Ei(  − a β1 + λ( T λ1A pi, ri(  + λ2B pi, ri(  − (c − s) −

hT

2
  

≥ − z
i− 1

L2 pi, ri(  + z
i− 1

L2 pi, ri( E
− 1+2a
i E

1− 2a
i

� 0,

(A.6)

(zΠ(Ρ,Ε)/zpiEj)≥ 0. In summary,Π(Ρ, Ε) is supermodular
in (Ρ,Ε, r1). Hence, p∗i 

∞
i�1 and E∗i 

∞
i�1 are both increasing

in r1. □

Proof of Proposition 3.

(i) Problem (10) can be rewritten in the following form:

max
(Ρ,Ε)∈Ω
Π(Ρ,Ε) � π p

∗
1 , r
∗
1 , E
∗
1( 

+ z max
(Ρ,Ε)∈Ω



∞

i�2
z

i− 2π pi, ri, Ei( .
(A.7)

If p∗1 > r1, then r∗2 � αr∗1 + (1 − α)p∗1(r∗1 )> r∗1 . It follows
from the supermodularity of Π(Ρ,Ε) in (Ρ,Ε, r1) that there

are p∗2(r∗2 )≥p∗2(r∗1 ) � p∗1(r∗1 ) and E∗2(r∗2 )≥E∗2(r∗1 ) �

E∗1(r∗1 ). Similarly, we have p∗3(r∗3 )≥p∗2(r∗2 ) � p∗2(r∗2 ) and
E∗3(r∗3 )≥E∗3(r∗2 ) � E∗2(r∗2 ) according to r∗3 � αr∗2+

(1 − α)p∗2(r∗2 ). By induction, we can obtain that p∗1 ≤p∗2 ≤
p∗3 ≤ · · · ≤p∗∞ and E∗1 ≤E∗2 ≤E∗3 ≤ · · · ≤E∗∞. Similarly, we
can get (ii) and (iii). □

Proof of Proposition 4. Suppose the selling price reaches the
equilibrium pe in the nth period; we have pe − ri � pe −

αi− nrn − (1 − α)pe
i− n
j�0α

i− n− j � αi− n(pe − rn) for all i≥ n,
which implies that the reference price converges to pe as
i⟶∞. )us, the discounted total profit from period n to
infinite can be rewritten as
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∞

i�n

z
i− 1π pe, ri, Ei(  � 

∞

i�n

z
i− 1 λ1A pe, rn(  + λ2B pe, rn(  − (c − s) −

hT

2
 

× (1 − a)T β0 − β1pe − λαi− n
pe − rn(   + E

1− a
i 

(1/1− a)

− 
∞

i�n

z
i− 1

Ei λ1A pe, rn(  + λ2B pe, rn(  +
hT

2
 .

(A.8)

)e problem is simplified to derive pe and Ei 
∞
i�n in

order to maximize Π(Ρe,Ε). )e first-order conditions for
an interior maximum are as follows:

z 
∞
i�n z

i− 1π pe, ri, Ei( 

zpe

� 
∞

i�n

z
i− 1

L2 pe, rn(  (1 − a)T β0 − β1pe − λαi− n
pe − rn(   + E

1− a
i 

(1/1− a)

− 

∞

i�n

z
i− 1 β1 + λαi− n

 T λ1A pe, rn(  + λ2B pe, rn(  − (c − s) −
hT

2
 

× (1 − a)T β0 − β1pe − λαi− n
pe − rn(   + E

1− a
i 

(1/1− a)− 1

− 

∞

i�n

z
i− 1

L2 pe, rn( Ei � 0,

z 
∞
i�n z

i− 1π pe, ri, Ei( 

zEi

� 

∞

i�n

z
i− 1

E
− a
i λ1A pe, rn(  + λ2B pe, rn(  − (c − s) −

hT

2
  (1 − a)T β0 − β1pe − λαi− n

pe − rn(   + E
1− a
i 

(1/1− a)− 1

− 
∞

i�n

z
i− 1 λ1A pe, rn(  + λ2B pe, rn(  +

hT

2
  � 0, i � n, n + 1, n + 2, . . . ,

(A.9)

respectively. Since limn⟶∞(pe − rn) � 0, we have rn � pe if n
is sufficiently large.)us, substitutingpe � rn into the first-order
conditions, we get

z 
∞
i�n z

i− 1π pe, ri, Ei( 

zpe

� 
∞

i�n

z
i− 1

L2 pe, pe(  (1 − a) β0 − β1pe( T + E
1− a
i 

(1/1− a)

− 
∞

i�n

z
i− 1 β1 + λαi− n

 T λ1A pe, pe(  + λ2B pe, pe(  − (c − s) −
hT

2
 

× (1 − a) β0 − β1pe( T + E
1− a
i 

(1/1− a)− 1
− 
∞

i�n

z
i− 1

L2 pe, pe( Ei � 0,

0 � 
∞

i�n

z
i− 1

E
− a
i λ1A pe, pe(  + λ2B pe, pe(  − (c − s) −

hT

2
  (1 − a) β0 − β1pe( T + E

1− a
i 

(1/1− a)− 1

− 

∞

i�n

z
i− 1 λ1A pe, pe(  + λ2B pe, pe(  +

hT

2
 .

(A.10)
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From the last equation, we can see that
Ee � En � En+1 � En+2 � · · ·. Substituting this result into
previous equations and after rearranging terms, we get

L2 pe, pe(  ϕλ pe, pe, Ee(  
(1/1− a)

� β1 + λ
1 − z

1 − αz
 T λ1A pe, pe(  + λ2B pe, pe(  − (c − s) −

hT

2
 

× ϕλ pe, pe, Ee(  
(1/1− a)− 1

+ Ee,

λ1A pe, pe(  + λ2B pe, pe(  +
hT

2
 E

a
e � λ1A pe, pe(  + λ2B pe, pe(  − (c − s) −

hT

2
 

× ϕλ pe, pe, Ee(  
(1/1− a)− 1

,

(A.11)

or equivalently,

λ1A pe, pe(  + λ2B pe, pe(  +(hT/2)

λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2)
 

(1− a/a)

� 1 +
(1 − a) β0 − β1pe( T

E
1− a
e

. (A.12)

After some algebraic manipulations, we get

L2 pe, pe( 
λ1A pe, pe(  + λ2B pe, pe(  +(hT/2)

λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2)
 

(1/a)

− 1

�
β1 + λ(1 − z/1 − αz)(  λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2) 

(1 − a) β0 − β1pe( 

×
λ1A pe, pe(  + λ2B pe, pe(  +(hT/2)

λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2)
 

(1/a)

−
λ1A pe, pe(  + λ2B pe, pe(  +(hT/2)

λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2)
 ⎡⎣ ⎤⎦,

Ee �
(1 − a)T β0 − β1pe( 

λ1A pe, pe(  + λ2B pe, pe(  +(hT/2)/λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2)( 
(1− a/a)

− 1
⎡⎣ ⎤⎦

(1/1− a)

.

(A.13)
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)is completes the proof. □

Proof of Proposition 5

(i) Taking the cross-partial derivatives of

∞
i�n zi− 1π(pe, ri, Ei) with respect to pe, Ei, and λ

yields

z
2


∞
i�n z

i− 1π pe, ri, Ei( 

zpezλ
� − 
∞

i�n

z
i− 1αi− n

pe − rn( TL2 pe, rn(  ϕλ pe, rn, Ei(  
(1/1− a)

− 
∞

i�n

z
i− 1αi− n

T λ1A pe, rn(  + λ2B pe, rn(  − (c − s) −
hT

2
 

× ϕλ
pe, rn, Ei(  

(1/1− a)− 1
+ 
∞

i�n

z
i− 1

aαi− n
pe − rn(  β1 + λαi− n

 T
2

× λ1A pe, rn(  + λ2B pe, rn(  − (c − s) −
hT

2
  ϕλ pe, rn, Ei(  

(1/1− a)− 2
,

z
2


∞
i�n z

i− 1π pe, ri, Ei( 

zEizλ
� − 
∞

i�n

z
i− 1

aαi− n
pe − rn( TE

− a
i ϕλ pe, rn, Ei(  

(1/1− a)− 2

× λ1A pe, rn(  + λ2B pe, rn(  − (c − s) −
hT

2
 < 0,

z
2


∞
i�n z

i− 1π pe, ri, Ei( 

zpezEi

� 
∞

i�n

z
i− 1

E
− a
i L2 pe, rn(  ϕλ pe, rn, Ei(  

(1/1− a)− 1
− 
∞

i�n

z
i− 1

L2 pe, rn( 

− 
∞

i�n

z
i− 1

aE
− a
i β1 + λαi− n

 T ϕλ pe, rn, Ei(  
(1/1− a)− 2

× λ1A pe, rn(  + λ2B pe, rn(  − (c − s) −
hT

2
 

≥ z
i− 1

L2 pe, rn(  + z
i− 1

L2 pe, rn( E
− 1+2a
i E

1− 2a
i

� 0.

(A.14)

Since rn � pe when n is sufficiently large,

z
2


∞
i�n z

i− 1π pe, ri, Ei( 

zpezλ
� − 
∞

i�n

z
i− 1αi− n

T λ1A pe, rn(  + λ2B pe, rn(  − (c − s) −
hT

2
 

× ϕλ pe, rn, Ei(  
(1/1− a)− 1

< 0.

(A.15)

In summary, 
∞
i�n zi− 1π(pe, ri, Ei) is supermodular

in (− pe, − Ei, λ), which implies the equilibrium
selling price pe and ending inventory level Ee both
decrease with λ.

(ii) Let

ψ pe, Ee(  � L2 pe, pe(  φλ
pe, pe, Ee(  

(1/1− a)
− β1 + λ

1 − z

1 − αz
 T

· λ1A pe, pe(  + λ2B pe, pe(  − (c − s) −
hT

2
  φλ

pe, pe, Ee(  
(1/1− a)− 1

+ Ee.

(A.16)
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From the implicit function theorem, we have

dpe

dα
� −

zψ pe, Ee( /zα( 

zψ pe, Ee( /zpe( 
,

�
− (1 − z)z/(1 − αz)

2
 T λ1A pe, pe(  + λ2B pe, pe(  − (c − s) − (hT/2)  ϕλ pe, pe, Ee(  

(1/1− a)− 1

− zψ pe, Ee( /zpe( 
,

(A.17)

it follows from Proposition 2 that
− (zψ(pe, Ee)/zpe)> 0; then, we have (dpe/dα)< 0.
)erefore, pe is decreasing in α.

Moreover, because 
∞
i�n zi− 1π(pe, ri, Ei) is super-

modular in (pe, Ee), we have

dEe

dα
�

zEe

zα
+

zEe

zpe

dpe

dα
�

zEe

zpe

dpe

dα
< 0. (A.18)

Hence, Ee is decreasing in α.

(iii) From the implicit function theorem, we get

dpe

dm
� −

z
2


∞
i�n z

i− 1π pe, ri, Ei( /zpezm 

z
2


∞
i�n z

i− 1π pe, ri, Ei( /zp
2
e 

�
z
2


∞
i�n z

i− 1π pe, ri, Ei( /zpezm 

− z
2


∞
i�n z

i− 1π pe, ri, Ei( /zp
2
e 

.

(A.19)

Since

z
2


∞
i�n z

i− 1π pe, ri, Ei( 

zpezm
� 
∞

i�n

z
i− 1λ1 g pe − m(  + pe − s( (1 + λ)g′ pe − m(  

× (1 − a) β0 − β1pe( T + E
1− a
i 

(1/1− a)
− Ei 

> 0,

(A.20)

(dpe/dm)> 0, where pe is increasing in m.

dEe

dm
� −

z
2


∞
i�n z

i− 1π pe, ri, Ei( /zEezm 

z
2


∞
i�n z

i− 1π pe, ri, Ei( /zE
2
e 

�
z
2


∞
i�n z

i− 1π pe, ri, Ei( /zEezm 

− z
2


∞
i�n z

i− 1π pe, ri, Ei( /zE
2
e 

. (A.21)

Since

z
2


∞
i�n z

i− 1π pe, ri, Ei( 

zEizm
� 
∞

i�n

z
i− 1

E
− a
i λ1 g pe − m(  + pe − s( (1 + λ)g′ pe − m(  

× (1 − a) β0 − β1pe( T + E
1− a
i 

(1/1− a)− 1

− 

∞

i�n

z
i− 1λ1 g pe − m(  + pe − s( (1 + λ)g′ pe − m(  > 0,

(A.22)

(dEe/dm)> 0, where Ee is increasing in m.
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(iv) From the implicit function theorem, we get

dpe

dl
� −

z
2


∞
i�n z

i− 1π pe, ri, Ei( /zpezl 

z
2
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Since
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(1/1− a)
− Ei > 0, (A.24)

(dpe/dm)> 0, where pe is increasing in l.
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Since

z
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i�n z
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(dEe/dm)> 0, where Ee is increasing in l. )is completes the
proof. □

Proof of Proposition 7. It follows from Proposition 1 that
πλ(pi, ri, Ei) is concave in pe and Ee. Similarly, it can be
proved that πc(pi, ri, Ei) is concave in pe and Ee. Since
minimization preserves the concavity, this thus, gives the
proof. □

Proof of Proposition 8. )e proof is similar to that of
)eorem 7 in [24], which we omit here. □
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