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In this study, using the method of discounting the terminal expectation value into its initial value, the pricing formulas for
European options are obtained under the assumptions that the financial market is risk-aversive, the risk measure is standard
deviation, and the price process of underlying asset follows a geometric Brownian motion. In particular, assuming the option
writer does not need the risk compensation in a risk-neutral market, then the obtained results are degenerated into the famous
Black–Scholes model (1973); furthermore, the obtained results need much weaker conditions than those of the Black–Scholes
model. As a by-product, the obtained results show that the value of European option depends on the drift coefficient μ of its
underlying asset, which does not display in the Black–Scholes model only because μ � r in a risk-neutral market according to the
no-arbitrage opportunity principle. At last, empirical analyses on Shanghai 50 ETF options and S&P 500 options show that the
fitting effect of obtained pricing formulas is superior to that of the Black–Scholes model.

1. Introduction

(e option pricing theory began in 1900 when the French
mathematician Louis Bachelier deduced an option pricing
formula under the assumption that underlying asset prices
follow a Brownian motion with zero drift. Since then, lots of
researchers have contributed to the theory. Black and
Scholes [1] present the very famous option pricing formula
(i.e., Black–Scholes model) in a risk-neutral market and
according to the no-arbitrage opportunity principle. Merton
[2] shows the Black–Scholes-type model can be derived from
weaker assumptions than in their original formulation and
present some pricing methods for non-European options.
Bakshi et al. [3] first derive an option pricing model that
allows volatility, interest rates, and jumps to be stochastic.
Gârleanu et al. [4] model demand-pressure effects on option
prices.(emodel shows that demand pressure in one option
contract increases its price by an amount proportional to the
variance of the unhedgeable part of the option. Cai and Kou
[5] propose a jump diffusion model for asset prices whose
jump sizes have a mixed-exponential distribution, which is a
weighted average of exponential distributions but with

possibly negative weights, and then they extend the ana-
lytical tractability of the Black–Scholes model to alternative
models. Bernarda and Czadob [6] investigate the pricing of
basket options and more generally of complex exotic con-
tracts depending on multiple indices. (eir approach as-
sumes that the underlying assets evolve as dependent
GARCH(1, 1) processes. (e dependence among the assets
is modeled using a copula based on pair copula construc-
tions. Bandi and Bertsimas [7] combine robust optimization
and the idea of ε−arbitrage to propose a tractable approach
to price a wide variety of options. Bao et al. [8] present a
method that there is a possibility to get statistical arbitrage
from Black–Scholes’s option price.

In the last five years, there are still many researchers
contributing to the theory of option pricing. Moretto et al.
[9] study option pricing under deformed Gaussian distri-
butions. Leippold and Scharer [10] develop a stochastic li-
quidity model, and they investigate discrete-time option
pricing with stochastic liquidity. Hoka and Chanb [11]
develop an option pricing method based on Legendre series
expansion of the density function, and approximation for-
mulas for pricing European type options are derived.
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Davison and Mamba [12] obtain a solution of the Black-
–Scholes equation with a nonsmooth boundary condition
using symmetry methods. Willems [13] derives a series
expansion for the price of a continuously sampled arithmetic
Asian option in the Black–Scholes setting. (e expansion is
based on polynomials that are orthogonal with respect to the
log-normal distribution. More literature studies can refer to
Liu et al. [14], Friz et al. [15], Dubinsky et al. [16], Huh [17],
Liu et al. [18], Siddiqi [19] and their studies.

Although there are a huge number of literature studies
on option pricing, they almost assume the financial markets
are risk-neutral and complete, especially since Black and
Scholes [1]. However, according to the theory and empirical
analysis of risk, real financial markets are risk-aversive and
incomplete. (at is, investors need risk compensation for
risky assets, and many risky assets cannot be duplicated by
any portfolio constructed in real financial markets.

In this study, using the method of discounting the
terminal expectation value into its initial value, we obtain
European option pricing formula under the assumptions
that the financial market is risk-aversive, the risk measure is
standard deviation, and the price process of underlying asset
follows a geometric Brownian motion. In particular, if the
option writer does not need the risk compensation in a risk-
neutral market, then our obtained results are degenerated
into the Black–Scholes model [1]; furthermore, our obtained
results need much weaker conditions than those in the
Black–Scholes model. At last, we take the Shanghai 50 ETF
options, the first floor option in the Chinese financial
market, and S&P 500 options as samples to compare the
fitting effect. (e empirical analyses show that the fitting
effect of our pricing formulas is superior to that of the
Black–Scholes model.

2. The Black–Scholes Formula

In this study, we will investigate European option pricing
and compare our results with those of Black and Scholes [1].
(us, we first retell the main results of Black & Scholes [1].

Black and Scholes [1] present nine assumptions in the
market for the security and for the option and then obtain
their famous option pricing formula.

Assumption 1. Security price satisfies a geometric Brownian
motion (GBM) model, where its drift coefficient and dif-
fusion coefficient are constant through time. (at is, the
security price satisfies stochastic differential equation:

dSt

St

� μdt + σdBt, (1)

where μ and σ are constant and σ > 0.

Assumption 2. (e short-term interest rate r is known and is
constant through time. (at is, the risk-free bond price
satisfies ordinary differential equation:

dPt

Pt

� rdt, (2)

where r is constant.

Assumption 3. (e security pays no dividends or other
distributions.

Assumption 4. (ere are no transaction costs in buying or
selling the security or the option.

Assumption 5. (e security can be continuously transacted.

Assumption 6. (e amount of security can be arbitrarily
divided.

Assumption 7. It is possible to borrow any fraction of the
price of a security to buy it or to hold it, at the short-term
interest rate.

Assumption 8. (ere are no penalties to short selling. A
seller who does not own a security will simply accept the
price of the security from a buyer and will agree to settle with
the buyer on some future date by paying him an amount
equal to the price of the security on that date.

Assumption 9. (ere is no-arbitrage opportunity.
When the above assumptions all hold, Black and Scholes

[1] derived the pricing formula for European options, which
is the Black–Scholes model.

Theorem 1 (see [1]). If Assumptions 1 to 9 hold, then the
values of European call option and European put option
follow as

C S0, K, r, σ, τ(  � S0Φ d2(  − Ke
− rτΦ d1( , (3)

P S0, K, r, σ, τ(  � Ke
− rτΦ −d1(  − S0Φ −d2( , (4)

where S0 is the initial price of underlying asset, K is the strike
price of option, r is the short-term interest rate, σ is the
diffusion coefficient of underlying asset, τ is the left expiration
time of option, Φ(·) is the cumulative density function of
standard normal distribution, and

d1 �
1

σ
�
τ

√ ln
S0

K
+ r −

1
2
σ2 τ ,

d2 � d1 + σ
�
τ

√
.

(5)

3. European Option Pricing in Risk-
Aversive Markets

Black–Scholes model and its modified versions have some
defects. In fact, because real financial markets are incom-
plete, an option may not be duplicated constantly, so its
value deduced by the asset duplication method and no-
arbitrage principle may lose the deductive basis. On the
other hand, real financial markets are risk-aversive. Option
seller undertakes the total risk and option buyer has no any
risk, so option seller needs a reasonable risk compensation
according to the theory of risk. In this section, we will deduce
the option pricing formula in risk-aversive markets only
under three assumptions, i.e., Assumptions 1, 2, and 4 in
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Section 2, which is reasonably far more than the Black-
–Scholes model and its modified versions.

In risk-aversive markets, assume the price process of
some risky asset X by Xt, t≥ 0 . (en the value of European
call option at expiration time T with underlying asset X and
strike price K follows as

XT − K( 
+
, (6)

here and in the sequel the operator (·)+ � max 0, ·{ }. (e
value of European put option at expiration time T with
underlying asset X and strike price K follows as

K − XT( 
+
. (7)

Note that no matter call option or put option, it is always
its seller undertakes the total risk and its buyer has no any
risk. According to risk theory, the seller reasonably requires
some risk compensation λρ(X), where λ≥ 0 is the risk-
compensation coefficient, ρ(·) is the risk measure, and X is
the risk size. After the seller has received the reasonable risk
compensation, the seller takes risky asset as equivalent risk-
free bond, so it follows from (6) that the value at time t of
European call option with underlying asset X, strike price K,
and expiration time T follows as

Ct(X, K, T, r, λ) � e
−r(T−t)

E XT − K( 
+

 

+ λρ XT − K( 
+

( , ∀t≤T,
(8)

where r≥ 0 is the risk-free rate during [t, T]. Analogically, it
follows from (7) that the value of European put option with
underlying asset X, strike price K, and expiration time T

follows as

Pt(X, K, T, r, λ) � e
−r(T−t)

E K − XT( 
+

 

+ λρ K − XT( 
+

( , ∀t≤T.
(9)

In conclusion, we obtain the following proposition from
(8) and (9).

Proposition 1. In risk-aversive market, assume that the risk
measure is ρ(·) and the risk-compensation coefficient is λ≥ 0,
and assuming a European option with underlying asset X,
strike price K, and expiration time T, then its call-option
value at time t follows as

Ct(X, K, T, r, λ) � e
−r(T− t)

E XT − K( 
+

  + λρ XT − K( 
+

(  ,

(10)

and its put-option value at time t follows as

Pt(X, K, T, r, λ) � e
−r(T−t)

E K − XT( 
+

  + λρ K − XT( 
+

(  ,

(11)

where r≥ 0 is the risk-free rate during [t, T] and t≤T.

In order to obtain a closed-form solution to Proposition
1, in the following, we always assume the price process of
underlying asset follows some geometric Brownian motion
model (1), and the risk measure is the standard deviation,
i.e., ρ(Z) � std(Z) for any risk variable Z.

Using Proposition 1, we can deduce the value of Eu-
ropean call option in risk-aversive markets and under As-
sumptions 1, 2, and 4.

Theorem 2. In a risk-aversive market, assuming that un-
derlying asset follows a geometric Brownian motion with drift
coefficient μ and diffusion coefficient σ > 0, the current price of
underlying asset is S0, risk-free interest rate is r through the
time, the risk-compensation factor is λ≥ 0, and the risk
measure is standard deviation, then the value of European call
option with strike price K and left expiration time τ follows as

C S0, K, r, σ, τ, λ(  � S0e
(μ−r)τΦ d2(  − Ke

−rτΦ d1(  + λe
−rτ

· sqrt S
2
0e

2μτ
e
σ2τΦ d3(  −Φ2 d2(   − KS0e

μτΦ d2( Φ −d1( 

+ K
2Φ d1( Φ −d1( ,

(12)

where

d1 �
1

σ
�
τ

√ ln
S0

K
+ μ −

1
2
σ2 τ ,

dm � d1 +(m − 1)σ
�
τ

√
, m � 2, 3.

(13)

(e Proof of (eorem 2 refers to Appendix A.
If a financial market is risk-neutral, then investors treat

expected return and deterministic return equally, so ex-
pectation yield μ equals risk-free yield r, that is, μ � r.
Otherwise, if μ≠ r, there will exist arbitrage opportunity.
Furthermore, in a risk-neutral financial market, the risk-

compensation factor equals zero, that is, λ � 0.(us, it yields
from (eorem 1 that we have the following corollary.

Corollary 1. In a risk-neutral market, assuming that un-
derlying asset follows a geometric Brownian motion with drift
coefficient μ and diffusion coefficient σ > 0, the current price of
underlying asset is S0, and risk-free yield is r through the time,
then the value of European call option with strike price K and
left expiration time τ follows as

C S0, K, r, σ, τ(  � S0Φ d2(  − Ke
−rτΦ d1( , (14)

where
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d1 �
1

σ
�
τ

√ ln
S0

K
+ r −

1
2
σ2 τ ,

d2 � d1 + σ
�
τ

√
.

(15)

In the following, we will deduce the pricing formula of
European put option. Using Proposition 1, we will construct
the pricing formula of European put option in risk-aversive
markets and under Assumptions 1, 2, and 4.

Theorem 3. In a risk-aversive market, assuming that un-
derlying asset follows a geometric Brownian motion with drift
coefficient μ and diffusion coefficient σ > 0, the current price of
underlying asset is S0, risk-free yield is r through the time, the
risk-compensation factor is λ≥ 0, and the risk measure is
standard deviation, then the value of European put option
with strike price K and left expiration time τ follows as

P S0, K, r, σ, τ, λ(  � Ke
−rτΦ −d1(  − S0e

(μ−r)τΦ −d2(  + λe
−rτ

· sqrt S
2
0e

2μτ
e
σ2τΦ −d3(  −Φ2 −d2(   − KS0e

μτΦ −d2( Φ d1( 

+ K
2Φ −d1( Φ d1( ,

(16)

where

d1 �
1

σ
�
τ

√ ln
S0

K
+ μ −

1
2
σ2 τ ,

dm � d1 +(m − 1)σ
�
τ

√
, m � 2, 3.

(17)

(e Proof of (eorem 3 refers to Appendix B.
According to the analysis before Corollary 1, if a fi-

nancial market is risk-neutral, then μ � r and λ � 0. Fur-
thermore, it yields from (eorem 3 that we have the
following corollary.

Corollary 2. In a risk-neutral market, assuming that un-
derlying asset follows a geometric Brownian motion with drift
coefficient μ and diffusion coefficient σ > 0, the current price of
underlying asset is S0, and risk-free yield is r through the time,
then the value of European put option with strike price K and
left expiration time τ follows as

P S0, K, r, σ, τ(  � Ke
−rτΦ −d1(  − S0Φ −d2( , (18)

where

d1 �
1

σ
�
τ

√ ln
S0

K
+ r −

1
2
σ2 τ ,

d2 � d1 + σ
�
τ

√
.

(19)

Remark 1. Although Corollaries 1 and 2 obtain the same
values as those in (eorem 1 for European call option and
European put option, Corollaries 1 and 2 need much weaker
conditions than those of (eorem 1. (at is, Corollaries 1
and 2 improve (eorem 1.

In fact, if Assumptions 1, 2, and 4 in Section 2 hold,
Corollaries 1 and 2 hold. However, the conditions that
(eorem 1 (i.e., the Black–Scholes model) holds are As-
sumptions 1 to 9 in Section 2.

4. Empirical Analysis of Shanghai 50
ETF Options

In the section, we will present empirical analysis on Shanghai
50 ETF options, the first floor option in the Chinese financial
market, and use the data of September 3 and 4, 2018, to
compare the fitting effect of our pricing model and the
Black–Scholes pricing model. All used data come from the
CSMAR Database, which includes actual option price C or
P, trading date t, exercise date T, strike price K, and current
price of underlying asset S0. In addition, the database also
includes the historical volatility of Shanghai 50 ETF σ �

0.1994 on September 3, 2018, and σ � 0.2005 on September
4, 2018, and the 1-year deposit benchmark interest rate of
Chinese Central Bank r � 1.5%, which is chosen as the
reference level of risk-free interest rate in the Chinese fi-
nancial market. All data analyses in the following are worked
out by the software MATLAB R2018b.

4.1. Parameter Estimation. (ere are 48 call options on
September 3, 2018, and the current price of underlying asset
S0 � 2.512. We take the annual average return rate of the last
month as the drift coefficient of the underlying asset μ.
According to simple computation, we obtain μ � 2.557%
and the left expiration time τ � (T − t)/365 (years), where
t � 2018/09/03, and then we work out d1, d2, and d3 by
(eorem 2; see Table 1 for detailed data, where C is the actual
closing price of call option, T is the expiration time of call
option, K is the strike price of call option, S0 is the initial
price of underlying asset, τ is the left expiration time of call
option, and d1, d2, and d3 are the parameters in (eorem 2.
Furthermore, we obtain the estimated value of the risk-
compensation factor λ � 0.0077963 by the least square
method with R2 � 0.7058.

(ere are 60 put options on September 3, 2018, and the
current price of underlying asset S0 � 2.512. Similarly, we
obtain μ � 2.93% and the left expiration time τ � (T − t)/365
(years), where t � 2018/09/03, and then we work out d1, d2,
and d3 by(eorem 3; see Table 2 for detailed data, where P is
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the actual closing price of put option,T is the expiration time
of put option, K is the strike price of put option, S0 is the
initial price of underlying asset, τ is the left expiration time
of put option, and d1, d2, and d3 are the parameters in
(eorem 3. Furthermore, we obtain the estimated value of
the risk-compensation factor λ � 0.013306 by the least
square method with R2 � 0.6218.

In addition, we obtain the estimation of risk-free rate
r � 1.768% by minimizing the mean square error of the
Black–Scholes model on September 3, 2018. Note that r �

1.768% is a little higher than the 1-year deposit benchmark
interest rate of Chinese Central Bank 1.5%, so it is very
reasonable that we take r � 1.768% as the risk-free rate.
Furthermore, it is far advantageous for the Black–Scholes
model to improve its fitting effect.

4.2. Comparison of Pricing Effect. In the section, we will
compare the fitting effect of our pricing formulas with the
Black–Scholes model.

Table 1: Parameter estimation of d1, d2, and d3 for call options.

C T K S0 τ d1 d2 d3

0.0030 2018/09/26 2.75 2.512 0.0630 −1.8013 −1.7512 −1.7012
0.0073 2018/09/26 2.70 2.512 0.0630 −1.4347 −1.3847 −1.3346
0.0146 2018/09/26 2.65 2.512 0.0630 −1.0613 −1.0112 −0.9612
0.0150 2018/10/24 2.75 2.512 0.1397 −1.2038 −1.1293 −1.0547
0.0159 2018/12/26 2.95 2.512 0.3123 −1.4263 −1.3149 −1.2035
0.0220 2018/12/26 2.90 2.512 0.3123 −1.2729 −1.1615 −1.0501
0.0228 2018/10/24 2.70 2.512 0.1397 −0.9576 −0.8831 −0.8086
0.0275 2018/09/26 2.60 2.512 0.0630 −0.6807 −0.6307 −0.5806
0.0287 2018/12/26 2.85 2.512 0.3123 −1.1169 −1.0054 −0.8940
0.0350 2018/10/24 2.65 2.512 0.1397 −0.7068 −0.6323 −0.5578
0.0372 2018/12/26 2.80 2.512 0.3123 −0.9580 −0.8466 −0.7352
0.0451 2018/09/26 2.55 2.512 0.0630 −0.2928 −0.2427 −0.1927
0.0484 2018/12/26 2.75 2.512 0.3123 −0.7964 −0.6849 −0.5735
0.0500 2018/10/24 2.60 2.512 0.1397 −0.4513 −0.3767 −0.3022
0.0601 2018/12/26 2.70 2.512 0.3123 −0.6317 −0.5203 −0.4088
0.0695 2018/09/26 2.50 2.512 0.0630 0.1028 0.1529 0.2029
0.0698 2018/10/24 2.55 2.512 0.1397 −0.1908 −0.1162 −0.0417
0.0742 2019/03/27 2.80 2.512 0.5616 −0.7049 −0.5555 −0.4061
0.0756 2018/12/26 2.65 2.512 0.3123 −0.4640 −0.3525 −0.2411
0.0878 2019/03/27 2.75 2.512 0.5616 −0.5844 −0.4349 −0.2855
0.0938 2018/12/26 2.60 2.512 0.3123 −0.2930 −0.1816 −0.0701
0.0944 2018/10/24 2.50 2.512 0.1397 0.0749 0.1495 0.2240
0.0980 2018/09/26 2.45 2.512 0.0630 0.5064 0.5565 0.6066
0.1026 2019/03/27 2.70 2.512 0.5616 −0.4616 −0.3121 −0.1627
0.1149 2018/12/26 2.55 2.512 0.3123 −0.1188 −0.0073 0.1041
0.1190 2019/03/27 2.65 2.512 0.5616 −0.3365 −0.1870 −0.0376
0.1247 2018/10/24 2.45 2.512 0.1397 0.3460 0.4205 0.4950
0.1361 2018/09/26 2.40 2.512 0.0630 0.9184 0.9684 1.0185
0.1380 2019/03/27 2.60 2.512 0.5616 −0.2090 −0.0596 0.0899
0.1390 2018/12/26 2.50 2.512 0.3123 0.0589 0.1704 0.2818
0.1592 2018/10/24 2.40 2.512 0.1397 0.6226 0.6971 0.7717
0.1623 2019/03/27 2.55 2.512 0.5616 −0.0791 0.0704 0.2198
0.1671 2018/12/26 2.45 2.512 0.3123 0.2402 0.3517 0.4631
0.1770 2018/09/26 2.35 2.512 0.0630 1.3390 1.3891 1.4391
0.1861 2019/03/27 2.50 2.512 0.5616 0.0534 0.2029 0.3523
0.1968 2018/10/24 2.35 2.512 0.1397 0.9051 0.9796 1.0541
0.1981 2018/12/26 2.40 2.512 0.3123 0.4253 0.5367 0.6481
0.2110 2019/03/27 2.45 2.512 0.5616 0.1886 0.3381 0.4875
0.2209 2018/09/26 2.30 2.512 0.0630 1.7687 1.8187 1.8688
0.2297 2018/12/26 2.35 2.512 0.3123 0.6142 0.7256 0.8371
0.2360 2018/10/24 2.30 2.512 0.1397 1.1936 1.2681 1.3427
0.2421 2019/03/27 2.40 2.512 0.5616 0.3266 0.4761 0.6255
0.2660 2018/12/26 2.30 2.512 0.3123 0.8072 0.9186 1.0300
0.2704 2018/09/26 2.25 2.512 0.0630 2.2078 2.2578 2.3079
0.2767 2019/03/27 2.35 2.512 0.5616 0.4675 0.6169 0.7664
0.3074 2018/12/26 2.25 2.512 0.3123 1.0044 1.1158 1.2273
0.3163 2018/09/26 2.20 2.512 0.0630 2.6567 2.7068 2.7568
0.3450 2019/03/27 2.25 2.512 0.5616 0.7585 0.9079 1.0574
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Table 2: Parameter estimation of d1, d2, and d3 for put options.

P T K S0 τ d1 d2 d3

0.0015 2018/09/26 2.20 2.512 0.0630 2.6567 2.7068 2.7568
0.0027 2018/09/26 2.25 2.512 0.0630 2.2078 2.2578 2.3079
0.0055 2018/09/26 2.30 2.512 0.0630 1.7687 1.8187 1.8688
0.0115 2018/09/26 2.35 2.512 0.0630 1.3390 1.3891 1.4391
0.0165 2018/10/24 2.30 2.512 0.1397 1.1936 1.2681 1.3427
0.0205 2018/09/26 2.40 2.512 0.0630 0.9184 0.9684 1.0185
0.0247 2018/12/26 2.20 2.512 0.3123 1.2061 1.3175 1.4289
0.0255 2018/10/24 2.35 2.512 0.1397 0.9051 0.9796 1.0541
0.0324 2018/12/26 2.25 2.512 0.3123 1.0044 1.1158 1.2273
0.0343 2018/09/26 2.45 2.512 0.0630 0.5064 0.5565 0.6066
0.0371 2018/10/24 2.40 2.512 0.1397 0.6226 0.6971 0.7717
0.0432 2018/12/26 2.30 2.512 0.3123 0.8072 0.9186 1.0300
0.0528 2018/10/24 2.45 2.512 0.1397 0.3460 0.4205 0.4950
0.0531 2018/09/26 2.50 2.512 0.0630 0.1028 0.1529 0.2029
0.0565 2018/12/26 2.35 2.512 0.3123 0.6142 0.7256 0.8371
0.0608 2019/03/27 2.25 2.512 0.5616 0.7585 0.9079 1.0574
0.0730 2019/03/27 2.30 2.512 0.5616 0.6114 0.7609 0.9103
0.0733 2018/10/24 2.50 2.512 0.1397 0.0749 0.1495 0.2240
0.0734 2018/12/26 2.40 2.512 0.3123 0.4253 0.5367 0.6481
0.0791 2018/09/26 2.55 2.512 0.0630 −0.2928 −0.2427 −0.1927
0.0902 2019/03/27 2.35 2.512 0.5616 0.4675 0.6169 0.7664
0.0920 2018/12/26 2.45 2.512 0.3123 0.2402 0.3517 0.4631
0.0989 2018/10/24 2.55 2.512 0.1397 −0.1908 −0.1162 −0.0417
0.1074 2019/03/27 2.40 2.512 0.5616 0.3266 0.4761 0.6255
0.1117 2018/09/26 2.60 2.512 0.0630 −0.6807 −0.6307 −0.5806
0.1140 2018/12/26 2.50 2.512 0.3123 0.0589 0.1704 0.2818
0.1244 2019/03/27 2.45 2.512 0.5616 0.1886 0.3381 0.4875
0.1284 2018/10/24 2.60 2.512 0.1397 −0.4513 −0.3767 −0.3022
0.1401 2018/12/26 2.55 2.512 0.3123 −0.1188 −0.0073 0.1041
0.1483 2019/03/27 2.50 2.512 0.5616 0.0534 0.2029 0.3523
0.1498 2018/09/26 2.65 2.512 0.0630 −1.0613 −1.0112 −0.9612
0.1686 2018/12/26 2.60 2.512 0.3123 −0.2930 −0.1816 −0.0701
0.1750 2019/03/27 2.55 2.512 0.5616 −0.0791 0.0704 0.2198
0.1908 2018/09/26 2.70 2.512 0.0630 −1.4347 −1.3847 −1.3346
0.2003 2018/12/26 2.65 2.512 0.3123 −0.4640 −0.3525 −0.2411
0.2007 2018/10/24 2.70 2.512 0.1397 −0.9576 −0.8831 −0.8086
0.2009 2019/03/27 2.60 2.512 0.5616 −0.2090 −0.0596 0.0899
0.2278 2018/12/26 2.70 2.512 0.3123 −0.6317 −0.5203 −0.4088
0.2312 2019/03/27 2.65 2.512 0.5616 −0.3365 −0.1870 −0.0376
0.2370 2018/09/26 2.75 2.512 0.0630 −1.8013 −1.7512 −1.7012
0.2440 2018/10/24 2.75 2.512 0.1397 −1.2038 −1.1293 −1.0547
0.2635 2019/03/27 2.70 2.512 0.5616 −0.4616 −0.3121 −0.1627
0.2657 2018/12/26 2.75 2.512 0.3123 −0.7964 −0.6849 −0.5735
0.2828 2018/09/26 2.80 2.512 0.0630 −2.1613 −2.1112 −2.0612
0.2976 2019/03/27 2.75 2.512 0.5616 −0.5844 −0.4349 −0.2855
0.3089 2018/12/26 2.80 2.512 0.3123 −0.9580 −0.8466 −0.7352
0.3323 2018/09/26 2.85 2.512 0.0630 −2.5149 −2.4648 −2.4148
0.3330 2019/03/27 2.80 2.512 0.5616 −0.7049 −0.5555 −0.4061
0.3477 2018/12/26 2.85 2.512 0.3123 −1.1169 −1.0054 −0.8940
0.3810 2018/09/26 2.90 2.512 0.0630 −2.8623 −2.8123 −2.7622
0.3939 2018/12/26 2.90 2.512 0.3123 −1.2729 −1.1615 −1.0501
0.4315 2018/09/26 2.95 2.512 0.0630 −3.2039 −3.1538 −3.1037
0.4405 2018/12/26 2.95 2.512 0.3123 −1.4263 −1.3149 −1.2035
0.4810 2018/09/26 3.00 2.512 0.0630 −3.5396 −3.4896 −3.4395
0.5813 2018/09/26 3.10 2.512 0.0630 −4.1947 −4.1447 −4.0946
0.6809 2018/09/26 3.20 2.512 0.0630 −4.8290 −4.7789 −4.7289
0.7798 2018/09/26 3.30 2.512 0.0630 −5.4438 −5.3937 −5.3437
0.8793 2018/09/26 3.40 2.512 0.0630 −6.0402 −5.9901 −5.9401
0.9790 2018/09/26 3.50 2.512 0.0630 −6.6193 −6.5692 −6.5192
1.0807 2018/09/26 3.60 2.512 0.0630 −7.1821 −7.1320 −7.0820
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4.2.1. Comparison of Pricing Effect on Call Options.
(ere are 62 call options on September 4, 2018, and the
current price of underlying asset S0 � 2.55. Based on the
estimated parameters μ � 2.557%, σ � 0.2005, r � 1.768%,
λ � 0.0077963 for call options, the call options of Shanghai
50 ETF on September 4, 2018, are priced by our obtained
pricing formula in (eorem 3 and the Black–Scholes model,
respectively; see Table 3 for detailed data, where T is the
expiration time of call option, K is the strike price of call
option, S0 is the initial price of underlying asset, τ is the left
expiration time of call option, d1, d2, and d3 are the pa-
rameters in (eorem 3, C1 is the value of call option
computed by the Black–Scholes model, C2 is the value of call
option computed by (eorem 3, and C is the actual closing
price of call option.

According to simple computing, the expectation and
variance of absolute errors follow as


E C1 − C


  � 0.0065574,

Var C1 − C


  � 0.0045044,


E C2 − C


  � 0.0032696,

Var C2 − C


  � 0.001929,

(20)

where C is the actual closing price of call option, C1 is the
value of call option computed by the Black–Scholes model,
and C2 is the value of call option computed by(eorem 3. It
is obvious that E(|C2 − C|)< E(|C1 − C|). In the following,
we will support the statement by the hypothesis test (i.e., t-
test function of MATLAB R2018b).

In fact, for the hypothesis test,

H0: E C2 − C


  − E C1 − C


 ≥ 0,

H1: E C2 − C


  − E C1 − C


 < 0,
(21)

(e t−statistics equals −5.9311 with degree of freedom
61, and its p value is 7.6261 × 10−8. (us, we accept H1, i.e.,
E(|C2 − C|)<E(|C1 − C|). (at is, the prices of call options
computed by (eorem 3 are far nearer to their actual prices
than those computed by the Black–Scholes model.

4.2.2. Comparison of Pricing Effect on Put Options. (ere are
62 put options on September 4, 2018, and the current price of
underlying asset S0 � 2.55. Based on the estimated param-
eters μ � 2.557%, σ � 0.2005, r � 1.768%, and λ � 0.013306
for put options, the put options of Shanghai 50 ETF on
September 4, 2018, are priced by our pricing formula in
(eorem 2 and Black–Scholes model, respectively; see Ta-
ble 4 for detailed data, where T is the expiration time of put
option, K is the strike price of put option, S0 is the initial
price of underlying asset, τ is the left expiration time of put
option, d1, d2, and d3 are the parameters in (eorem 3, P1 is
the value of put option computed by the Black–Scholes
model, P2 is the value of put option computed by(eorem 3,
and P is the actual closing price of put option.

According to simple computing, the expectation and
variance of absolute errors follow as


E P1 − P


  � 0.00836,

Var P1 − P


  � 0.0056946,


E P2 − P


  � 0.0044808,

Var P2 − P


  � 0.0029812,

(22)

where P is the actual closing price of put option, P1 is the
value of put option computed by the Black–Scholes model,
and P2 is the value of put option computed by(eorem 3. It
is obvious that E(|P2 − P|)< E(|P1 − P|). In the following,
we will support the statement by the hypothesis test (i.e., t-
test function of MATLAB R2018b).

In fact, for the hypothesis test,

H0: E P2 − P


  − E P1 − P


 ≥ 0,

H1: E P2 − P


  − E P1 − P


 < 0,
(23)

(e t−statistics equals −4.7567 with degree of freedom
61, and its p value is 6.2304 × 10−6. (us, we accept H1, i.e.,
E(|P2 − P|)<E(|P1 − P|). (at is, the prices of put options
computed by (eorem 3 are far nearer to their actual prices
than those computed by the Black–Scholes model.

(erefore, our pricing formulas in (eorem 2 and
(eorem 3 have less absolute errors than those of the
Black–Scholes model for both call options and put options.
(at is, the fitting effect of our pricing formulas is superior to
that of the Black–Scholes model.

5. Empirical Analysis of S&P 500 Options

In the section, we will present empirical analysis on S&P 500
options and use the data of April 1 and 2, 2019 to compare
the fitting effect of our pricing model and the Black–Scholes
pricing model. All used data come from the Chicago Board
Options Exchange, which includes actual option price C or
P, trading date t, exercise date T, strike price K, and current
price of underlying asset S0. We consider the out-of-money
put and call options, which are more liquid and actively
traded than in-the-money options. And observations with
trading volume below average, prices less than $0.5 or left
expiration time less than 10 days or longer than 360 days are
discarded. (e annualized historical volatility σ � 0.1174
based on closing prices of the underlying asset over the last
month. According to the Board of Governors of the Federal
Reserve System (https://www.federalreserve.gov/releases/
h15/data.htm), the annualized risk-free interest rate is
2.43% on April 1 and 2.42% on April 2, 2019.

5.1. Parameter Estimation. We consider the daily loga-
rithmic returns of S&P 500 index closing prices from Jan-
uary 2015 to December 2018. (e augmented Dickey–Fuller
test shows the Dickey–Fuller statistic equals −10.283 with lag
order 10 and p value is 0.01, which indicates that the time
series of returns is stationary. Furthermore, the autocorre-
logram shows the coefficients of autocorrelation mostly fall
within double standard deviations (see Figure 1). (us, we
accept that the time series of daily logarithmic returns of
S&P 500 index closing prices are stationary and indepen-
dent. We take the annual average return rate based on 252
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Table 3: Pricing results by our pricing formula and the Black–Scholes model for call options.

T K S0 τ d1 d2 d3 C1 C2 C

2018/09/26 3.00 2.55 0.0603 −3.2949 −3.2457 −3.1965 0.0005 0.0000 0.0005
2018/12/26 2.40 2.55 0.3096 0.5586 0.6702 0.7817 0.2239 0.2087 0.2200
2018/12/26 2.35 2.55 0.3096 0.7473 0.8589 0.9705 0.2601 0.2451 0.2555
2018/09/26 2.90 2.55 0.0603 −2.6062 −2.5570 −2.5077 0.0017 0.0002 0.0007
2019/03/27 2.50 2.55 0.5589 0.1525 0.3024 0.4523 0.2079 0.1883 0.2036
2019/03/27 2.55 2.55 0.5589 0.0204 0.1703 0.3202 0.1816 0.1626 0.1773
2019/03/27 2.65 2.55 0.5589 −0.2362 −0.0863 0.0636 0.1364 0.1188 0.1353
2018/12/26 2.60 2.55 0.3096 −0.1589 −0.0473 0.0643 0.1107 0.0963 0.1067
2018/09/26 2.20 2.55 0.0603 3.0060 3.0552 3.1044 0.3548 0.3520 0.3510
2018/09/26 2.85 2.55 0.0603 −2.2529 −2.2036 −2.1544 0.0030 0.0006 0.0012
2019/03/27 2.20 2.55 0.5589 1.0053 1.1552 1.3051 0.4160 0.3955 0.4070
2018/12/26 2.30 2.55 0.3096 0.9401 1.0517 1.1632 0.2991 0.2846 0.2925
2018/10/24 2.35 2.55 0.1370 1.1108 1.1850 1.2592 0.2264 0.2166 0.2255
2018/10/24 2.30 2.55 0.1370 1.4006 1.4748 1.5490 0.2698 0.2610 0.2653
2018/10/24 2.70 2.55 0.1370 −0.7601 −0.6859 −0.6117 0.0356 0.0258 0.0300
2018/12/26 2.20 2.55 0.3096 1.3386 1.4501 1.5617 0.3840 0.3706 0.3817
2018/09/26 2.50 2.55 0.0603 0.4090 0.4582 0.5074 0.0905 0.0800 0.0879
2018/09/26 2.95 2.55 0.0603 −2.9535 −2.9042 −2.8550 0.0010 0.0001 0.0005
2018/12/26 2.95 2.55 0.3096 −1.2909 −1.1794 −1.0678 0.0229 0.0150 0.0197
2018/09/26 2.80 2.55 0.0603 −1.8933 −1.8441 −1.7948 0.0052 0.0015 0.0019
2018/12/26 2.85 2.55 0.3096 −0.9818 −0.8703 −0.7587 0.0371 0.0272 0.0341
2018/10/24 2.55 2.55 0.1370 0.0101 0.0843 0.1585 0.0901 0.0780 0.0854
2018/10/24 2.40 2.55 0.1370 0.8271 0.9013 0.9755 0.1862 0.1753 0.1837
2018/09/26 3.10 2.55 0.0603 −3.9610 −3.9118 −3.8626 0.0001 0.0000 0.0004
2018/12/26 2.70 2.55 0.3096 −0.4972 −0.3856 −0.2740 0.0733 0.0604 0.0700
2019/03/27 2.35 2.55 0.5589 0.5653 0.7152 0.8651 0.3016 0.2811 0.2985
2019/03/27 2.40 2.55 0.5589 0.4249 0.5748 0.7246 0.2679 0.2476 0.2628
2018/12/26 2.75 2.55 0.3096 −0.6616 −0.5501 −0.4385 0.0588 0.0469 0.0550
2019/03/27 2.25 2.55 0.5589 0.8554 1.0053 1.1552 0.3758 0.3552 0.3679
2019/03/27 2.80 2.55 0.5589 −0.6035 −0.4536 −0.3038 0.0856 0.0707 0.0810
2018/12/26 2.65 2.55 0.3096 −0.3296 −0.2181 −0.1065 0.0905 0.0768 0.0871
2018/09/26 2.30 2.55 0.0603 2.1029 2.1521 2.2014 0.2571 0.2528 0.2538
2018/09/26 3.60 2.55 0.0603 −6.9988 −6.9496 −6.9003 0.0000 0.0000 0.0004
2019/03/27 2.75 2.55 0.5589 −0.4833 −0.3334 −0.1835 0.1004 0.0846 0.0988
2019/03/27 2.30 2.55 0.5589 0.7088 0.8587 1.0086 0.3376 0.3170 0.3316
2018/09/26 2.40 2.55 0.0603 1.2383 1.2875 1.3368 0.1658 0.1583 0.1641
2018/09/26 2.25 2.55 0.0603 2.5494 2.5986 2.6479 0.3055 0.3022 0.3040
2019/03/27 2.60 2.55 0.5589 −0.1091 0.0408 0.1907 0.1578 0.1394 0.1549
2018/10/24 2.45 2.55 0.1370 0.5492 0.6234 0.6976 0.1497 0.1380 0.1461
2018/12/26 2.90 2.55 0.3096 −1.1377 −1.0262 −0.9146 0.0292 0.0203 0.0266
2018/10/24 2.50 2.55 0.1370 0.2770 0.3512 0.4254 0.1175 0.1054 0.1135
2018/10/24 2.75 2.55 0.1370 −1.0074 −0.9332 −0.8590 0.0252 0.0167 0.0195
2018/09/26 3.30 2.55 0.0603 −5.2311 −5.1819 −5.1327 0.0000 0.0000 0.0003
2018/12/26 2.50 2.55 0.3096 0.1927 0.3043 0.4158 0.1607 0.1455 0.1572
2018/12/26 2.45 2.55 0.3096 0.3738 0.4854 0.5969 0.1907 0.1754 0.1870
2018/10/24 2.60 2.55 0.1370 −0.2516 −0.1774 −0.1031 0.0675 0.0559 0.0623
2018/09/26 2.70 2.55 0.0603 −1.1545 −1.1053 −1.0560 0.0153 0.0081 0.0103
2018/12/26 2.80 2.55 0.3096 −0.8232 −0.7116 −0.6000 0.0469 0.0359 0.0445
2018/09/26 2.55 2.55 0.0603 0.0067 0.0559 0.1052 0.0621 0.0512 0.0590
2018/09/26 3.50 2.55 0.0603 −6.4265 −6.3773 −6.3280 0.0000 0.0000 0.0003
2018/09/26 2.65 2.55 0.0603 −0.7747 −0.7255 −0.6763 0.0253 0.0164 0.0206
2018/09/26 2.35 2.55 0.0603 1.6660 1.7152 1.7645 0.2101 0.2045 0.2077
2018/09/26 2.45 2.55 0.0603 0.8194 0.8686 0.9179 0.1254 0.1162 0.1232
2018/12/26 2.25 2.55 0.3096 1.1371 1.2487 1.3602 0.3405 0.3265 0.3330
2018/10/24 2.65 2.55 0.1370 −0.5083 −0.4340 −0.3598 0.0495 0.0387 0.0442
2018/09/26 2.75 2.55 0.0603 −1.5272 −1.4780 −1.4288 0.0090 0.0037 0.0048
2018/09/26 3.40 2.55 0.0603 −5.8376 −5.7884 −5.7392 0.0000 0.0000 0.0003
2019/03/27 2.70 2.55 0.5589 −0.3609 −0.2110 −0.0611 0.1173 0.1006 0.1162
2018/09/26 3.20 2.55 0.0603 −4.6060 −4.5568 −4.5076 0.0000 0.0000 0.0003
2018/12/26 2.55 2.55 0.3096 0.0152 0.1268 0.2383 0.1341 0.1192 0.1311
2018/09/26 2.60 2.55 0.0603 −0.3878 −0.3386 −0.2893 0.0405 0.0303 0.0377
2019/03/27 2.45 2.55 0.5589 0.2873 0.4372 0.5871 0.2367 0.2166 0.2319
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Table 4: Pricing results by our pricing formula and the Black–Scholes model for put options.

T K S0 τ d1 d2 d3 P1 P2 P

2018/12/26 2.50 2.55 0.3096 0.1927 0.3043 0.4158 0.0963 0.0839 0.0983
2019/03/27 2.30 2.55 0.5589 0.7088 0.8587 1.0086 0.0583 0.0478 0.0635
2019/03/27 2.25 2.55 0.5589 0.8554 1.0053 1.1552 0.0463 0.0364 0.0520
2018/12/26 2.20 2.55 0.3096 1.3386 1.4501 1.5617 0.0186 0.0104 0.0205
2018/12/26 2.90 2.55 0.3096 −1.1377 −1.0262 −0.9146 0.3631 0.3568 0.3618
2018/09/26 2.30 2.55 0.0603 2.1029 2.1521 2.2014 0.0050 0.0007 0.0030
2018/09/26 3.20 2.55 0.0603 −4.6060 −4.5568 −4.5076 0.6473 0.6471 0.6437
2018/10/24 2.70 2.55 0.1370 v0.7601 −0.6859 −0.6117 0.1831 0.1703 0.1724
2018/09/26 2.50 2.55 0.0603 0.4090 0.4582 0.5074 0.0440 0.0278 0.0359
2018/09/26 2.65 2.55 0.0603 −0.7747 −0.7255 −0.6763 0.1282 0.1140 0.1191
2019/03/27 2.55 2.55 0.5589 0.0204 0.1703 0.3202 0.1521 0.1413 0.1569
2018/10/24 2.60 2.55 0.1370 −0.2516 −0.1774 −0.1031 0.1162 0.1005 0.1054
2018/09/26 2.20 2.55 0.0603 3.0060 3.0552 3.1044 0.0012 0.0000 0.0010
2019/03/27 2.40 2.55 0.5589 0.4249 0.5748 0.7246 0.0887 0.0775 0.0939
2019/03/27 2.60 2.55 0.5589 −0.1091 0.0408 0.1907 0.1780 0.1677 0.1829
2018/09/26 2.85 2.55 0.0603 −2.2529 −2.2036 −2.1544 0.3010 0.2980 0.2955
2018/12/26 2.40 2.55 0.3096 0.5586 0.6702 0.7817 0.0605 0.0475 0.0607
2019/03/27 2.45 2.55 0.5589 0.2873 0.4372 0.5871 0.1074 0.0962 0.1121
2019/03/27 2.65 2.55 0.5589 −0.2362 −0.0863 0.0636 0.2062 0.1967 0.2094
2019/03/27 2.80 2.55 0.5589 −0.6035 −0.4536 −0.3038 0.3040 0.2973 0.3078
2018/09/26 2.45 2.55 0.0603 0.8194 0.8686 0.9179 0.0277 0.0140 0.0219
2018/12/26 2.95 2.55 0.3096 −1.2909 −1.1794 −1.0678 0.4061 0.4013 0.4056
2018/12/26 2.25 2.55 0.3096 1.1371 1.2487 1.3602 0.0257 0.0161 0.0271
2018/09/26 2.80 2.55 0.0603 −1.8933 −1.8441 −1.7948 0.2541 0.2490 0.2486
2018/10/24 2.65 2.55 0.1370 −0.5083 −0.4340 −0.3598 0.1478 0.1332 0.1339
2018/12/26 2.75 2.55 0.3096 −0.6616 −0.5501 −0.4385 0.2446 0.2341 0.2387
2018/12/26 2.85 2.55 0.3096 −0.9818 −0.8703 −0.7587 0.3217 0.3140 0.3201
2018/09/26 2.70 2.55 0.0603 −1.1545 −1.1053 −1.0560 0.1668 0.1557 0.1585
2018/09/26 3.50 2.55 0.0603 −6.4265 −6.3773 −6.3280 0.9470 0.9468 0.9443
2019/03/27 2.35 2.55 0.5589 0.5653 0.7152 0.8651 0.0724 0.0614 0.0784
2018/10/24 2.55 2.55 0.1370 0.0101 0.0843 0.1585 0.0889 0.0728 0.0788
2018/12/26 2.70 2.55 0.3096 −0.4972 −0.3856 −0.2740 0.2096 0.1979 0.2079
2018/10/24 2.75 2.55 0.1370 −1.0074 −0.9332 −0.8590 0.2219 0.2110 0.2120
2018/12/26 2.45 2.55 0.3096 0.3738 0.4854 0.5969 0.0776 0.0640 0.0782
2018/10/24 2.40 2.55 0.1370 0.8271 0.9013 0.9755 0.0333 0.0204 0.0260
2018/09/26 3.10 2.55 0.0603 −3.9610 −3.9118 −3.8626 0.5474 0.5472 0.5451
2018/10/24 2.50 2.55 0.1370 0.2770 0.3512 0.4254 0.0661 0.0503 0.0569
2018/09/26 3.30 2.55 0.0603 −5.2311 −5.1819 −5.1327 0.7472 0.7470 0.7420
2018/10/24 2.30 2.55 0.1370 1.4006 1.4748 1.5490 0.0149 0.0063 0.0108
2018/12/26 2.35 2.55 0.3096 0.7473 0.8589 0.9705 0.0463 0.0343 0.0467
2018/09/26 2.40 2.55 0.0603 1.2383 1.2875 1.3368 0.0166 0.0062 0.0118
2018/09/26 3.40 2.55 0.0603 −5.8376 −5.7884 −5.7392 0.8471 0.8469 0.8453
2018/09/26 2.60 2.55 0.0603 −0.3878 −0.3386 −0.2893 0.0943 0.0779 0.0844
2018/09/26 2.25 2.55 0.0603 2.5494 2.5986 2.6479 0.0025 0.0002 0.0015
2018/10/24 2.35 2.55 0.1370 1.1108 1.1850 1.2592 0.0226 0.0118 0.0178
2019/03/27 2.70 2.55 0.5589 −0.3609 −0.2110 −0.0611 0.2368 0.2280 0.2402
2018/09/26 2.35 2.55 0.0603 1.6660 1.7152 1.7645 0.0094 0.0023 0.0065
2018/09/26 2.95 2.55 0.0603 −2.9535 −2.9042 −2.8550 0.3982 0.3974 0.3921
2018/10/24 2.45 2.55 0.1370 0.5492 0.6234 0.6976 0.0476 0.0330 0.0387
2018/12/26 2.65 2.55 0.3096 −0.3296 −0.2181 −0.1065 0.1772 0.1645 0.1753
2018/12/26 2.55 2.55 0.3096 0.0152 0.1268 0.2383 0.1212 0.1073 0.1210
2019/03/27 2.75 2.55 0.5589 −0.4833 −0.3334 −0.1835 0.2694 0.2616 0.2738
2018/09/26 2.75 2.55 0.0603 −1.5272 −1.4780 −1.4288 0.2091 0.2012 0.2011
2018/09/26 3.60 2.55 0.0603 −6.9988 −6.9496 −6.9003 1.0469 1.0467 1.0452
2019/03/27 2.20 2.55 0.5589 1.0053 1.1552 1.3051 0.0363 0.0272 0.0423
2018/12/26 2.80 2.55 0.3096 −0.8232 −0.7116 −0.6000 0.2821 0.2729 0.2800
2018/12/26 2.30 2.55 0.3096 0.9401 1.0517 1.1632 0.0348 0.0239 0.0353
2018/09/26 2.90 2.55 0.0603 −2.6062 −2.5570 −2.5077 0.3492 0.3476 0.3430
2018/09/26 2.55 2.55 0.0603 0.0067 0.0559 0.1052 0.0661 0.0489 0.0573
2019/03/27 2.50 2.55 0.5589 0.1525 0.3024 0.4523 0.1285 0.1174 0.1330
2018/12/26 2.60 2.55 0.3096 −0.1589 −0.0473 0.0643 0.1477 0.1342 0.1468
2018/09/26 3.00 2.55 0.0603 −3.2949 −3.2457 −3.1965 0.4477 0.4473 0.4459
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effective trading days as the drift coefficient of the underlying
asset μ.

(ere are 41 call options on April 1, 2019, and the current
price of underlying asset S0 � 2867.19. According to simple
computation, we obtain μ � 4.932% and the left expiration
time τ � (T − t)/365 (years), where t � 2019/04/01, and
then we work out d1, d2, and d3 by(eorem 2; see Table 5 for
detailed data, where C is the actual closing price of call
option, τ is the left expiration time of call option, K is the
strike price of call option, and d1, d2, and d3 are the pa-
rameters in (eorem 2. Furthermore, we obtain the esti-
mated value of the risk-compensation factor λ � −0.0246533
by the least square method with R2 � 0.9532.

(ere are 62 put options on April 1, 2019, and the
current price of underlying asset S0 � 2867.19. Similarly, we
obtain μ � 4.932% and the left expiration time
τ � (T − t)/365 (years), where t � 2019/04/01, and then we
work out d1, d2, and d3 by(eorem 3; see Table 6 for detailed
data, where P is the actual closing price of put option, τ is the
left expiration time of put option, K is the strike price of put
option, and d1, d2, and d3 are the parameters in (eorem 3.
Furthermore, we obtain the estimated value of the risk-
compensation factor λ � 0.0269767 by the least square
method with R2 � 0.9561.

5.2. Comparison of Pricing Effect. In the section, we will
compare the fitting effect of our pricing formulas with the
Black–Scholes model.

5.2.1. Comparison of Pricing Effect on Call Options.
(ere are 25 call options on April 2, 2019, and the current
price of underlying asset S0 � 2867.24. Based on the esti-
mated parameters μ � 4.932%, σ � 0.1174, r � 2.42%, and
λ � −0.0246533 for call options, the call options of S&P 500
on April 2, 2019, are priced by our obtained pricing formula
in(eorem 1 and the Black–Scholes model, respectively; see
Table 7 for detailed data, where K is the strike price of call
option, τ is the left expiration time of call option, d1, d2, and
d3 are the parameters in (eorem 3, C is the actual closing
price of call option, C1 is the value of call option computed

by the Black–Scholes model, and C2 is the value of call
option computed by (eorem 1.

According to simple computing, the expectation and
variance of absolute errors follow as


E C1 − C


  � 6.902386,

Var C1 − C


  � 6.810772,


E C2 − C


  � 5.156575,

Var C2 − C


  � 9.726556,

(24)

where C is the actual closing price of call option, C1 is the
value of call option computed by the Black–Scholes model,
and C2 is the value of call option computed by(eorem 2. It
is obvious that E(|C2 − C|)< E(|C1 − C|). In the following,
we will support the statement by the hypothesis test (i.e., test
function of MATLAB R2018b).

In fact, for the hypothesis test,

H0: E C2 − C


  − E C1 − C


 ≥ 0,

H1: E C2 − C


  − E C1 − C


 < 0,
(25)

the t−statistics equals −2.1465 with degree of freedom 24,
and its p value is 0.01854. (us, we accept H1, i.e.,
E(|C2 − C|)<E(|C1 − C|). (at is, the prices of call options
computed by (eorem 2 are far nearer to their actual prices
than those computed by the Black–Scholes model.

5.2.2. Comparison of Pricing Effect on Put Options. (ere are
39 put options on April 2, 2019, and the current price of
underlying asset S0 � 2867.24. Based on the estimated pa-
rameters μ � 4.932%, σ � 0.1174, r � 2.42%, and λ �

0.0269767 for put options, the put options of S&P 500 on
April 2, 2019, are priced by our obtained pricing formula in
(eorem 3 and the Black–Scholes model, respectively; see
Table 8 for detailed data, where K is the strike price of put
option, τ is the left expiration time of put option, d1, d2, and
d3 are the parameters in (eorem 3, P is the actual closing
price of put option, P1 is the value of put option computed
by the Black–Scholes model, and P2 is the value of put option
computed by (eorem 3.

According to simple computing, the expectation and
variance of absolute errors follow as


E P1 − P


  � 7.850124,

Var P1 − P


  � 29.945065,


E P2 − P


  � 3.492115,

Var P2 − P


  � 6.764690,

(26)

where P is the actual closing price of put option, P1 is the
value of put option computed by the Black–Scholes model,
and P2 is the value of put option computed by(eorem 3. It
is obvious that E(|P2 − P|)< E(|P1 − P|). In the following,
we will support the statement by the hypothesis test (i.e., t-
test function of MATLAB R2018b).

In fact, for the hypothesis test,

H0: E P2 − P


  − E P1 − P


 ≥ 0,

H1: E P2 − P


  − E P1 − P


 < 0,
(27)
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Figure 1: (e autocorrelogram of the daily logarithmic returns of
S&P 500 index closing prices.
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Table 5: Parameter estimation of d1, d2, and d3 for call options.

C τ K d1 d2 d3

24.40 0.046575 2870 0.039320 0.064659 0.089997
21.50 0.046575 2875 −0.029375 −0.004037 0.021302
10.60 0.046575 2900 −0.371070 −0.345732 −0.320393
4.50 0.046575 2925 −0.709832 −0.684493 −0.659155
3.85 0.046575 2930 −0.777237 −0.751898 −0.726559
3.14 0.046575 2935 −0.844526 −0.819188 −0.793849
1.67 0.046575 2950 −1.045710 −1.020372 −0.995033
0.65 0.046575 2975 −1.378754 −1.353416 −1.328077
0.60 0.046575 2980 −1.445027 −1.419689 −1.394350
46.15 0.126027 2870 0.104771 0.146452 0.188133
44.00 0.126027 2875 0.063010 0.104691 0.146371
31.00 0.126027 2900 −0.144713 −0.103032 −0.061351
19.35 0.126027 2925 −0.350653 −0.308972 −0.267291
7.00 0.126027 2975 −0.757303 −0.715622 −0.673941
3.73 0.126027 3000 −0.958073 −0.916392 −0.874711
3.30 0.126027 3005 −0.998026 −0.956345 −0.914664
2.50 0.126027 3015 −1.077733 −1.036052 −0.994371
66.70 0.221918 2870 0.152504 0.207814 0.263123
63.80 0.221918 2875 0.121033 0.176343 0.231652
48.60 0.221918 2900 −0.035505 0.019805 0.075114
36.70 0.221918 2925 −0.190699 −0.135390 −0.080080
28.32 0.221918 2940 −0.283181 −0.227871 −0.172561
27.70 0.221918 2950 −0.344573 −0.289263 −0.233954
13.03 0.221918 3000 −0.648446 −0.593137 −0.537827
6.00 0.221918 3050 −0.947297 −0.891987 −0.836678
3.10 0.221918 3100 −1.241288 −1.185978 −1.130669
0.85 0.221918 3200 −1.815306 −1.759996 −1.704686
28.30 0.298630 2975 −0.377841 −0.313680 −0.249519
21.90 0.298630 3000 −0.508267 −0.444106 −0.379945
17.00 0.375342 3050 −0.637911 −0.565980 −0.494048
42.20 0.471233 3000 −0.313762 −0.233165 −0.152567
15.10 0.471233 3100 −0.720596 −0.639998 −0.559401
133.50 0.720548 2875 0.279420 0.379083 0.478746
69.70 0.720548 3000 −0.147614 −0.047950 0.051713
33.36 0.720548 3100 −0.476619 −0.376956 −0.277292
27.50 0.720548 3125 −0.557212 −0.457549 −0.357885
15.70 0.720548 3200 −0.795178 −0.695515 −0.595852
7.00 0.720548 3300 −1.103934 −1.004271 −0.904607
75.30 0.797260 3000 −0.109289 −0.004455 0.100380
18.70 0.797260 3200 −0.724912 −0.620077 −0.515243
52.44 0.969863 3100 −0.319343 −0.203716 −0.088089

Table 6: Parameter estimation of d1, d2, and d3 for put options.

P τ K d1 d2 d3

0.35 0.046575 2400 7.097458 7.122797 7.148136
0.42 0.046575 2410 6.933361 6.958699 6.984038
0.40 0.046575 2420 6.769942 6.795281 6.820619
0.40 0.046575 2435 6.526076 6.551415 6.576753
0.47 0.046575 2440 6.445121 6.470460 6.495799
0.46 0.046575 2450 6.283708 6.309047 6.334385
0.55 0.046575 2455 6.203248 6.228587 6.253926
0.54 0.046575 2485 5.723905 5.749243 5.774582
0.62 0.046575 2490 5.644577 5.669915 5.695254
0.56 0.046575 2500 5.486398 5.511737 5.537076
0.72 0.046575 2515 5.250313 5.275652 5.300990
0.74 0.046575 2525 5.093704 5.119042 5.144381
0.75 0.046575 2550 4.704878 4.730217 4.755555
0.80 0.046575 2600 3.938534 3.963872 3.989211
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Table 6: Continued.

P τ K d1 d2 d3

0.93 0.046575 2605 3.862711 3.888050 3.913389
1.38 0.046575 2640 3.335995 3.361334 3.386673
1.50 0.046575 2650 3.186787 3.212126 3.237464
1.80 0.046575 2675 2.816217 2.841555 2.866894
2.44 0.046575 2700 2.449093 2.474432 2.499770
2.55 0.046575 2705 2.376076 2.401415 2.426754
2.65 0.046575 2710 2.303195 2.328533 2.353872
3.03 0.046575 2720 2.157833 2.183172 2.208511
3.25 0.046575 2725 2.085353 2.110692 2.136030
4.50 0.046575 2750 1.724935 1.750274 1.775612
0.55 0.126027 2000 8.769770 8.811451 8.853132
1.15 0.126027 2275 5.678836 5.720517 5.762198
1.50 0.126027 2350 4.900655 4.942336 4.984017
1.95 0.126027 2400 4.395546 4.437227 4.478907
2.20 0.126027 2425 4.146924 4.188605 4.230285
3.20 0.126027 2500 3.416152 3.457833 3.499514
5.10 0.126027 2575 2.706983 2.748664 2.790345
6.05 0.126027 2600 2.475176 2.516857 2.558538
6.38 0.126027 2610 2.383077 2.424758 2.466439
8.55 0.126027 2650 2.018175 2.059856 2.101537
10.31 0.126027 2675 1.792898 1.834579 1.876260
12.35 0.126027 2700 1.569717 1.611398 1.653079
14.35 0.126027 2725 1.348593 1.390274 1.431955
18.07 0.126027 2750 1.129488 1.171169 1.212850
22.54 0.126027 2775 0.912366 0.954047 0.995728
27.70 0.126027 2800 0.697191 0.738872 0.780553
32.85 0.126027 2825 0.483929 0.525610 0.567291
41.25 0.126027 2850 0.272547 0.314227 0.355908
1.30 0.221918 2000 6.682380 6.737690 6.793000
5.39 0.221918 2375 3.575320 3.630630 3.685939
5.80 0.221918 2400 3.385999 3.441308 3.496618
9.26 0.221918 2500 2.647935 2.703245 2.758554
11.74 0.221918 2550 2.289903 2.345212 2.400522
12.90 0.221918 2565 2.183861 2.239171 2.294480
13.55 0.221918 2575 2.113511 2.168820 2.224130
15.32 0.221918 2600 1.938823 1.994133 2.049442
17.70 0.221918 2625 1.765807 1.821117 1.876426
19.60 0.221918 2650 1.594431 1.649740 1.705050
26.23 0.221918 2700 1.256476 1.311786 1.367095
28.70 0.221918 2715 1.156310 1.211619 1.266929
31.25 0.221918 2725 1.089839 1.145148 1.200458
35.95 0.221918 2750 0.924723 0.980033 1.035342
46.70 0.221918 2800 0.598948 0.654257 0.709567
59.32 0.221918 2850 0.278939 0.334248 0.389558
63.55 0.221918 2860 0.215611 0.270920 0.326230
64.70 0.221918 2865 0.184030 0.239340 0.294649
46.60 0.298630 2750 0.847874 0.912035 0.976196
57.50 0.298630 2800 0.567041 0.631203 0.695364

Table 7: Pricing results by our pricing formula and the Black–Scholes model for call option.

K τ d1 d2 d3 C C1 C2

2870 0.043836 0.036511 0.061093 0.085675 21.05 28.26 30.77
2875 0.043836 −0.034298 −0.009716 0.014866 18.15 25.85 26.25
2880 0.043836 −0.104985 −0.080403 −0.055821 18.20 23.58 21.99
2890 0.043836 −0.245990 −0.221408 −0.196826 13.70 19.45 14.27
2900 0.043836 −0.386509 −0.361927 −0.337345 8.50 15.87 7.65
2870 0.123288 0.103532 0.144758 0.185983 45.00 50.06 54.77
2875 0.123288 0.061310 0.102535 0.143760 40.85 47.55 50.91
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Table 7: Continued.

K τ d1 d2 d3 C C1 C2

2895 0.123288 −0.106850 −0.065625 −0.024399 31.68 38.36 36.73
2900 0.123288 −0.148708 −0.107483 −0.066258 29.50 36.27 33.49
2925 0.123288 −0.356924 −0.315698 −0.274473 18.10 27.00 19.26
2940 0.123288 −0.481000 −0.439775 −0.398549 14.10 22.35 12.25
2950 0.123288 −0.563367 −0.522141 −0.480916 11.50 19.61 8.19
2955 0.123288 −0.604445 −0.563220 −0.521995 10.45 18.34 6.35
2870 0.219178 0.151657 0.206624 0.261591 64.00 69.14 75.39
2875 0.219178 0.119990 0.174957 0.229924 63.80 66.58 71.78
2900 0.219178 −0.037523 0.017444 0.072411 47.50 54.73 54.98
2950 0.219178 −0.348517 −0.293550 −0.238583 26.75 35.58 27.81
3000 0.219178 −0.654284 −0.599317 −0.544350 13.30 21.94 8.99
3025 0.219178 −0.805261 −0.750294 −0.695327 8.75 16.88 2.42
2900 0.295890 0.018662 0.082528 0.146394 62.77 67.32 69.15
2900 0.372603 0.062039 0.133708 0.205376 76.38 78.74 81.78
3100 0.372603 −0.868516 −0.796848 −0.725179 9.40 18.99 3.50
2900 0.468493 0.105947 0.186310 0.266673 91.40 91.87 96.10
3000 0.468493 −0.315908 −0.235545 −0.155182 41.26 52.22 44.38
3100 0.468493 −0.723929 −0.643566 −0.563203 15.00 27.13 12.45

Table 8: Pricing results by our pricing formula and the Black–Scholes model for put option.

K τ d1 d2 d3 P P1 P2

2550 0.043836 4.845658 4.870240 4.894822 0.59 0.00 0.05
2575 0.043836 4.448776 4.473358 4.497940 0.70 0.00 0.14
2600 0.043836 4.055729 4.080311 4.104893 0.81 0.00 0.35
2650 0.043836 3.280846 3.305428 3.330010 1.20 0.01 1.59
2660 0.043836 3.127625 3.152207 3.176790 1.40 0.02 2.08
2675 0.043836 2.898871 2.923453 2.948035 1.64 0.04 3.02
2700 0.043836 2.520449 2.545031 2.569613 1.95 0.14 5.27
2300 0.123288 5.474086 5.515311 5.556536 1.30 0.00 0.01
2400 0.123288 4.441720 4.482946 4.524171 1.95 0.00 0.14
2500 0.123288 3.451504 3.492730 3.533955 3.26 0.01 1.11
2590 0.123288 2.593606 2.634832 2.676057 5.40 0.20 4.65
2600 0.123288 2.500131 2.541356 2.582581 6.00 0.27 5.32
2615 0.123288 2.360589 2.401814 2.443040 6.20 0.41 6.45
2625 0.123288 2.268005 2.309230 2.350456 7.10 0.53 7.29
2670 0.123288 1.855696 1.896922 1.938147 9.20 1.62 11.98
2675 0.123288 1.810314 1.851539 1.892764 9.40 1.82 12.60
2700 0.123288 1.584666 1.625892 1.667117 11.50 3.13 15.93
2725 0.123288 1.361099 1.402324 1.443549 14.30 5.16 19.69
2775 0.123288 0.920051 0.961277 1.002502 20.50 12.41 28.36
2800 0.123288 0.702499 0.743724 0.784950 25.85 18.18 33.26
2825 0.123288 0.486881 0.528106 0.569331 31.50 25.71 38.61
2850 0.123288 0.273162 0.314387 0.355612 39.00 35.19 44.52
2200 0.219178 4.988269 5.043237 5.098204 2.60 0.00 0.03
2400 0.219178 3.405298 3.460265 3.515232 5.80 0.02 1.16
2500 0.219178 2.662636 2.717603 2.772570 9.00 0.22 4.11
2540 0.219178 2.373857 2.428824 2.483791 11.00 0.54 6.28
2550 0.219178 2.302373 2.357340 2.412307 11.95 0.67 6.94
2575 0.219178 2.124882 2.179849 2.234816 13.20 1.10 8.80
2600 0.219178 1.949106 2.004073 2.059040 14.80 1.76 10.99
2650 0.219178 1.602568 1.657535 1.712502 19.95 4.13 16.46
2725 0.219178 1.094832 1.149799 1.204766 29.92 12.23 27.74
2825 0.219178 0.439168 0.494135 0.549103 51.10 37.78 49.91
2850 0.219178 0.278879 0.333846 0.388814 58.00 47.68 57.10
2865 0.219178 0.183379 0.238346 0.293314 65.20 54.36 61.80
2425 0.295890 2.819513 2.883379 2.947245 10.76 0.16 3.16
2500 0.295890 2.342589 2.406455 2.470321 14.75 0.70 6.54
2675 0.295890 1.283205 1.347071 1.410937 32.50 9.91 24.37
2850 0.295890 0.290978 0.354844 0.418710 69.79 55.32 64.91
2860 0.295890 0.236134 0.300000 0.363866 76.22 59.70 68.22
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(e t−statistics equals −4.4919 with degree of freedom
38, and its p value is 0.00019. (us, we accept H1, i.e.,
E(|P2 − P|)<E(|P1 − P|). (at is, the prices of put options
computed by (eorem 3 are far nearer to their actual prices
than those computed by the Black–Scholes model.

(erefore, our pricing formulas in (eorems 2 and 3
have less absolute errors than those of the Black–Scholes
model for both call options and put options. (at is, the
fitting effect of our pricing formulas is superior to that of the
Black–Scholes model.

6. Conclusion

In this study, we obtain the pricing formula of European
options, including European call option and European put
option, in a risk-aversive market. Corollaries of our obtained
results improve the Black–Scholes model owning to its much
weaker conditions. It follows from our obtained results that
European option value depends on the drift coefficient μ of
its underlying security, which does not display in the
Black–Scholes model only because μ � r in a risk-neutral
financial market according to the no-arbitrage opportunity
principle. Empirical analyses show that the fitting effect of
our pricing formulas is superior to that of the Black–Scholes
model.

Appendix

A. Proof of Theorem 2

In order to prove (eorem 2, we need the following lemma.

Lemma A.1. Assuming lnX ∼ N(μ, σ2), then for any real
number m ∈ R and positive real number K ∈ R+, it follows
that

E X
m1 X≥K{ }  � e

mμ+(1/2)m2σ2Φ
1
σ

ln
1
K

+ μ + mσ2  .

(A.1)

Proof. If lnX ∼ N(μ, σ2), denote the density function of X

by f(x; μ, σ), and then

f(x; μ, σ) �

1
xσ

���
2π

√ exp −
(lnx − μ)

2

2σ2
 , x> 0,

0, x≤ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(A.2)

For any real number m ∈ R and positive real number
K ∈ R+, it follows that
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(A.3)

(e proof is complete. □
Noting that the underlying asset follows a geometric

Brownian motion with drift coefficient μ and diffusion
coefficient σ > 0 and the current price of underlying asset is
S0, it follows from It o formula that

Sτ � S0 exp μ −
1
2
σ2 τ + σWτ , (A.4)

where W � Wt, t≥ 0  is the standard Wiener process, so

ln Sτ ∼ N ln S0 + μ −
1
2
σ2 τ, σ2τ . (A.5)

It yields from Lemma A.1 and (A.5) that

E 1 Sτ≥K{ }  � Φ d1( , (A.6)

E Sτ1 Sτ≥K{ }  � S0e
μτΦ d2( , (A.7)

E S
2
τ1 Sτ≥K{ }  � S

2
0e

μ+σ2( )τΦ d3( . (A.8)

It follows from (A.6) to (A.8) that
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μ+σ2( )τΦ d3(  − 2KS0e
μτΦ d2( 

+ K
2Φ d1( .

(A.10)

Furthermore, it obtains from (A.9) and (A.10) that

std Sτ − K( 
+

(  � sqrt E Sτ − K( 
+

( 
2

  − E
2

Sτ − K( 
+

  ,

� sqrt S
2
0e

2μτ
e
σ2τΦ d3(  −Φ2 d2(   − KS0e

μτΦ d2( Φ −d1(  + K
2Φ d1( Φ −d1(  .

(A.11)

(us, it yields from Proposition 1, (A.9), and (A.11) that

C S0, K, r, σ, τ, λ(  � e
− rτ

E Sτ − K( 
+

  + λ · std Sτ − K( 
+

(  ,

� S0e
(μ− r)τΦ d2(  − Ke

− rτΦ d1(  + λe
−rτ

· sqrt S
2
0e

2μτ
e
σ2τΦ d3(  −Φ2 d2(   − KS0e

μτΦ d2( Φ −d1( 

+ K
2Φ d1( Φ −d1( .

(A.12)

(e proof is complete. □

B. Proof of Theorem 3

In order to prove(eorem 3, we first present another lemma
as follows.

Lemma B.1. Assuming lnX ∼ N(μ, σ2), then for any real
number m ∈ R and positive real number K ∈ R+, it follows
that

E X
m1 X≤K{ }  � e

mμ+(1/2)m2σ2Φ −
1
σ

ln
1
K

+ μ + mσ2  .

(B.1)

Proof. If lnX ∼ N(μ, σ2), denote the density function of X

by f(x; μ, σ), and then

f(x; μ, σ) �

1
xσ

���
2π

√ exp −
(lnx − μ)

2

2σ2
 , x> 0,

0, x≤ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(B.2)
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For any real number m ∈ R and positive real number
K ∈ R+, it follows that

E X
m1 X≤K{ }  � 

+∞

−∞
x

m1 x≤K{ }f x; μ, σ2 dx,

� 
K

−∞
x

m 1
xσ

���
2π

√ exp −
(lnx − μ)

2

2σ2
 dx

� 
lnK

−∞
e

my 1
σ

���
2π

√ exp −
(y − μ)

2

2σ2
 dy

� e
mμ+(1/2)m2σ2


lnK

−∞
e

my 1
σ

���
2π

√ exp

−
y − μ + mσ2  

2

2σ2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dy

� e
mμ+(1/2)m2σ2


1/σ lnK− μ+mσ2( )[ ]

−∞

1
���
2π

√ exp −
z
2

2
 dz

� e
mμ+(1/2)m2σ2Φ

1
σ

lnK − μ + mσ2   

� e
mμ+(1/2)m2σ2Φ −

1
σ

ln
1
K

+ μ + mσ2  .

(B.3)

(e proof is complete. □
Noting that the underlying asset follows a geometric

Brownian motion with drift coefficient μ and diffusion
coefficient σ > 0 and the current price of underlying asset is
S0, it follows from Ito formula that

Sτ � S0 exp μ −
1
2
σ2 τ + σWτ , (B.4)

where W � Wt, t≥ 0  is a standard Wiener process, so

ln Sτ ∼ N ln S0 + μ −
1
2
σ2 τ, σ2τ . (B.5)

It yields from Lemma B.1 and (B.5) that

E 1 Sτ ≤K{ }  � Φ −d1( , (B.6)

E Sτ1 Sτ ≤K{ }  � S0e
μτΦ −d2( , (B.7)

E S
2
τ1 Sτ ≤K{ }  � S

2
0e

μ+σ2( )τΦ −d3( . (B.8)

It follows from (B.6) to (B.8) that

E K − Sτ( 
+

  � E K − Sτ( 1 Sτ≤K{ } ,

� KE 1 Sτ≤K{ }  − E Sτ1 Sτ≤K{ } 

� KΦ −d1(  − S0e
μτΦ −d2( ,

(B.9)

E K − Sτ( 
+
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  � E K − Sτ( 
21 Sτ≤K{ } ,

� E S
2
τ1 Sτ≤K{ }  − 2KE Sτ1 Sτ≤K{ } 

+ K
2
E 1 Sτ≤K{ } 

� S
2
0e

μ+σ2( )τΦ −d3(  − 2KS0e
μτΦ −d2( 

+ K
2Φ −d1( .

(B.10)

Furthermore, it obtains from (B.9) and (B.10) that

std K − Sτ( 
+

(  � sqrt E K − Sτ( 
+

( 
2

  − E
2

K − Sτ( 
+

  ,

� sqrt S
2
0e

2μτ
e
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μτΦ −d2( Φ d1(  + K
2Φ −d1( Φ d1(  .

(B.11)

(us, it yields from (B.9) and (B.11) that

P S0, K, r, σ, τ, λ(  � e
−rτ

E K − Sτ( 
+

  + λ · std K − Sτ( 
+

(  ,

� Ke
−rτΦ −d1(  − S0e

(μ− r)τΦ −d2(  + λe
−rτ

· sqrt S
2
0e

2μτ
e
σ2τΦ −d3(  −Φ2 −d2(   − KS0e
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(B.12)

(e proof is complete. □
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