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In this manuscript, a delayed Nicholson-type model with linear harvesting terms is investigated. Applying coincidence degree
theory, we establish a sufficient condition which guarantees the existence of positive periodic solutions for the delayed Nicholson-
type model. By constructing suitable Lyapunov functions, a new criterion for the uniqueness and global attractivity of the periodic
solution of the Nicholson-type delay system is obtained. The derived results of this article are completely new and complement

some previous investigations.

1. Introduction

In 1954, Nicholson [1] and later in 1980, Gurney et al. [2]
established the following Nicholson’s blowfly model,

dx = —0x(t) + px(t - e =0 5, p. 7, ac€ (0,00),

dt
(1)

to describe the population of the Australian sheep-blowfly
Lucilia cuprina. In model (1), x(¢) denotes the size of the
population at time ¢, p denotes the maximum per capita
daily egg production rate, § stands for the per capita daily
adult death rate, (1/a) represents the size at which the
blowfly population reproduces at its maximum rate, and 7 is
the generation rate. Since then, model (1) and its revised
versions have been extensively investigated. For example, So
and Yu [3] analyzed the stability and uniform persistence of
the discrete version of model (1), Kulenovic et al. [4] in-
vestigated the global attractivity of system (1), and Ding and
Li [5] focused on the stability and bifurcation of the nu-
merical discretization model of (1). For more details, we
refer the reader to [6-21].

It is well known that oscillatory behavior of population
densities is one characteristic phenomenon of the pop-
ulation [22]. Thus, there have been extensive results on the
existence of periodic solutions for Nicholson’s blowfly
models. We refer the reader to [7, 11, 21-29]. In recent years,
Berezansky et al. [30] investigated the global dynamics of the
following Nicholson-type delay model:

% = —a,x, (t) + byx, (£) + ¢, %, (t = 7)e 77,
(2)
% = —a,x, (1) + byx, (t) + cyx, (t = T)e 2177,
with the initial conditions
x;(s) = ¢;(s), s€[-1,0], ¢;(0)>0, )

where ¢;(s) € C([-1,0], [0,+00)) and a;,b;,¢;, and 7T are
nonnegative constants, i = 1,2. Taking into account the
effect of periodically varying environment, Wang et al. [31]
proposed the following nonautonomous Nicholson-type
delay model:
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o )
= 0, (O + B (0%, 0+ Y e (0x, (1 -7,
dx2

|

and focused on the existence and exponential convergence
of positive almost periodic solutions for (4). Here,
;> B ¢ij» Tijt R —> (0,+00) are almost periodic functions,
andi=1, 2and] =1,2,...,m.In 2011, Liu [22] studied the
existence and uniqueness of positive periodic solutions of
(4). In 2010, assuming that a harvesting function is a func-
tion of the delayed estimate of the true population, Bere-
zansky et al. [32] established the following Nicholson-type
delay system with a linear harvesting term:

ax(t—1)

d_x =-0x(t) + px(t —1)e”

dt _%x(t_a),(s’P,T,

a € (0,00),

(5)

dt

=, (t)x, (t — o, (1)),
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) mOnn0),

(4)

—a, (1)x, (£) + By (), (£) + Z Gy (1), (t = 1y () )e T (= 0)

where 6, p, 7,a, %, 0 € (0,+00), Z'x (t — o) denotes a linear
harvesting term, x (¢) represents the size of the population at
time t, p represents the maximum per capita daily egg
production rate, § represents the per capita daily adult death
rate, (1/a) represents the size at which the blowfly pop-
ulation reproduces at its maximum rate, and 7 is the gen-
eration rate. Berezansky et al. [32] proposed an open
problem: how about the dynamical behaviors of Nicholson’s
blowfly model with a linear harvesting term?

Inspired by Berezansky et al. [30], Wang et al. [31], and
Berezansky et al. [32], Liu and Meng [33] proposed the
following Nicholson’s blowfly model with linear harvesting
terms:

[ (6, (6 B, (0 0+ Y ey (0 (£ — 7y, ()70 ()
j=1

1 (6)
dx \ —y -
S2 (0, (1) + By (0%, (0 + Y. €3y (O = 73y () (t=7y0)
=1
| -, (t)xz (t — 0 (t)))
where a;, B;,¢;j, 75, 05 Hit R — (0,+00) are almost pe- i 1 ‘“l g
riodic functions and i =1,2and j=1,2,...,m. Liu and T w J-o (£)dt,
Meng [33] established some sufficient conditions to
check the existence, uniqueness, and local exponential ¥ = min 1(¢), (7)
convergence of the positive almost periodic solution of te[0.0]
(6). ™M I
Here, we would like to point out that periodic phe- T e (®),

nomenon plays an important role in characterizing the
dynamical behavior of Nicholson’s blowfly models. Thus, it
is worthwhile to investigate the periodic solution of
Nicholson’s blowfly models. Up to now, there is no
manuscript which handles this aspect on the periodic
solution of model (6).

The principle objective of this manuscript is to find a set
of sufficient conditions that guarantee the existence of at
least a positive periodic solution for model (6) and by
constructing a suitable Lyapunov function to investigate the
stability of periodic solutions of model (6).

Let

where [(t) is an w (w > 0)-continuous periodic function. In
addition, the following assumptions are given:

(i) (1) For i=1,2andj=1,2,...,
Z;: R— (0,+00) and o,
all w-periodic functions

m, “iaﬁi)cip)’ija
T R— [0, +0c0) are

(ii) («2) aM +%’M<ZJ1 i (i=1,2)
(iii) (o/3) af ﬁlﬂz >0
(iv) (of4) ocl By = Y (ehile?) = Y > 0,05 - BY -

Yricojle? ~ -#M>0
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The manuscript is planned as follows. In Section 2, we
state the necessary preliminary results. We then establish,
in Section 3, some simple criteria for the existence of
positive periodic solutions of model (6) by coincidence
degree theory [34]. The uniqueness and global attractivity
of the positive periodic solution are displayed in Section
4. An example is given to illustrate our key results in
Section 5.

2. Preliminaries

In this section, some related basic knowledge is displayed
[34, 35].

Assume that 2, % are normed vector spaces,
Z Dom¥ cX — ¥ is a linear mapping, and
N X — X is a continuous mapping. We call the mapping
< a Fredholm mapping of index zero if
dimKer? = codimIm¥ < + co and ImZ is closed in %. If
& is a Fredholm mapping of index zero and 3 continuous
projectors P &' — X and Q: ¥ — % which satisfy
ImP = Ker?,ImZ = Ker@ = Im (¥ — @), then Z|Dom
ZNnNKerP: (F - PY — ImZ is invertible [34, 35]. Let
K 4 denote the inverse of Z|Dom%Z NKerZ. If Q) is an open
bounded subset of &', we call the mapping 4 &£ —compact
on Q if @4 (Q) is bounded and K, (F — Q)N : Q —> I is
compact. Since Im@ is isomorphic to KerZ, 3 iso-
morphisms 7: Im@ — KerZ [34, 35].

Lemma 1 (see [34]). Suppose that & is a Fredholm mapping
of index zero and N is L —compact on Q. If

(i) YA € (0, 1), all solutions x of Lx = AN x satisfy the
following condition: x ¢ 0Q)

(ii) QN x#0,Vx € KerZ NoQ,
Ker%Z,0} 0,

then £x = N x possesses at least one solution, which
stays in Dom<Z N Q)

and deg{ fQN,QnN

3. Existence of Positive Periodic Solutions

Theorem 2. If (1)-(/3) are satisfied, then system (6) has
at least one positive w-periodic solution.

Proof. Based on the practical significance of model (6),
here we only discuss the positive solutions of model (6)
Vt>0. Set

Uy (t) =In [xl (t)])

8
u, (t) = In[x, (t)]. ®

In view of (6) and (8), one has

- du, (1)

= —a, (1) + t e”z (H)—uy (t)
& 1 (O + By (B)

m .
+ 3 (e (- ©)-m 0y e C00)
j=1

~, (H)e" (t-0,(1)-u, o
J 9

du, (t w (D—u
ét( ) oy () + By (e O

m u —15 ()
+ Y oy (p)ets ()0 0 2 ()
j=1

_%2 (t)euz (t— 0, (t))— u, (t).

Set X' =Z ={u()} = {(u, (t),u, () |u(t) € C(R,R?),
u(t+o)=u@®} and  Jull = I, (0, u,(0) = X7,
max; g, |1; (t)|. Then, & and Z are Banach spaces.

L Dom¥ cl —Zand N: L — Z:
du
E$

< fi (”1 (t),uy (1)) >
Nu = ,
fa(uy (0),u, (1))

Zu =

(10)

where
fl (”1 (t), U, (t)) = - (t) + /gl (t)euz (-1, ()
m
- -(t))—u )=y, (D)e" ("le(t))
+ ) a0 (t=7, )=, -7,
j=1
— %, (t)e (7 O) @)
f2 (ul (t)u, (t)) =—a,(t) +f5, (t)e" (5)-u, (1)
m
- -(t))—u ()= y,; (1)e"? (t’sz(t))
+ ¥ ¢, (e (s 0)-m 0y,
5.,
~,(t)e" (=02 (0)-u, (1)
(11)
Define & and @ as follows:

1 w
@u:—j u(t)dr,
w Jo
(12)
1 w
@u=—J u(t)dt, ueX,ueZ.
w Jo
Hence, KerZ ={ueLlu=heR}andIm¥ ={uc

Z| _[:)Uu(t)dt =0} are closed in 2, and dim(Ker%?) =
2 = codim (Im%). Then,



4
*J' F (s)ds,
0
QNu = ’
- J F, (s)ds
0
t 1 Jw J»t 5 (s)dsds
il S)ds
.[0 gl (S)ds w Jo Jo 1
Ko(F-@Nu=| " -
w rt
J F, (s)ds lj J' F, (s)dsdt
0 ool
£y (v
(; - E) ,[0 F, (s)ds
t 1 w1 (o[t
(5 - E) jo ;JO JO F, (s)ds
(13)
where
Fi(s)=—a,(s)+ (t)e™ (s)=uy (s)
m
11y ()1 (9=, (9t (7179)
+ C1‘(S)eu1 (s T1j 1 i
5,
— g, (s)e" (s )-m ),
(14)

gZ (5) =, (S) + ﬂz (s)eul (s)=uy (s)

m =72 (S,
+ ¥ oy (e ()@ ()
j=1

— 9, (s)e"2 (s 9)-m (),

Clearly, @ and K (. — @)/ are continuous. We can
easily check that K, (% — @)/ (Q) is compact VQ ¢ X. In
addition, @ (Q) is bounded. So, 4 is &—compact on
QvQcX.

In view of Lu = AN u, A € (0,1), one has
du, (t)

dt

= A[-a; (1) + B, (£)e™ )

m S
+Y ¢y (e (= ©)-a Oy 06" (tny0)
j=1

—g, (et (o) (z)],
] (15)

du, (t _
é( ) oAy () + B (e @0
t
m it
+) 6 ()e” (=12 ()= 11y (0= 1 (e (77210)
j=1

st (e (0]

Suppose that u(t) = (u, (£),u, )" € X is an arbitrary
solution of system (15) for a certain A € (0, 1); according to
(15), one has
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( J: [_0‘1 () + ﬁl (t)eu2(t)7”1 (t)

m S
+) ()" (=71, ®) -y (-7, e (7715)
j=1

-, (t)e“1 (t=0,(1)-u, (t)]dt =0,

1 0 (16)
JO [_“2 (t) + B, (t)e™ (H)=u, (1)
m
—1y;(1))-u (t)_),z_(t)e“z(‘*fzj(”)
+ Z ¢y (t)e™ (= 217
j=1
2, e )0 2
Then,
w u u m w (t-z. —u oy () (r—rl (t))
J'O |:/;1 (He 5 (D)= uy () +Z‘iclj (H)e 1(f 11(t)) L (D=1, (1) i
i
~F, (t)e" (t-01 ()1 (f)]dt = Jo o, (H)dt = 7w,
(17)

w m uy (t-1; ()
JO |:[;2 (H)e" O-u () Z ¢y (t)e™ (t’ sz(t))’”z(f)f V2j (t)e 2 (2 0)

=

—, (£)e" (f*%‘”)*“z“’]dt - j o, (Hdt = T,
0

(18)
From (15)) (17), and (18), we get
j li, (1)|dt = 2 j | —a, () + By (B2 ®
0 0
N — Ty _ (e (t—rlj(t))

+ ) ¢ (e (t=71;0)-w (-, ()¢

- %1 (t)eul (F 91 (t))’ul () |dt,
(19)

< JO oy ()|t + JO |B, (£)e™ @4

m S
+ ) o) (=10, 0) -1, -y, (e (77159)
j=1

— 7, () (00w O1qt = o 0,

m
-1 v(t))fuz (-, (1)e? ("’21(’))
+ Z o (t)e“z( % J
=1
- %, (t)e" (t=0,(0)-u, (t)ldt,
w w
< J0|oc2(t)|dt + JO B, (t)e" B)-uy (1)
m
12y () -ty (- ya; (D" (G10))
+ z o (t)e”z( Y J
=1
— %, (1) (20 W1qs = 25, .
(20)
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Because (x; (1), x, e, Jo;,€; € [0,w] which
satisfies
u; (0;) = max, (0.0 Ui (1),
u; (&) = min,¢ (o, 1; (), (21)
ui(e;) = ui(e) =0, i=12
Let
“1(61 Ty (el)) =maX; 5 mul(el - Ty (€1))- (22)

Because u; (€, — 7, (€;)) —u; (€,) 20, j=1,2,...,m, by
(9) and (22), one has

(€1) +H (€ ) Uy 51 41 (61)) “1(51)
= ﬂl( )e"z (e1)-w (e1)

+Zc1 g (6= (@)= ()7 (e () 93y

oM (61*7 * E1)
>e ¢ Y chj(el)

j=1

which leads to

_ _ _ o (e () O
o 4 Mt (5o (8))-m (&) 5 gyt VT > cijer).

(24)
By (/2), we have
m L
1 Y c;
u, (e, — 1, (/) = In|—In———L_| (25)
1( 1~ T ( 1)) L}zlvjz “?4+%11\4:|

Sete; — 7. (¢;) = nw + 0, where 0 € [0, w] is an integer.
By (19) and (25), one has
u, (t) 2 u, (0) - J |it, (£)|dt > m[ L in Azfl 1;4] 2%,0 =0,

Yij i %t
(26)
Vt € R. In a similar way, it follows from (20) and (21) that

m L
1 1 Cys

u, (t) Zlnl:—Mln%] -20,w = 0,. (27)
Vai % + 7,

By (9) and (21), one gets
a; (1) + 71 (01)e" (@n (@) (e) - B (01)e™ (o) (1)

+ i c1j(e1)e” (o1 (o)) (o) (o) (77 )

(Q )e”z 91) “1(91)

e“l (@1’71; (91))6’)’1; (91)6”1 (Ql’rlj (91))
Uy (91) '

+ chj (Ql)Ylj(Ql) . (Q :
j=1 1j(01)€
(28)

Since sup,, (v/e”) = (1/e),
a1 (02) a0 (01) + 7, (g )e (0 n (@) ()

- Zoci(e) 1 (29)
Sﬁ 0 6“2(91) ”1(91)+ J - ,
() 2y (ee
which leads to
u, (o, u < Cij (91
o ()" () = B, (0,)e" (*) < Do e rAED
]:1
Hence,
L o (o) ﬁM u, (0,) i Clj(@l) (31)
j:1Y1j(91)e
In a similar way, one also gets
L u, (Qz) M ”1(91 S CZJ
e -Be 32
? ;)’21 92)6 (32)
In view of (31) and (32), one has
l:eu1(91):| r 0({‘ _ i\/['_l— ch _ﬂl :|[ 141(91 ‘|
euz(@z) __ﬁ;v! (X% ] __ﬁfz\’f 0‘]5 &l (92)
ab B e (@) - pen ()
_—ﬂéw (X% ] L ’42(92) ﬁM Uy (91
& crj(en)
r ocf _ﬁzlvf-*l j:l)’lj(Ql)e
<
_/5;\4 (xé - & CZj(Qz)
_j:1))2j(92)e
% B § v
aray - BRY afay - BYRY || vy en)e
<
ﬁéw (Xé i CZ] (QZ)
o - BBy aras - BB I Hvay(2)e
"‘2 S Cll\;[ ﬁf S CZI

M 2. L M 2. L
/31 B, =1Y15€ "“Xz 51 B, =1Y25€

B e, g e
"‘f"‘g _ﬁjlwﬂéw j=1 ije oy 0‘2 By /3]2\4 i= 1)’5;
(33)
Then, one has
uy (1) <uy (0,)<6),
. (34)
u, (t) <u, (0,) <05,

where



6
L M
" o < C1j - Cz
6 =ln|— 2 YU, Py
1 I L oMuM I T L1 MM
ajw; =By By Fvie aye; ~ ﬁl By iz 1Y2]
M m M m
. B, 6yj Cz]
A NS VIR T v '
2 T L oMaM L M
ajay =By By =1V15¢€ oy "‘2 ﬁl B, j= 1Y2]

(35)

Let M, = max{|6,],167 |} and 4, = max{|6,],16;|}.
Then, ;(i =1,2) are independent of A. Consider the
equation @/u = 0. Ifu € R?, then Jvy;(j=1,2,...,m)and

v, (j =1,2,...,m) which satisfy
rl
— t)dt
= [ s,
ONu =
1 w
— t)dt
RN
= _Rl +Bl et +ZEU€_YU‘ (“1)‘)‘2Hl _%1
L j=1
— m " -
-, + e+ Zfzjefyzf (o )es _ #,|=0,
=1
(36)
where

f1(0) = =a (8) + B (e 74
+ i ¢, (t)es (7T 0)-w 0y, e (m1j0)
J

j=1
_, (e (0 ©)-u ),
(37)
fz (t) = -, (t) + /32 (t)eul ()= u, (1)
m
- -(t))—u (t)—yz.(t)e“Z(”TZj(t))
+ Z Cyj (t)e™ (t T2j 2 '
j=1 ’
—, (t)e"” (- 0)-w® |
Let .* >0 be large enough. If u* = (u},u})" is a so-

lution of equation (36), then Zl Vil <. We define
¢: Dom¥Z x [0,1] — & by

y (o))
= R RAACT
@ + E cje

j=1

3 (e2)
_ — —ypilvy; )en2
-, + Z Cyje UV
j=1

[Bleuzul -, ]

+A[Z _

Bre ™" - %,

Obviously, ¢ (1, u,,1) = @ u. Similar to the analysis of

model (15), if (u;,u,)" is a solution of ¢ (u;, u,,A) = 0, then
3 two constants 7, 4, >0 which satisfy

¢ (uy>up,4) =
(38)
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|uy| < 3, |uy| < 5, (39)

and /%* (i=1,2) are independent of A. Set ;=
NI MM = M+ M+ M, Where My = Y7 M Let

= { (ul,uz)T € R*: Z |uas] <ﬂ}.

i=1

(40)

Next, we will check that all assumptions of Lemma 1 hold
true.

By M>My=Y;, M; one knows that if
(ul,uz) €0Qnker?, then Lu+ANu,A € (0,1). So, as-
sumption (a) of Lemma 1 holds true. By 4" <.#, one
knows that if (uj,u,)’ €dQnkerZ, then ¢(u,u,, )+
0,1 € (0,1). Then, ¢ (u;,u,, 1) #0, ie., QN u+0. Obv10usly,
QNu = ¢(u;,u,,A) = 0 has a unique solution (u] ,uz) Set
J =7 Im¥ — kerZ. One knows that FQNVu = QN u =
0 has a unique solution. Then,

deg{j@/lf (up,u,)"; QN kerZ; 0}
= deg{¢ (u,uy,1); QnkerZ; 0}

o, 0
:deg{gb(ul,uz,O);Qﬂker.Sf;O}:sign{det[ 01 *:|},
9

(41)
where
Sy (),
=1
. (o) * (42)
0y == Y Coye N pyi(vn)e,
=
and  (uf,uf)” is a unique solution of @Nu=
¢ (u,u,,0) = 0. Then,
deg{j@,/lf (uy,15,) s Q N ker Z; 0}
= sign<| Z Elje_y‘i (v1))e" ylj(vlj)eu
=
(43)

Z ~ Y25 (Uz) oy (UZJ) u; }
j=1

=1+0.

Then, assumption (b) of Lemma 1 is true. So, Lu = Su
has at least one solution (u, (), u, ()" in DomZ N Q. Thus,
(x, (1), x, ) = (em®, 2T s an w-positive periodic
solution of model (6). The proof ends. O

4. Stability Behavior of Periodic Solutions

Assume that the varying delays become constants, i.e.,
0,(t) =0p,0y =0, T7;(t) =15 and 1p;(£) = 75;(j = 1,2,
..,m).

Definition 1 (see [35]). A bounded positive solution
(x7 (8), x5 ()" of model (6) is said to be globally
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asymptotlcally stable if V positive bounded solutions
(%, (), x, ()T of model (6), the following equality holds:

i | S0 0] -

(44)

Definition 2 (see [35, 36]). Assume that g€ R and f is
a nonnegative function defined on [g, +00), integrable on
[g,+00), and uniformly continuous on [g,+00); then,

1imt—>+oof (t) =

Theorem 1. If (/1)-(9f4) hold, then model (6) has a unique
positive w-periodic solution (x} (1), x5 (1))T, and this solution
is global attractivity.

Proof. According to Section 3, we know that there exists
J >0 such that

2
DV () = Y (5 (1) = % (1))sgn (x] (1) = x; (1))

i=1

= sgn(x] (1) -

xy (1)) [~y (1) (27 (2) -

+ZCIJ (t)<x1 (t— )e y1; (O1x] (t 11]) xl(t__[lj)efylj(t)xl (t—rlj)>

= (1) (xy (t =7, (1) -
+sgn(x; (£) -

m

j=1

~, (1) (x; (t = 13) =%, (t - 13))]

< —dlx; () - x, ()] + B

m

Z—!

-1 €

%, (D) [-aa (1) (x; (1) -

Yo, (t)<x;(t —1y)e 0 (t-7) _ xy(t =1y )e T O (t—m)>

el < x; (1)< e,
) (45)
e <x, ()< t>7.
Define
2
7.(0)=Y (46)
in1
Then, Vt>T,
x1 (1) + By () (x5 (£) = x5 (£))
xi (t-1))]
%, (1) + By () (x7 (£) = x, (1)
(47)

NOEENG]

(= —x(t-)

n y/l‘/fle (t—1)—x (t-1))|

NOE xz(t)l +ﬁ12\4

-,

m
Z_f
2

NOEEAG!!

2t =135) =3t = 1))

+ ?flzwlx; (t—1,) —x,(t = 1)l



Define
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m CIIVI, t . m Céw' t .
7,0y H@-xm @l Y| | -xn o
=1 =Ty j=1 T
(48)
M t * M f *
+ 7 L lxl (s) — x4 (s)|ds+%’2 J-r X, (s)—xz(s)|ds.
T T
It follows from (6) that, V>,
) m (M m (M
DV, () = ijl (t) —x, ()] - ijl(t — 1) - x(t-1y5)]
j=1 j=1
m (M m (M
+Z;e—2]x2 (t)—xz(t)|—Z;e—;xz(t—rzj)—xz(t—rzj)' (49)
= j=

+7{’]1\4

M
+ 5

Set the following Lyapunov function:

TV (t) =7 (t)+ 7, (¢). (50)
It follows from (47), (49), and (50) that
2
DV ()< =) nlx () - x,(8)], (51)
i=1
where
Ui
M=o - 24_2_2]_%11\4>
=1
(52)
m C;‘/{ "y
N = — ?4_2_21_%2
j=1€

According to (H4), 3 constants « (i=1,2,) and
I >3 which satisty

n(t)>a >0, (i=12), fort>T". (53)

By (53), one has

2

7w+ Y [ no

i=1

x () -x;Ods<7(T7).  (54)

By (53) and (54), one gets

2 ot
ZJ n (O|x; (£) = x; (H)|ds <V (T*) <o0, fort>T".
i1 T

(55)

x; () - x, (O] -7

x5 () - x, (D] - %)

Xy (t=1p) = x; (t - Tl)l

x5 (t=13) —x, (t = 1,)|-

Because x; (t)(i = 1,2) are bounded Vt>J", |x (¢) -
x;(t)|(i =1,2) are uniformly continuous on [T, 00).
Applying Barbalat’s lemma [36], one has

tgnm|xi (t) - x,-(t)| =0, i=1,2. (56)

According to Theorems 7.4 and 8.2 of [37], one knows
that (xj (1), x; ()" of system (6) is uniformly asymptoti-
cally stable. We end the proof.

Remark 1. Zhou [17] considered the positive periodic so-
lution of the Nicholson-type delay model which is a special
form of (6), Liu [22] investigated the existence and
uniqueness of positive periodic solutions of the Nicholson-
type delay model without linear harvesting terms, and Liu
and Meng [33] studied the positive almost periodic solution
for model (6). To the best of our knowledge, no author
considers the problems of the positive periodic solution of
model (6). All the results in [17, 22, 33] and the references
therein cannot be applicable to prove that system (6) has
a unique positive w-periodic solution which is global
attractivity. This implies that the results of this article are
new and that they complement earlier investigations.

Remark 2. In [38], the authors dealt with the periodic so-
lution of the ratio-dependent food-chain system with delays
by applying coincidence degree theory. In this paper, we
investigate the periodic solution of the continuous delayed
Nicholson-type model with harvesting terms, and some
inequality techniques are different from those in [38]. In
[33, 39], the authors dealt with almost periodic solutions for
Nicholson’s blowfly model. They did not involve the periodic
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Figure 1: Computer simulation of model (57): t—x;,. FiGUure 2: Computer simulation of model (57): t—x,.

solution of the delayed Nicholson-type model. So, our works

5. Software Simulations
supplement the previous publications.

Give the following model:

[dx, _
dt

—673(0.1 +0.3 sinZIOt)x1 (t) + 674(0.2 +0.1 c03210t)x2 (t)
+e %(0.1+0.2cos’10t ) x, (¢ — 0.003)¢™ #0000

+e %(0.2+0.1sin*10¢ )x, (¢ — 0.002)¢” > -0

—e (0.2 + 0.1 cos’10t ), ( - 0.004),

4 (57)
d ) .
52 - _e73(0.1+0.2¢05 100 )x, (1) + e *(0.2 + 0.2 5in>10¢ ), (1)
dt

+e 7(0.1+0.3sin”10¢ )x, (¢ — 0.002)¢” >0 -0

+e %(0.1+0.25in*10¢ )x, (t — 0.001)e” **>1 (=000

—e (0.3 +0.25in’10t )x, (t - 0.004).
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Then,

o, (t) = e *(0.1+0.3sin’10¢),

a,(t)=e 3

Bi(t)=e !

(
(

0.1+ 0.2 cos*10t
0.2 + 0.1 cos*10t

>

)
)

(t) = e *(0.2 + 0.2 sin*10¢t),
2

o (t)=e

cp(t)=e 2(0.2 +0.1sin°10¢t),
¢y (t) = e *(0.1+0.3sin’ 10

cpy () = e *(0.1 +0.2sin°10¢ ),

2(0.1 +0.2 coszlot),

)
)
)

7, (t) = 673(0.2 +0.1 c05210t),
%, (t) = e >(0.3+0.2sin’10¢),

Y1, (£) = 0.02,
Y1 () = 0.01,
¥ () = 0.01,
Vs (£) = 0.02,
o, (t) = 0.004,
o, (t) = 0.004,

1), () = 0.003,
1, () = 0.002,
7, () = 0.002,
75, () = 0.001.

By direct computation, one has

(58)

(59)

Mathematical Problems in Engineering

One can easily check that all the hypotheses (#'1)- (#4)
are fulfilled. Thus, one can know that system (57) has
a unique positive (7/10)-periodic solution which is uni-
formly asymptotically stable. These results are displayed in
Figures 1 and 2.
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