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'is paper addresses the problem of designing novel switching control for a class of stochastic nonlinear switched fuzzy systems
with time delay. Firstly, a stochastic nonlinear switched fuzzy system can precisely describe continuous and discrete dynamics as
well as their interactions in the complex real-world systems. Next, novel control algorithm and switching law design of the state-
dependent form are developed such that the stability is guaranteed. Since convex combination techniques are used to derive the
delay independent criteria, some subsystems are allowed to be unstable. Finally, various comparisons of the elaborated examples
are conducted to demonstrate the effectiveness of the proposed control design approach. All results illustrate good control
performances as desired.

1. Introduction

As a typical hybrid system, switched systems have attracted
much attention in the past decades because many physical
systems can use this multimode system for mathematical
modeling. Considering the wide application of switching
power supply, the research on the switching system has never
stopped, and some good results have been achieved [1–5].

One of the bridge of communication between the system
and the fuzzy linear system is the T-S fuzzy dynamic model;
the system makes the fuzzy system which has been greatly
enriched; the research methods of nonlinear systems can be
used to study the stability of linear system theory. 'e re-
search literature [6–14] based on this kind of system has a
representative, and in real-life problems, a lot has been
applied to obtain considerable social and economic benefits.

From the middle of the 1980s, a number of analysis
problems about T-S fuzzy control have appeared. And re-
cently, switched systems have been extended further to
encompass fuzzy control too. A novel fuzzy adaptive design
is constructed for HFVs in spite of asymmetric time-varying
constraints and actuator constraints. It can be assured finite-
time convergence with the aid of a smooth switch between a
fractional and a linear control [15]. 'en, a Nussbaum
function-based adaptive control method is proposed for

high-order nonlinear systems with mixed control directions
and dead-zone input [16].

Very notably, the stabilizability conditions and smooth-
ness conditions for fuzzy switching control systems were
reported. For the continuous-time case, a combination of
hybrid systems and fuzzy multiple model systems was de-
scribed and an idea of the fuzzy switched hybrid control was
put forward [17]. Based on the T-S fuzzy systems, Tanaka et al.
[18–20] introduced new switching fuzzy systems for more
complicated real systems such as multiple nonlinear systems,
switched nonlinear hybrid systems, and second-order non-
holomonic systems. Such a switching fuzzy system model has
two levels of structure, in which the first level is the region rule
level and the second level is the local fuzzy rule level. 'is
model is switching in local fuzzy rule level of the second level
according to the premise variable in the region rule level of the
first level. In fact, it is switching according to the same premise
variable. Stability conditions are given. In [21–23], some
extension based on [19, 20] are given.

Because stochastic systems have many applications in
the real world, including nuclear, biological, socio-eco-
nomic, and chemical processes, the stability of stochastic
systems has been widely concerned in the past decades.
Moreover, the study of stochastic systems has been of great
interest since stochastic modeling has come to play an
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important role inmany branches of engineering applications
[24]. Many results on stochastic systems can be found in the
literature. To mention a few, the control problem is studied
in [25–27]. 'e filtering problem is investigated in [28], and
the model reduction problem is considered in [29].

'e switched stochastic system, as the product of the
combination of the switched system and the stochastic sys-
tem, has important theoretical research significance and
practical application value. In recent years, switched sto-
chastic control theory has become an important research tool
in a large class of practical engineering systems, such as
switching transmission control, state estimation of distributed
network control protocol, robust control of solar devices, and
forced linear dynamic systems with communication network
sequence [30, 31].

A new model of class of stochastic switched fuzzy time-
delay systems is proposed in this paper. A system of this class is
a switched system whose subsystems are all stochastic fuzzy
time-delay systems. A switching law is designed to give robust
stability. In contrast with the existing results, we study the
stochastic switched fuzzy system without levels of the struc-
ture.'e method provides a kind of different premise variable
switching directly. In [18–20], the same premise variable
switching with two levels of the structure is considered.

In addition, we propose a novel switching controller to
tackle stochastic switched fuzzy time-delay systems. 'is
switching controller consists of a number of simple sub-
controllers. One of the subcontrollers will be chosen to
control the plant based on a derived switching scheme. We
shall formulate the design problem of the parameters of the
switching controller into the LMI problem. 'ese LMIs can
be solved readily by employing existing LMI tools.

'is paper is organized as follows. In Section 2, we
describe the model of a SF system of time-delay case. In
Section 3, sufficient conditions for stability are derived by
using the method of Lyapunov–Krasovskii function and the
switching controller scheme as well as the stabilizing state-
dependent switching laws. Two example simulations com-
pared with the switching fuzzy systems on stabilizing the SF
time-delay systems will be presented in Section 4. Finally, a
conclusion will be drawn in Section 5.

2. Stochastic Nonlinear Switched Fuzzy System
Model with Time Delay

A stochastic switched fuzzy model with time delay is
considered:

R
l
σ(t): if zσ(t)1(t) isM

l
σ(t)1 . . . and zσ(t)p(t) isM

l
σ(t)p, then

dx(t) � Aσ(t)lx(t) + A1σ(t)lx(t − τ) + Bσ(t)luσ(t)(t) + Fσ(t)lfσ(t)(t)􏽨 􏽩dt

+ Dσ(t)lx(t)dω(t), xt0
(θ) � φ(θ), θ ∈ [− τ, 0], l � 1, 2, . . . , Nσ(t),

(1)

with

σ(t): M � 1, 2, . . . , m{ }, (2)

where σ(t) is a piecewise constant function, called a
switching signal.

Aσ(t)l and A1σ(t)l ∈ Rn×n are known system matrices, and
Bσ(t)l ∈ Rn×q is the input matrix. Rl

σ(t) denotes the fuzzy
inference rule, Nσ(t) is the number of inference rules, τ is the
constant bounded time delay in the state, uσ(t)(t) is the input
variable, and ω(t) is the Brownian motion that satisfies
E dω(t){ } � 0 and E dω2(t)􏼈 􏼉 � dt. z � z1 z2 · · · zp􏽨 􏽩 is
the vector of premise variables. fΓ(t)(t)≜fΓ(t)(x(t), txn(t −

τ)) denote nonlinear known functions.

Assumption 1 (see [12]). 'ere is an appropriate dimension
real matrix Φ and Δ such that

‖f(z(t), z(t − τ) − f(κ, κ(t − τ)))‖

≤ ‖Φ(z(t) − κ(t))‖ +‖Δ(z(t − τ) − κ(t − τ))‖.
(3)

'en, the ith substochastic fuzzy control system can be
expressed as follows:

R
l
i: if zi1(t) isM

l
i1 . . . and zip(t) isM

l
ip, then

dx(t) � Ailx(t) + A1ilx(t − τ) + Bilui(t) + Filfi(t)􏼂 􏼃dt

+ Dilx(t)dω(t), l � 1, 2, . . . , Ni, i � 1, 2, . . . , m.

(4)

Ail and A1il are known system matrices of the ith sub-
stochastic fuzzy control system, and Bil is the input matrix of
the ith substochastic fuzzy control system. Rl

i denotes the
fuzzy inference rule of the ith substochastic fuzzy control
system, Ni is the number of inference rules, ui(t) is the input
variable, and ω(t) is the Brownian motion. When the ith
substochastic fuzzy control system satisfies the switching
law, we switch to the ith subsystem to ensure stability of the
stochastic nonlinear switched fuzzy system.

'erefore, the ith substochastic fuzzy control system of
the global model is described by means of

dx(t) � 􏽘

Ni

l�1
ηil(z(t)) Ailx(t) + Bilui(t) + Filfi(t) + A1ilx(t − τ)􏼂 􏼃dt + Dilx(t)dω(t)􏼈 􏼉, (5)
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along with

0≤ ηil(z(t))≤ 1,

􏽘

Ni

l�1
ηil(z(t)) � 1,

(6)

where

εil(z(t)) � 􏽙

p

ρ�1
Ωl

iρ zρ(t)􏼐 􏼑, ηil(z(t)) �
εil(z(t))

􏽐
Ni

l�1 εil(z(t))
, (7)

where Ωl
iρ(zρ(t)) represents the membership function that

zρ(t) belongs to the fuzzy set Ωl
iρ.

Now, our purpose is to design a controller ui � ui(t) and
a switching law such that system (5) is asymptotically stable.

A switching controller is employed to control the sto-
chastic switched fuzzy time-delay model of (5). 'e
switching controller consists of some simple subcontrollers.
'ese subcontrollers will switch among each other to control
the system of (5) according to an appropriate switching
scheme. 'e switching controller is described by

ui(t) � − 􏽘

Ni

a�1
ρia(x(t))RB

T
iaPx(t), (8)

where ρia(x(t)) takes the value of 0 or 1 according to a
switching scheme discussed later, R ∈ Rq×q and P ∈ Rn×n are
symmetric positive definite matrices to be designed, and (·)T

denotes the transpose of a matrix or a vector. Combining (5)
with (8), we get the augmented system:

dx(t) � 􏽘

Ni

l�1
ηil

􏽥Ailx(t) + 􏽘

Ni

l�1
ηilA1ilx(t − τ) + Filfi(t)⎡⎣ ⎤⎦dt + 􏽘

Ni

l�1
ηilDilxdω(t), (9)

where 􏽥Ail � Ail + Bil(− 􏽐
Ni

a�1 ρiaRBT
iaP).

We have the following result.

Remark 1. For P in equation (8), we consider the single
Lyapunov function method. 'e single Lyapunov function
method is to find the same positive definite function for all
subsystems of the switched system, which decreases along
the trajectory of each working subsystem, so as to ensure the
stability of the switched system.

3. Main Results

Theorem 1. Suppose there exist positive definite symmetric
matrices P, R, and S and convex combination constants
λiji
> 0 such that the following matrix inequalities (10) are

satisfied; then, system (9) is asymptotically stable via the state-
feedback controller (13) under the switching law (11):

􏽘

m

l�1
λiji

− PBiaRB
T
iji

P − PBiji
RB

T
iaP + A

T
iji

P + PAiji

+
1
4

Diϑi
+ Diji

􏼐 􏼑
T
P Diϑi

+ Diji
􏼐 􏼑 + S

PA1iji

A
T
1iji

P − S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, ji, ϑi, a � 1, 2, . . . , Ni, i � 1, 2, . . . , m, (10)

σ(t) � argmin

Vi(t)�
Δmax

ji

ΞT(t)

− PBiaRB
T
iji

P − PBiji
RB

T
iaP

+
1
4

Diϑi
+ Diji

􏼐 􏼑
T
P Diϑi

+ Diji
􏼐 􏼑 + A

T
iji

P + PAiji
+ S

PA1iji

A
T
1iji

P − S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ξ(t)< 0,

ji, ϑi, a � 1, 2, . . . , Ni, i � 1, 2, . . . , m

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (11)
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Proof. From (11), we know that, for any Ξ(t)≠ 0, it holds
that

􏽘

m

i�1
λiji
ΞT(t)

− PBiaRB
T
iji

P − PBiji
RB

T
iaP

+
1
4

Diϑi
+ Diji

􏼐 􏼑
T
P Diϑi

+ Diji
􏼐 􏼑 + A

T
iji

P + PAiji
+ S

PA1iji

A
T
1iji

P − S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ξ(t) < 0. (12)

Note that (12) holds for any ji, ϑi ∈ 1, 2, . . . , Ni􏼈 􏼉 and
λiji
> 0; then, there exists at least an i such that, for any ji,

ΞT(t)

− PBiaRB
T
iji

P − PBiji
RB

T
iaP

+
1
4

Diϑi
+ Diji

􏼐 􏼑
T
P Diϑi

+ Diji
􏼐 􏼑 + A

T
iji

P + PAiji
+ S

PA1iji

A
T
1iji

P − S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ξ(t)< 0. (13)

'us, the switching law defined by (11) is well defined.
Now, define a quadratic Lyapunov–Krasovskii functional
candidate:

V(x(t)) � x
T
(t)Px(t) + 􏽚

t

t− τ
x

T
(θ)Sx(θ)dθ, (14)

which is positive definite since P and S are positive definite
matrices.

'e partial differential operator of the system is as
follows:

LV(x(t)) � 2x
T
(t)P 􏽘

Ni

l�1
ηil

􏽥Ailx(t) + A1ilx(t − τ)􏽨 􏽩

+
1
2

􏽘

Ni

l�1
ηil 􏽘

Ni

j�1
ηij Dilx(t)( 􏼁

T2P Dijx(t)􏼐 􏼑

+ x
T
(t)Sx(t) − x

T
(t − τ)Sx(t − τ). (15)

On the other case, we can obtain

􏽥A
T

il P + P􏽥Ail � − 􏽘

Ni

a�1
ρiaRB

T
iaP⎛⎝ ⎞⎠

T

B
T
il P + A

T
il P

+ PBil − 􏽘

Ni

a�1
ρiaRB

T
iaP⎛⎝ ⎞⎠ + PAil.

(16)

From (16), we have

x
T
(t) 􏽥A

T

il P + P􏽥Ail + S􏼒 􏼓x(t) � x
T
(t)

− 􏽘

Ni

a�1
ηia Biji

RB
T
iaP􏼐 􏼑

T
P

− 􏽘

Ni

a�1
ρia − ηia( 􏼁 BilRB

T
iaP􏼐 􏼑

T
P − 􏽘

Ni

a�1
ηiaP BiaRB

T
iaP􏼐 􏼑

− 􏽘

Ni

a�1
ρia − ηia( 􏼁P BilRB

T
iaP􏼐 􏼑 + A

T
il P + PAil + S

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x(t). (17)
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Let

ρia �
1 + sgn x

T
(t)PBilRB

T
iaPx(t)􏼐 􏼑

2
,

sgn(z) �

1, if z> 0,

− 1, otherwise.

⎧⎪⎨

⎪⎩

(18)

From (17), we have

x
T
(t) 􏽥A

T

il P + P􏽥Ail + S􏼒 􏼓x(t)

� x
T
(t)

􏽘

Ni

a�1
ηia

− PBiaRB
T
il P − PBilRB

T
iaP

+A
T
il P + PAil + S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 2 􏽘

Ni

a�1

1 + sgn x
T
(t)PBilRB

T
iaP11x(t)􏼐 􏼑

2

−
1
2

− ηia −
1
2

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

BilRB
T
iaP􏼐 􏼑

T
P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x(t)

� x
T
(t)

􏽘

Ni

a�1
ηia

− PBiaRB
T
il P − PBilRB

T
iaP

+A
T
il P + PAil + S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 2 􏽘

Ni

a�1

sgn x
T
(t)PBilRB

T
iaPx(t)􏼐 􏼑

2

− ηia −
1
2

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

BilRB
T
iaP􏼐 􏼑

T
P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x(t)

≤ 􏽘

Ni

a�1
ηiax

T
(t)

− PBiaRB
T
il P − PBilRB

T
iaP

+A
T
il P + PAil + S

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠x(t)

− 2 􏽘

Ni

a�1

1
2

− ηia −
1
2

􏼒 􏼓􏼒 􏼓 x
T
(t)PBilRB

T
iaPx(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(19)

As ηia − (1/2) ∈ − (1/2) (1/2)􏼂 􏼃, due to the property of
the switched fuzzy model with time-delay, it can be shown
that (19) satisfies the following inequality:

x
T

(t) 􏽥A
T

il P + P􏽥Ail􏼒 􏼓x(t)

≤ 􏽘

Ni

a�1
ηiax

T
(t)

− PBiaRB
T
il P − PBilRB

T
iaP

+A
T
il P + PAil + S

⎛⎝ ⎞⎠x(t).

(20)

'us, it is easy to see that

LV(x(t)) ≤ 􏽘

Ni

l�1
ηil 􏽘

Ni

j�1
ηij 􏽘

Ni

a�1
ηiax

T
(t)

− PBiaRB
T
il P − PBilRB

T
iaP

+A
T
il P + PAil +

1
2

D
T
il PDij + D

T
il PDij􏼐 􏼑 + S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(t)

+ 􏽘

Ni

l�1
ηil 􏽘

Ni

j�1
ηijx

T
(t)PiA1ilx(t − τ)
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+ 􏽘

Ni

l�1
ηil 􏽘

Ni

j�1
ηijx

T
(t)A

T
1ilPx(t − τ)

− x
T
(t − τ)Sx(t − τ) + 2εxT

(t)ΦT
i Φix(t)

+ 2εix
T
(t − τ)ΔT

i Δix(t − τ)

+ 􏽘

Ni

l�1
ηil 􏽘

Ni

j�1
ηijε

− 1
i x

T
(t)PiFilF

T
il Pix(t).

(21)

Considering (21), we have

LV(x(t)) ≤ 􏽘

Ni

l�1
ηil 􏽘

Ni

j�1
ηij 􏽘

Ni

a�1
ηia

x(t)

x(t − τ)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

T

− PBiaRB
T
il P − PBilRB

T
iaP

+A
T
il P + PAil + 2εiΦ

T
i Φi + ε− 1

i PFilF
T
il P + S

+
1
4

Dil + Dij􏼐 􏼑
T
P Dil + Dij􏼐 􏼑

PA1il

A
T
1ilP − S + 2εiΔ

T
i Δi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(t)

x(t − τ)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(22)

In order words, we formulate the finding of R and P of
(22) into the LMI problem. Considering (22) and multi-
plying both sides of (22) by the matrix diag P− 1, I􏼈 􏼉, we
restate as follows.

Theorem 2. Suppose there exist positive definite matrices Q,
S, and R and convex combination constants λiji

> 0 such that
the following matrix inequalities are satisfied; then, system (9)

is asymptotically stable via the state-feedback controller (8)
under the switching law (11)

Once we have Q � P− 1, Ψ � S− 1, and S and R from (23),
the switching controllers (8) can be constructed.

Hence, we can conclude that the closed-loop system of (9)
is asymptotically stable if the following stability condition of
(23) is satisfied and the switching scheme of (8) is applied:

􏽘
m

i�1
λiji

Λiaji

1
2

Q Diϑi
+ Diji

􏼐 􏼑
T

Q A1iji

1
2

Diϑi
+ Diji

􏼐 􏼑Q − Q 0 0

Q 0 − Ψ 0

A1ij1
0 0 − S + 2εiΔ

T
i Δi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, ji, ϑi, a � 1, 2, . . . , Ni, i � 1, 2, . . . , m. (23)

Here,

Λiaji
� − BiaRB

T
iji

− Biji
RB

T
ia + QA

T
iji

+ Aiji
Q + ε− 1

i Fiji
F

T
iji

+ S.

(24)

4. Illustrative Examples and Results

In recent years, the research results show that the chaotic
system has a great applying value in practical engineering
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system. In [32], the chaotic system model is designed. 'e
system is two different chaotic systems, switching between
different chaotic systems, so the switch system is simple and
easy to operate.

'is kind of chaotic system equation is expressed as
follows:

_x � a(z − x),

_y � bx − dxz,

_z � xy − cy − gz,

⎧⎪⎪⎨

⎪⎪⎩

_x � a((z − y),

_y � bx − dx
2
,

_z � xy − cy − gz.

⎧⎪⎪⎨

⎪⎪⎩

(25)

Security is a very important performance of the modern
synchronous communication research. Chaotic synchroni-
zation communication system using multiple correlation
system switching has a huge role for the safety of aging
performance of chaotic synchronization and secure com-
munication in the field of communications. 'e actual
engineering control systems also have a large number of
such switching system and good control effects.

'e established stochastic nonlinear switched fuzzy
system model is as follows:

R
1
1: if z2(t) isM

1
11, then

dx(t) � A11x(t) + A111x(t − τ) + B11u1(t) + F11f1(t)􏼂 􏼃dt + D11x(t)dω(t),

R
2
1: if z2(t) isM

2
11, then

dx(t) � A12x(t) + A112x(t − τ) + B12u1(t) + F12f1(t)􏼂 􏼃dt + D12x(t)dω(t),

R
1
2: if z2(t) isM

1
21, then

dx(t) � A21x(t) + A121x(t − τ) + B21u2(t) + F21f2(t)􏼂 􏼃dt + D21x(t)dω(t),

R
2
2: if z2(t) isM

2
21, then

dx(t) � A22x(t) + A122x(t − τ) + B22u2(t) + F22f2(t)􏼂 􏼃dt + D22x(t)dω(t),

(26)

where

A11 �
− 11 3

1 − 1
􏼢 􏼣,

A12 �
− 21 4

3 − 2
􏼢 􏼣,

A21 �
− 9 4

5 − 1
􏼢 􏼣,

A22 �
− 15 7

8 − 2
􏼢 􏼣,

B11 �
− 1

0
􏼢 􏼣,

B12 �
− 1

1
􏼢 􏼣,

B21 �
− 1

0
􏼢 􏼣,

B22 �
3

2
􏼢 􏼣,

D11 �
2 − 1

3 5
⎡⎣ ⎤⎦,

D12 �
− 5 7

− 6 4
⎡⎣ ⎤⎦,

D21 �
5 3

2 2
⎡⎣ ⎤⎦,

D22 �
− 4 5

2 3
⎡⎣ ⎤⎦,

A111 �
2 5

2 − 2
⎡⎣ ⎤⎦,

A112 �
5 3

− 6 − 2
⎡⎣ ⎤⎦,

A121 �
2 5

7 − 8
⎡⎣ ⎤⎦,

A122 �
6 8

− 2 − 3
⎡⎣ ⎤⎦.

(27)

Mathematical Problems in Engineering 7



'e membership functions are as follows:

M
1
11 z2(t)( 􏼁 � 1 −

1
1 + e

− 2z2(t)
,

M
2
11 z2(t)( 􏼁 �

1
1 + e

− 2z2(t)
,

M
1
21 z2(t)( 􏼁 � 1 −

1

1 + e
− 2 z2(t)− 0.3( )( )

,

M
2
21 z2(t)( 􏼁 �

1

1 + e
− 2 z2(t)− 0.3( )( )

.

(28)

'e nonlinearities f(t) in (1) are

f1(t) �
0.4x1(t) + 0.5x2(t)

0.7x1(t)
􏼢 􏼣sin t

+
0.4x1(t − τ) + 0.4x2(t − τ)

0.4x1(t − τ) + 0.7x2(t − τ)
􏼢 􏼣sin t,

f2(t) �
0.4x1(t) + 0.5x2(t)

0.7x1(t)
􏼢 􏼣cos t

+
0.4x1(t − τ) + 0.4x2(t − τ)

0.4x1(t − τ) + 0.7x2(t − τ)
􏼢 􏼣cos t,

(29)

which satisfy Assumption 1 with

Φ1 � Φ2 �
0.4 0.5

0.7 0
􏼢 􏼣,

Δ1 � Δ2 �
0.4 0.4

0.4 0.7
􏼢 􏼣.

(30)

Using MATLAB to solve (23) with parameters
ji, ϑi, a � 1, 2, i � 1, 2, τ � 1, and λiji

� 1, the following ma-
trices are obtained:

P �
0.5232 0.1451

0.1451 0.2512
􏼢 􏼣,

Q �
0.2816 0.0261

0.0261 0.2134
􏼢 􏼣,

S �
0.4133 0.3241

0.3241 0.1341
􏼢 􏼣,

R � 5.2.

(31)

'e simulation result under initial condition 10 − 15􏼂 􏼃
T

is depicted in Figure 1.
To show the advantages of the proposed method, we now

compare the method with the traditional PDC fuzzy con-
troller. Obviously, the global control of the traditional PDC
fuzzy controller is

ui(t) � 􏽘

Ni

l�1
ηilKilx(t). (32)

'e state-feedback gains of subsystems are obtained as

K11 � 0.4623 0.6826􏼂 􏼃,

K12 � − 2.1751 3.2715􏼂 􏼃,

K21 � 1.2815 0.8361􏼂 􏼃,

K22 � − 2.3813 1.2642􏼂 􏼃.

(33)

For the stochastic switched fuzzy system, the simulation
result under the same initial condition 10 − 15􏼂 􏼃

T is
depicted in Figure 2. Figures 1 and 2 indicate that the
proposed method gives better results.

5. Conclusion

In this paper, the stability of stochastic nonlinear switched
fuzzy with input time-delay systems is studied. 'e switched
fuzzy control system with stochastic factors has good control
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Figure 1: 'e state response of the system according to the
switching controller.
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Figure 2: 'e state response of the system according to the tra-
ditional PDC fuzzy controller.
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effect. Based on the Lyapunov function method, the stability
condition can be given in the form of LMI in solution, and a
switching control strategy is proposed when the system has
large fluctuation. 'e ideal stability results can be made to
the global switched fuzzy stochastic systems. Finally, the
feasibility and effectiveness of the method are verified by
simulation experiments.
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