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A highly efficient two-step simultaneous iterative computer method is established here for solving polynomial equations. A
suitable special type of correction helps us to achieve a very high computational efficiency as compared to the existing methods so
far in the literature. Analysis of simultaneous scheme proves that its convergence order is 14. Residual graphs are also provided to
demonstrate the efficiency and performance of the newly constructed simultaneous computer method in comparison with the
methods given in the literature. In the end, some engineering problems and some higher degree complex polynomials are solved

numerically to validate its numerical performance.

1. Introduction

Determining the roots of polynomial equations is among the
oldest problems in mathematics, whereas the polynomial
equations have a wide range of applications in science and
engineering. For example, aerospace engineers may use
polynomials to determine acceleration of a rocket or jet or
even stability of an aeroplane and mechanical engineers use
polynomials to design engines and machines. Simultaneous
methods are very popular as compared to the methods for
individual finding of the roots. These methods have a wider
region of convergence, are more stable, and can be imple-
mented for parallel computing. More details on simulta-
neous  methods, their = convergence  properties,
computational efficiency, and parallel implementation may
be found in the works of Cosnard et al. [1], Kanno et al. [2],
Proinov et al. [3], Sendov et al. [4] Ikhile [5], Mir at al. [6],
Woahab et al. [7], Cholakov [8], Proinov and Ivanov [9], Iliev

[10], and Kyncheva [11]. Nowadays, mathematicians are
working on iterative methods for finding all the zeros of
polynomial simultaneously (see [12-18] and references
therein).

The main objective of this paper is to develop simul-
taneous method which not only has a higher convergence
order but also is more efficient as compared to existing
methods. A very high computational efficiency for the newly
constructed scheme for finding distinct as well as multiple
roots is achieved by using a suitable corrections [19] which
enable us to achieve fourteenth-order convergence with
minimal number of functional evaluations in each step. So
far among the higher order simultaneous methods, only the
Midrog Petkovic method [20] of order ten and the Gar-
gantini-Farmer-Loizou method of 2N+ 1 convergence or-
der (where N is positive integer) [21-24] exist in the
literature. Consider nonlinear polynomial equation of de-
gree m:
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with multiple real or complex exact root {j,...,(, of re-
spective unknown multiplicities

04> 0,(0, + -+ + 0, =m). Generally, the multiplicity of
roots is not given in advance. However, research studies are
working on numerical methods which approximate the
unknown multiplicity of roots, see, e.g., [25-31].

2. Construction of Simultaneous Computer
Methods for Multiple Roots

Considering two-step fourth-order Newton’s method [32]
for finding multiple roots of nonlinear polynomial equation
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where o; is the multiplicity of the root {; of equation (1). We
would like to convert (2) into the simultaneous method for
estimating all roots of (1). We use fifth-order Thukral et al.
method [19] as a correction to increase the efficiency and
convergence order requiring no additional evaluations of the
function:
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Suppose equation (1) has m distinct roots; then,
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For multiple roots, equation (7) can be written as
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where (,,...,{, are now multiple roots of respective
unknow multiplicities 0,,...,0,(0, +--- + 0, = m).
Replacing t; by z; in (8), we have
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Using (9) in (2), we have
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Thus we have constructed a new 51multane0us method

2.1. Convergence Analysis. In this section, we discuss the
convergence analysis of the two-step simultaneous method
(11) which is given in the form of the following theorem.

Theorem 1. Let (,,...,(, be the roots of equatzon (1) with
multiplicity a,, ..., 0, (o1 o, =m). Ift9, .t are
the initial approximations of the roots, respectzvely, and
sufficiently close to actual roots, the order of convergence of
method (11) equals fourteen.

Proof. Let
€ = ti(k) =i
&=y~ (12)
€ = ”i(k) -G

be the errors in t*, y® and u® approximations, re-

spectively. Consider the first step of (11):
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(11) abbreviated as MMN14M for calculating all multiple (o:/N (ti(k))) - Z;‘;i(g il (ti(k) - ZJ('k)))’ (13)
roots of polynomial equation (1). The simultaneous method -
(11) requires two evaluations of the function and two where
evaluations of the first derivative. For multiplicity unity, i.e.,
0;,=1,i=1,...,n, we use method (11) for determining all ) f(ti(k))
the distinct roots of equation (1) and abbreviate it as N (ti ) = f/( tgk))‘ (14)
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where (Z(k) ( ) = e [19] and E; = (—cr]-)/ (ti(k) If it is assumed thatall errors €, (j = 1,2, 3, ...) are of the
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which shows convergence order of simultaneous iterative
scheme (11) is fourteen. Hence, the theorem is proved. The
above results are equally valid for complex polynomial by
performing real arithmetic. Numerical Examples 4 and 5 for
complex polynomials are provided to verify its validity. O

3. Computational Aspect

Here, we compare the computational efficiency and con-
vergence behaviour of our new fourteenth-order method
MMNI14M (11) with the Midrog Petkovic method [20] of
order 10 and the Gargantini-Farmer-Loizou method
[21-24] of order 15 (abbreviated as GFLM15M for multiple
and GFLMI15D for distinct roots). As presented in [20], the
efficiency of an iterative method can be estimated using the
efficiency index given by

log r

I
where d is the computational cost and r is the order of
convergence of the iterative method. We use arithmetic
operation per iteration with certain weight depending on the
execution time of operation to evaluate the computational
cost d. The weights used for division, multiplication, and
addition plus subtraction are w,, w,,, and w,, respectively.
For a given polynomial of degree m, the number of division,
multiplication, addition, and subtraction per iteration for all
roots is denoted by AS,,, M,,, and D,,. The cost of com-
putation can be calculated as

(23)

EF(m) =

d=d(m)=uw,AS,, +w,M,, +w;D,,. (24)
Thus, (23) becomes

log r

EF = .
(m) w,AS, +w, M, +w,D,,

(25)

Apply (25) and data given in Table 1, we find the per-
centage ratio p((11), (X)) [20] given by

_(EF(11) .
(a)...p((11), (X)) = <EF(X) - 1) x 100 (in percent),

_( EF(X) .
b)...p((X), (11)) _(EF(II) - 1) x 100 (in percent),

(26)

where X and (11) are the Petkovic method (abbreviated as
PJM10), GFLM15M, and our new method MMN14M, re-
spectively. These ratios are graphically displayed in
Figure 1(a)-1(d). It is evident from Figure 1(a)-1(d) that the
new method (11) is more efficient as compared to the PJM10
and GFLM15M methods.

5
TaBLE 1: The number of basic operations.
Methods AS,, M,, D,,
PJM10 22m* + O(m) 18m* + O(m) 2m* + O(m)
GFLM15M 21m”> + O(m) 14m” + O(m) 2m* + O(m)
MMN14M 18m* + O(m) 10m> + O(m) 2m* + O(m)

4. Numerical Results

Here, some numerical examples are considered in order to
demonstrate the performance of our family of two-step
fourteenth-order simultaneous methods, namely, MMN14D
(for multiplicity unity) and MMN14M (for multiple roots)
(11). We compare our family of methods with J. Dzunic,
M. S. Petkovic, and L. D. Petkovic [20] method of order ten
for distinct roots (abbreviated as the PJM10 method) and
with the Gargantini-Farmer-Loizou method (GFLM15D
and GFLM15M) of order 15, respectively. All the compu-
tations are performed using Maple-18 with 64 digits’ floating
point arithmetic. We take € = 107 as a tolerance and use
the following stopping criteria for estimating the roots:
o | (£ <, @)
where e* represents the absolute error of function values.
Numerical tests’ examples from [6, 17, 20, 33] are taken
and compared on the same number of iterations and pro-
vided in Tables 2-15. In all the tables, n represents the
number of iterations and CPU represents execution time in
seconds. All the numerical calculations are performed using
maple-18 on the computer (Processor Intel(R) Core(TM) i3-
3110m CPU@2.4GHz) with 64-bit operating system.
Figures 2-11 show the residue falls of the methods
MMN14D, MMN14M, PJM10, GFLM15D, and GFLM15M
for Examples 1-9. The residual falls show that the methods
MMN14D and MMN14M are more efficient as compared to
PJM10, GFLM15D, and GFLM15M methods. We observe
that numerical results of the methods MMNI14M and
MMN14D are better than PJM10, GFLMI15D, and
GFLM15M methods in terms of absolute errors and CPU
time (Algorithm 1).

Example 1 (car stability). Application in mechanical
engineering.

The design of a car suspension system requires to be
balanced for getting good comfort and stability for all
driving conditions and speeds. The following equations must
be satisfied for stability of a design of a car which has good
comfort on rough roads:

4 2
(9) —1.9404 x<9> +0.75=0. (28)
p p
Let
@_y (29)
ot

Then, we get the following polynomial equation:
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FIGURE 1: (a-d) Computational efficiency of MMN14M, PJM10, and GFLM15M.
Step 1: for given initial estimates ti(o) (i=1,2,...,n), tolerance € >0, and iterations p, set k = 0.
Step 2: calculate
(k) = t(k) o;(f (t(.k) ME'( t(k)) and o; is the multiplicity of actual multiple roots (.
_}/](k) o 1+ (f(y (k) ) f ( t(k) 2/0) (f(y(k) /f (}/(k) ),
uPdate 39 =19~ (o)) (oI, <tF")> (X7 (G )/(t“ 2O, G j=1,2,...,m),
ul® =y = (0 (0:/ (N; (5))) - T /(y(k) y M),
Step 3: t"“)—u“‘)(z—l 2,...,n)
Step 4: if If(t,-k“))l <€ or k> p, then stop.
Step 5: set k = k+ 1 and go to step 2.
ALGORITHM 1: Algorithm of the simultaneous iterative method (MMN14M).
TaBLE 2: Simultaneous finding of all distinct roots.
Method n CPU e; e es ey
PJM10 3 0.076 1.2e—-26 5.8¢—-27 1.1e-26 1.9e—-26
GFLM15D 3 0.087 1.0e—-40 3.6e—8 3.4e-8 3.0e-14
MMN14D 3 0.045 1.1e-63 1.0e-63 2.0e — 64 2.0e — 64
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TaBLE 3: Simultaneous finding of all distinct roots.
Method n CPU e e e ey
PJM10 2 0.032 4.2e—-44 8.8e—41 8.2e—42 4.1le—44
GFLM15D 2 0.057 4.9e—48 1.5e-35 6.3e—53 7.1e-60
MMN14D 2 0.023 1.8e—-65 0.0 0.0 1.0e - 65
TaBLE 4: Simultaneous finding of all distinct roots.
Method n CPU e e, e3 ey
PJIM10 2 0.147 1l.4e—-24 1.4e—-19 2.0e-19 2.0e-19
GFLM15D 2 0.153 1.0e-63 1.2e-57 3.7e-55 1.2e-50
MMN14D 2 0.116 2.0e—64 1.1e-63 2.1le—-64 1.1e—-63
TaBLE 5: Simultaneous finding of all distinct roots.
Method n CPU e e e3 ey
PJM10 3 0.067 3.0e-85 1.5e—86 0.0 0.0
GFLM15D 3 0.071 3.3e-19 1.1e-13 8.1e—-65 7.1e=75
MMN14D 3 0.031 0.0 0.0 0.0 0.0
TaBLE 6: Simultaneous finding of all multiple roots.
Method n CPU e; e e3 ey
GFLM15M 2 1.013 5.3¢—88 2.7e—69 6.2¢—83 1.7e-52
MMN14M 2 0.172 8.7e—124 7.3e—-80 1.5e—101 2.9¢-70
TaBLE 7: Simultaneous finding of all distinct roots.
Method n CPU e e e ey
PJM10 3 1.076 7.0e—24 1.2e-15 1.8e—15 1.6e—17
GFLM15D 3 1.340 1.6e -84 1.2e-69 1.8e—56 7.1e—-380
MMN14D 3 0.815 0.0 0.0 0.0 0.0
TaBLE 8: Simultaneous finding of all multiple roots.
Method n CPU e, e e; ey
GFLM15M 2 0.978 8.9e—-150 7.0e—242 5.4e - 355 1.3e - 409
MMN14M 2 0.613 9.7e - 298 2.1e—567 1.2e—-385 8.1e—553
TaBLE 9: Simultaneous finding of all distinct roots.
Method n CPU e, e e; ey
PJM10 5 1.643 2.8 0.4 13.7 1.3e-4
GFLM15D 5 1.987 4.7e—-28 4.9¢-29 1.1e-60 3.7e-65
MMN14D 5 0.915 8.1e—-80 1.9¢-76 3.0e - 69 62e—71
TaBLE 10: Simultaneous finding of all multiple roots.
Method n CPU e e e ey
GFLM15M 4 1.132 2.8e—43 1.8e-73 4.0e —42 1.1e-62
MMN14M 4 1.031 1.2e—54 2.8¢—68 1.8¢ -84 2.7e—133
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TaBLE 11: Simultaneous finding of all distinct roots.

Method

n CPU e e es
PJM10 2 0.063 9.4e-5 9.4e-5 1.5e-25
GFLM15D 2 0.57 1.8e-7 1.8e-7 2.0e-79
MMN14D 2 0.035 1.1e-13 l.le—-14 7.5e - 140
TaBLE 12: Simultaneous finding of all distinct roots.
Method n CPU e e e ey es e
PJM10 5 1.043 1.3e-7 4.6e—10 3.5e-11 1.2e-12 59e-5 3le-7
GFLM15D 5 1.154 0.0 7.0e— 144 0.0 3.6e—84 0.0 0.0
MMN14D 5 1.015 0.0 0.0 0.0 0.0 0.0 0.0
TaBLE 13: Simultaneous finding of all distinct roots.
Method n CPU e, e e ey es e
GFLM15D 5 2.154 1.3e-385 0.0 1.7e -84 3.0e-70 0.0 0.0
MMN14D 5 1.875 0.0 0.0 1.1e—145 0.0 0.0 0.0
TaBLE 14: Simultaneous finding of all distinct roots.
Method n CPU e e, e e, es e e; eg € e
PJM10 3 2043 1le-10 13e-16 27e-15 43e-17 34e-15 17e-16 1.7¢—15 3le—-17 6.1e—-18 2le-25
GFLM15D 3 2141 13e-27 14e-25 3.0e—19 1.6e-35 27e-37 6.1e—-47 49e-33 12e-37 1.6e-50 1.3e-32
MMN14D 3 1105 3le-64 9.4e-20 8.1e-29 9.1e-36 93e—45 3.5e-65 13e-70 54e-60 3.2¢e—-45 1.7¢-53
TaBLE 15: Simultaneous finding of all distinct roots of linear combination of Legendre polynomial.
Method n CPU e e, e e, es e e; eg ey e
PJM10 3 1143 1.0e-3 1.1le-2 7.5e—6 0.le-3 1.2e-5 3.5e—-4 4.1e-3 2.1e-3 6.le-5 1.1e-3
GFLM15D 3 1.748 2.1e-110 1.3e-125 6.7e—100 2.0e—27 3.2e-25 3.6e—88 1.2e—15 1.7e-75 35e-65 1.7¢-105
MMNI14D 3 1.015 1.1e-125 3.8e—125 4.8e—126 3.7¢e—126 1.8e—126 1.0e—127 1.0e—127 1.0e—127 2.le-126 9.7e—126
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fi@)= ()" - 1.9404 x (t)* + 0.75, (30) wyy = p*tfl) =34.12 * 1.18640839595484 = 40.48025447s ",
having exact roots wys = p"ti? = 34.12 % 0.7299555589266 = 24.90608367s ',
(34)
=1.1864,(, = —-1.1864, (5 = 0.73,(, = —0.73. 31 . . . . -
d & & G (31) which yields the following velocity for car stability:
The initial estimations of (28) are taken as vy = wZ“D = 463.869546976 km/hr,
v
(35)

10 =469 = 5,40 -6, =3 (32)

Figure 12 shows that (28) has two positive roots which
are determined in 3 iterations by PJM10, GFLM15D, and
MMN14D methods, and the comparison is shown in Table 2
We observe that MMN14D has better performance in terms
of CPU time and absolute errors as compared to PJM10 and
GFLM15D, respectively. Residual errors of MMN14D are
also very less as compared to PJM10 and GFLMI15D as
shown by residual graph for this polynomial in Figure 2.

Figure 2 shows residual graph for approximating roots of
nonlinear function f,(t) using simultaneous methods
PJM10, MMN14D, and GFLM15D, respectively.

Figure 12 shows that f, (t) has two positive roots and
one negative root. However, negative root is redundant.

Thus, for car stability, the required positive roots are
t?) = 1.18640839595484 and t{?) = 0.7299555589266. Using
these values in (w/p) =t and

1.397 x 10’ o
p=\———=34125",
1.2 x 10

(p = natural frequency),

(33)

we have

D
w; — 285.4026956 km/hr,
T

Viz =

where D = 20 meter is the distance between peeks and v,;
and v, are the horizontal speeds of the car at times 1 and £3.

Example 2. Application in civil engineering.
Figure 13(a) shows a uniform beam subject to a linearly
increasing distributed load.
The equation for the elastic curve (Figure 13(b)) is
f®=

wO
120EIL

(- +20°F - L*), (36)

We have to find the point of maximum deflection, i.e.,
the value of t, where f'(t) = 0:

W, 4 2,2 14\ _
Let
_ W 4 2,2 14
fo(t) = 120E1L(—5t +6L° — L), (38)

Then, substituting this value in (38), we get the value of
maximum deflection. Use the following values in
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computation:
L =600 cm, E = 50,000 kN/cm?, I = 30,000 cm*, and w, =
2.5kN/cm.

The exact roots of (38) are

{} = =599.999,(, = —268.328, {5 = 268.328, (, = 599.999.
(39)

The initial estimations of (38) have been taken as
£ = -900,{” = -400,£{” = 400,\” = 1000. (40

We observe that the method MMN14D is superior in
terms of numerical results, CPU time, and error as compared
to PJM10 and GFLM15D as shown in Table 3 and residual
graph by Figure 3.

Thus, for maximum  deflection, we  put
t?) = —599.99999980800000006144 in (38) and get the de-
flection equal to 1 x 1077,

Figure 3 shows the residual graph for approximating
roots of nonlinear function f,(¢t) using simultaneous
methods PJM10, MMN14D, and GFLM15D, respectively.

Example 3 (thermodynamics). Mechanical engineering
Application.

15

In general, mechanical engineering as well as most other

scientists use thermodynamics extensively in their research
work. The following polynomial is used to relate the zero-
pressure specific heat of dry air, C,, to temperature:

C, =1.9520x 10 Mt _ 95838 x 107 '#* +9.7215

-8,2 —4 (41)
x 10 "t" 4+ 1.671 x 10 "t + 0.99403.

We have to determine the temperature that corresponds
to specific heat of 1.2 (kJ/kgK).

Putting C, = 1.2 in the above equation, we have the
following polynomial:

f3() = 1.9520 x 10~ t* - 9.5839 x 10~ "> + 9.7215

x 107 %% + 1.671 x 10~ *t - 0.20597,
(42)

with exact roots

{, = 1126.009751, {, = 2536.837119
+910.50103714, {5 = —1289.950382, (43)
4 = 2536.837119 — 910.5010371i.

The initial estimations of (42) have been taken as
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FIGURE 12: Two positive root of f (t).

£ = —300 - 800i, £{” = -300 + 800i, +\” = 8000
—~ 10004, £\ = 8000 + 1000i.

(44)

We observe that our method, namely, MMN14D, has

better performance in terms of numerical results, CPU time,
and residual errors as compared to PJM10 and GFLM15D as
shown in Table 4 and residual graph in Figure 4. shows
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F1GURE 13: Uniform beam subject to a linearly increasing distributed load.

residual graph for approximating roots of nonlinear func-
tion f;(t) using simultaneous methods PJM10, MMN14D,
and GFLM15D, respectively.

Example 4. Multiple complex roots [33].
Consider

fa@) =@+t -2t -1-" -1+, (45
with multiple exact roots,
G=-1,0=20=1+i,(=1-1, (46)

of the multiplicity o, = 14,0, = 12,05 = 14, and o, = 10,
respectively. The initial estimations have been taken as

1= 4,69 =41, 69 =49 +4.0i,t” = 6.0 - 6.0i.
(47)

For distinct roots, we take

Fa B =+ (E-2)(E-1-i)(E—1+i).  (48)

We observe that our methods, namely, MMN14D and
MMN14M, have better performance in terms of numerical
results, CPU time, and residual errors as compared to
PJM10, GFLM1515D, and GFLM15M as shown in Table 5
and 6 and residual graph in Figures 5(a) and 5(b).

Figures 5(a) and 5(b) show the residual graph for ap-
proximating roots of nonlinear function f, (), f,_; () using
simultaneous methods PJM10, MMN14D, MMN14M,
GFLM15D, and GFLM15M, respectively.

Example 5. Multiple complex roots.
Consider

fs(t) = (t-0.3-0.60)"(t - 0.1 - 0.7i)**

(49)
(t=0.7 - 0.5 (£ - 0.3 - 0.40)*,
with multiple exact roots,
{;,=03+0.6i,{,=0.1+0.7, {; = 0.7
1 2 3 (50)

+0.54, {, = 0.3 + 0.44,

of the multiplicity o, =100,0, =200,0; =300, and
0, = 400, respectively. The initial estimations have been
taken as

17
(x=L,y=0)
(x=0,y=0) |§
M X
4
(b)
19 =6t =-51t"=-3,1t"=7 (51)
For distinct roots,
(@) =({-03-0.60)(t - 0.1 -0.7i)
fsa (52)

- (t=0.7-0.50) (t — 0.3 — 0.4i).

We observe that our methods, namely, MMN14D and
MMN14M, have better performance in terms of numerical
results, CPU time, and residual errors as compared to
PJM10, GFLM15D, and GFLM15M as shown in Tables 7 and
8 and residual graph in Figures 6(a) and 6(b).

Figures 6(a) and 6(b) show residual graph for approx-
imating roots of nonlinear function f;(t), f5_, (t) using
simultaneous methods PJM10, MMN14D, MMN14M,
GFLM15D, and GFLM15M, respectively.

Example 6. Real roots with high multiplicity.
Consider

fe®=0-D"-2"-3"@¢-4" (53
with multiple exact roots,
(G=10=2,0(=31{=4, (54)

of the multiplicity o, = 40,0, = 30,05 = 20, and 0, = 10,
respectively. The initial estimations have been taken as

tO =101, 60 =71, 62 = 9.1, £ = 12.1. (55)

For distinct roots,
fea @) =@-1)(t-2)(t-3)(t-4). (56)

We observe that our method, namely, MMN14D and
MMN14M, have better performance in terms of numerical
results, CPU time, and residual errors as compared to
PJM10, GFLM15D, and GFLM15M as shown in Tables 9 and
10 and residual graph in Figures 7(a) and 7(b).

Figures 7(a) and 7(b) show the residual graph for ap-
proximating roots of nonlinear function f (), f4_; (t) using
simultaneous methods PJM10, MMN14D, MMN14M,
GFLM15D, and GFLM15M, respectively.

Example 7. Fluid permeability in biogels [34].
Specific hydraulic permeability relates the pressure
gradient to fluid velocity in porous medium (agarose gel or
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extracellular fiber matrix) results the following nonlinear
polynomial equations:

= LP (57)
20(1—1¢)
or
R,t> —20k(1-1t)* =0, (58)

where k is specific hydraulic permeability, R, radius of the
fiber, and t is the porosity [35]. Using k = 0.4655 and
R, =100 % 10", we have

£, (t) = =100 % 10’ +9.3100 * t* — 18.6200 * £ + 9.3100.
(59)
The exact roots of (59) are
{, = 0.9999999997, {, = 1.000000000, {; = 9.31 % 10"*.
(60)

We choose the following initial estimates for simulta-
neous determination of all roots of (59) are

0209, £ = 1.1, {0 = 9.3 107. (61)

Figure 8 shows residual graph for approximating roots of
nonlinear function f,(t) using simultaneous methods
PJM10, MMN14D, and GFLM15D, respectively.

We observe that our method, namely, MMN14D, has
better performance in terms of numerical results, CPU time,
and residual errors as compared to PJM10 and GFLM15D as
shown in Table 11 and residual graph in Figure 8.

Example 8. Consider
fs(t) = (t+3)(t -2 (£ + 4t + 5)2(t2 + 4t + 5)2, (62)
with multiple exact roots,
G=-30,=2i,{;=-2+1i,(, =2+i (63)

of the multiplicity oy = 1,0, = 3,05 = 2,0, = 2,05 =2, and
0 = 2, respectively. The initial estimations have been taken
as

t9 =101, 69 =71, =91, t9 = 12.1,t{”

(64)
=121,t" = 12.1.

For distinct roots,

foa(8) = (t+3)(t—2i)(* +4t +5)(¢* +4t +5).  (65)

19

Figures 9(a) and 9(b) show the residual graph for ap-
proximating roots of nonlinear functions fg(t), fg_; (£)
using simultaneous methods PJM10, MMN14D, MMN14M,
GFLM15D, and GFLM15M, respectively.

We observe that our methods, namely, MMN14D and
MMN14M, have better performance in terms of numerical
results, CPU time, and residual errors as compared to
PJM10, GFLM15D, and GFLM15M as shown in Tables 12
and 13 and residual graph in Figures 9(a) and 9(b).

Example 9 (see [36]). The solution of Legendre polynomial.
Legendre polynomial f,(t) is the solution of the Leg-
endre differential equation:

n=0,1,...,

&f, ) df,(t
(l—tz)%—%%+n(n+l)fn(t)=0,

(66)

For Legendre polynomials, the recursive relation are
fo®) =1, f,(t) =t frn=(2n+3)/(n+2)tf, — ((n+
1)/(n+2))f,,n=0,1,... Legendre polynomials are plotted
in Figures 14(a) and 14(b). It is notable how the roots are
clustered in the ends of the domain [-1,1], as shown in
Figure 14(a). Here, we find the roots of legendre polynomial
of degree 10, i.e., f,,(t):

1
(t) = — (46189t" - 109395¢

? 256
(67)

+90090¢° — 30030¢* + 3465t> — 63).

We choose the following random initial approximations
of (67):

1 =-1.04, 1 = -1.04,t;” = ~0.7,1{"
=-0.7,t{Y = -0.13, (68)
t = 113,62 = 0.4,6{” = 0.4tV = 1.8,tY = 08,

Figure 14(a) shows plot of Legendre polynomial from
f1(t) to fi,(t), while Figure 14(b) shows Legendre poly-
nomial of degree 10 only, i.e., f,,(F).

Figure 10 shows the residual graph for approximating
roots of nonlinear function f,;(¢) using simultaneous
methods PJM10, MMN14D, and GFLM15D, respectively.

Numerical results for linear combination of Legendre
polynomials.

Although the roots of Legendre polynomials are real and
lie in a specific interval, the roots of their linear combination
need not be real may be complex. Some results on these
linear combinations are given below:

Fro@® +2fo () +3fg () +4f, () +5fc () +6f5(t)+7f, () +8f5(t) +9f,(t) +10f,(t) + 11f,(¢) =0, (69)
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TaBLE 16: Approximate root of f,(t)

Exact root upto 5 D.P Approximated roots upto 29 D.P
—-0.97390 —0.973 906 528 694 964 562 608 263 787 4
—-0.865 06 —0.865063 366 639 899 953 319 691 516 0
—-0.679 40 —0.679 409 568 298 853 873 661 085719 5
—-0.43339 —0.4333953941292471910421193291
—-0.148 87 —0.148 874338981 631 210 884 826 001 1
0.148 87 0.148 874 338 981 631 210 884 826 001 1
0.433 39 0.4333953941292471910421193291
0.679 40 0.679409 568 298 853 873 661 085719 5
0.865 06 0.865 063 366 639 899953 319 691 516 0
0.97390 0.973 906 528 694 964 562 608 263 787 4

TaBLE 17: Approximate root of (71) using MMN14D.

Exact root upto 5 D.P Approximated roots upto 26 D.P.
—1.04343-0.13335i —1.043 435442746 761 499 747 031 756 — 0.1 333 524 610 738 184 557 261 497 085i
—1.04343 +0.13 335i —1.043 435442746761 499 747 031 756 + 0.1 333 524 610 738 184 557 261 497 085i
-0.70072-0.35611i —0.700723 075598996 210 090 769 0461 — 0.3 561 127 938 766 541 462 037 607 779i
-0.70072 +0.35611i —0.700723 075598 996 210 090 769 0461 + 0.3 561 127 938 766 541 462 037 607 779i
—0.13755-0.45042i —0.137 557723741216 815585324 4559 + 0.4 504 238 943 083 516 027 302 894 733i
—0.137 55+ 0.45 0421 —0.137 557723741 216 815585324 4559 — 0.4 504 238 943 083 516 027 302 894 733i
0.46025-0.38 0151 0.460 253798901 354 630188 644 377 5 - 0.3 801 561 966 365 592 562 991 798 562i
0.46025+0.38 015i 0.460253798 901 354630188 644 377 5+ .38015619663655925629917985621
0.89514 —0.18 245i 0.895146 653711935684 708165091 0 — 0.1 824 543 520 825 548 326 683 582 9001
0.89514 +0.18 245i 0.895146 653711935684 708165091 0 —0.1 824 543 520 825 548 326 683 582 900i
where

fot) =1,

fl (t) = t)

1
fa=5(3t"-1),

fi(t) = ( £ -3t),

fa(t) = (35t - 30¢% +3),
fs(t) = (63t - 70 + 15t), 70)
fo(t) = (231t - 315¢" +105t* - 5),

f,(t) = (429t - 693t + 315> - 35¢),

fs =153 (6435t —12012¢° + 6930t" — 1260¢” + 35),

folt) = ( 12155¢” - 25740t” + 18018¢” — 4620t + 315¢),

fro(®) = (46189t —~109395¢° +90090¢° — 30030¢" + 3465t” — 63).
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Putting values of f(t),..., f1,(t) in (69), we have

46189 1, 12155 o 70785 4 4719 , 18249 ¢ 4977 5 2905 , 415 5 1041 , 347
'+ - "t + 0 ——t th——— Pt

256 64 256 16 128

fn(t) =

46189 1, 12155 o 70785 ¢ 4719 , 18249 ¢ 4977 5 2905 , 415 5 1041 , 347
t' + t - t* - t’+ t° + - - — -t

We choose the following random initial approximations
of (71):

0= _1.04, 0 = —1.04,t{” = ~0.7,t{” = -0.7,t{” = —0.13,
19 =113, = 04,t{” = 0.4,t” = 1.8, = 0.8.
(72)

Figure 11 shows the residual graph for approximating
roots of nonlinear function f,,(¢) using simultaneous
methods PJM10, MMN14D, and GFLM15D, respectively.

We observe that our methods, namely, MMN14D and
MMN14M, have better performance in terms of numerical
results, CPU time, and residual error as compared to PJM10,
GFLM15D, and GFLM15M as shown in Tables 2-15 and
residual graph in Figures 2-11, respectively.

5. Conclusion

We have developed here two-step simultaneous computer
methods of order fourteen for solving nonlinear polynomial
equations, one for determining all the distinct roots, namely,
MMN14D, and the other for determining multiple roots of
nonlinear polynomial equations, namely, MMN14M. From
comparison of numerical results, as depicted in Tables 1-17,
computational efficiency (Figures 1(a) and 1(d)) and
graphical representations of residual errors are shown in
Figures 2-11; we observe that our methods (11) of 14th order
are superior in terms of efficiency, CPU time, and residual
errors as compared to the Petkovic method PJM10 and the
Gargantini-Farmer-Loizou method GFLM15D and
GFLM15M. Using the similar ways, we can introduce more
higher order and efficient methods.
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