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1is study attempts to examine environmental controls of the underground CO2 concentration, taking the CO2 concentration 4m
beneath the soil as an example. An SVD-PCA-ANN (singular value decomposition-principal component analysis-artificial neural
network) preview model is proposed with the data of underground CO2 concentration and 12 environmental variables (the soil
and meteorological data). 1e R2, RMSE, and RPD values of the proposed model are, respectively, 0.8874, 0.3351, and 2.7929,
performing better than the popular preview models like SAE (stacked autoencoders), SVM (support vector machine), and LSTM
(long short-term memory). It is proved that the underground CO2 concentration can be approximated by a nonlinear function of
the considered variables. Soil temperature, salinity, and wind speed are the leading environmental controls, which explain 32.04%,
13.68%, and 11.21% in the variability of the underground CO2 concentration, respectively. Possible mechanisms associated with
the environmental controls are also preliminarily discussed.

1. Introduction

In the previous studies of land-atmosphere CO2 exchange,
the measurements of CO2 concentration mainly focused on
the dynamics of soil surface CO2 concentration, which is
characterized as soil CO2 fluxes or soil respiration [1–5].
However, the soil surface CO2 concentration not only is
determined by the atmospheric CO2 concentration but also
is potentially affected by the underground CO2 concentra-
tion [6–8].

Especially, some recent studies of desert ecosystems
revealed an unneglectable CO2 absorption by the saline-
alkali soils [9–11]. 1is implied that the underground CO2

concentration in arid regions is closely linked with the soil
surface CO2 concentration. However, the controls of soil
absorption of CO2 in arid regions were not well-explained
until now [12–15]. One significant reason is that the CO2
concentration beneath the soil might be influenced by many
factors and up to now, and the corresponding theoretical
basis has not been well-described [16]. 1ere is a lack of
research on the effects of various environmental factors on
the underground CO2 concentration in arid regions [17].

In order to further understand the soil absorption of CO2
in arid regions, we will do research on the effects of various
environmental factors on the underground CO2 concen-
tration. Objectives of this study are (1) to examine
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environmental controls of the underground CO2 concen-
tration, taking the CO2 concentration 4m beneath the soil as
an example, (2) to propose a previewmodel for analyzing the
concentration dynamics, and (3) to discuss how environ-
mental factors are influencing the underground CO2 con-
centration.1e preview model will be proposed in Section 2,
and in Section 3, we will examine environmental controls of
the underground CO2 concentration utilizing the proposed
model and discuss the possible mechanisms.

2. Materials and Methods

2.1. Data Collection. All data used in this paper, including
the underground CO2 concentration (FX), soil temperature
(Ts), soil moisture (Sm), atmospheric temperature (At), at-
mospheric humidity (Ah), soil salinity (EC), wind speed
(WS), air pressure (AP), wind direction (WD), groundwater
level (WL), soil alkalinity (pH), atmospheric CO2 concen-
tration (Ca), and rainfall (R), were collected from three
automatic weather stations (equipped with 12 sensors for the
soil and meteorological data), where FX is the dependent
variable and the other 12 environmental factors are inde-
pendent variables.1ese three weather stations are located at
the south edge of the Gurbantunggut Desert and the north of
Xinjiang Uygur Autonomous Region, China, as shown in
Figure 1.

2.2.#eProposedModel. Differing from the previous studies
on the soil absorption of CO2 in arid regions, we integrate
two adaptive methods such as the principal component
analysis (PCA) and the artificial neural network (ANN) to
examine both the linear and nonlinear relationships between
FX and the 12 possible environmental controls. A series of
PCA algorithms were proposed in the previous studies, some
of which have been widely used in the dimensionality re-
duction of various data [18–23]. 1e singular value de-
composition (SVD) can improve PCA [24, 25]. Hence, we
will utilize the SVD-based PCA to examine the contributions
of the 12 environmental variables to FX, where SVD is used
to calculate the eigenvalue and eigenvector of the covariance
matrix [25]. For the statement convenience, we symbolize
the proposed model as SVD-PCA-ANN throughout the
paper.

We will reconstruct k-dimensional features based on the
original n-dimensional features and then map the n-di-
mensional features to k-dimensional features (known as the
main components) [19, 21, 25].1e output of the SVD-based
PCA will be input into ANN—a multilayer forward back
propagation network with 2 input layers, 4 hidden layers,
and 1 output layer. ReLU transfer functions (nonlinear) are
selected for the hidden layer and linear transfer functions for
the output layer to approximate the nonlinear relationship
between the ANN input and output. 1e structure diagram
of the proposed model is shown in Figure 2.

2.3. Examination of the Controls. 1e following 3 indices
are calculated to quantify the robustness of the SVD-
PCA-ANN model in previewing the possible

environmental controls of the underground CO2 con-
centration, which are also utilized in the comparison with
stacked autoencoders (SAE), support vector machine
(SVM), and LSTM (long short-term memory) [26–30].
For a reliable comparison, the data set was uniformly
divided into 3 subsets in all the experiments, one for
training (half of the input data), one for validation (one
quarter of the input data), and one for testing (one
quarter of the input data).
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where yi is the true value, yi
′ is the previewed value, y is the

average of the true value, and N is the number of envi-
ronmental variables.

1e pseudocode for the SVD-PCA-ANNmodel is shown
in Figure 3.

3. Experimental Results

3.1. Outputs of the SVD-Based PCA. 1e calculated contri-
bution ratios of the 12 environmental variables and the
explained ratios of the 9 principal components from the
SVD-based PCA are shown in Figure 4. 1e contribution
ratios of soil moisture (Sm), soil salinity (EC), wind speed
(WS), soil temperature (Ts), groundwater level (WL), wind
direction (WD), atmospheric temperature (Ta), atmospheric
humidity (Ha), air pressure (AP), atmospheric CO2 con-
centration (Ca), soil alkalinity (pH), and rainfall (R) to the
underground CO2 concentration are 32.04%, 13.68%,
11.21%, 8.38%, 8.31%, 7.87%, 7.21%, 5.22%, 3.46%, 1.23%,
0.82%, and 0.51%, respectively. 1e explained ratios of the 9
principal components from the SVD-based PCA are, re-
spectively, 28.5%, 15.2%, 11.4%, 9.08%, 7.87%, 7.63%, 6.23%,
5.77%, and 5.05%, respectively.

1is suggests that soil moisture, soil salinity, and wind
speed are 3 leading drivers of the underground CO2 con-
centration. 1e total contribution ratio of these 3 envi-
ronmental controls to FX is 56.93%.1e overall contribution
ratio of soil temperature, groundwater level, wind direction,
atmospheric temperature, atmospheric humidity, air pres-
sure, atmospheric CO2 concentration, soil alkalinity, and
rainfall is 43.07%, among which the contribution ratios of
soil alkalinity and rainfall are both less than 1%. According
to the outputs of the SVD-based PCA, the 9 principal
components can explain 96.73% of changes in the under-
ground CO2 concentration.
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3.2. Performance of the SVD-PCA-ANNModel. 1e original
PCA model is linear and simple, allowing a feasible cal-
culation of the contribution ratio of each environmental
variable. However, such a pure linear model is not robust
enough as a preview model (RMSE � 1.2468; R2 � 0.5028).
Since the 9 principal components can explain 96.73% of
changes in the underground CO2 concentration, these 9
principal components from the SVD-based PCA can be
utilized as the inputs of ANN. 1is step integrated the
advantages of the linear model (PCA) and nonlinear model
(ANN). 1e calculated R2, RMSE, and RPD of the inte-
grated model (the SVD-PCA-ANN preview model) with
the increase in model training epochs are shown in
Figures 5–7, respectively.

According to the calculated R2, RMSE, and RPD of the
SVD-PCA-ANN model, the proposed model displays a
good performance with the training, validation, and test
data sets. 1is suggests that the proposed model is robust
for predicting the underground CO2 concentration in arid
regions.

3.3. Comparisonwith SAE, SVM, andLSTM. In comparison
of the PCA, SAE, and SVD-PCA-ANN, as seen in Table 1,
we find that the proposed model performs better than
both PCA and SAE on the training, validation, and
testing data sets. 1e SVD-PCA-ANN model can explain
more than 88.7% of the variability in the training data set
with an accuracy of RMSE � 0.3351, while the SVD-based
PCA can only explain 48.9% of the variability in the
training data set with an accuracy of RMSE � 1.2330. SAE
can explain not more than 1% of the variability in the
training data set, but RMSE from the SAE model is a half
of RMSE from the PCA model. In explanation of the
variability in the validation and testing data sets, the
performance of the SVD-PCA-ANNmodel also indicates
a good prediction. SAE explains about 17% and 37% of
the variability in the validation and testing data sets,
respectively, but the generated RMSE increased. PCA
explains about 50% of the variability in the validation and
testing data sets with no evident changes in the generated
RMSE.

80°E 85°E 90°E 95°E

40
°N

45
°N

50
°N

95°E90°E85°E80°E75°E70°E
45

°N
40

°N
35

°N

Automatic weather stations 
Areas of the deserts

Figure 1: Distribution of the three automatic weather stations where the soil and meteorological data are collected in this study.
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Figure 2: 1e structure diagram of the proposed model.

Input: dataset X = {x1, x2, x3, ... , xn}, need to to go down to k dimensions.
Process:
1: For all xn  X do 

for all (Xk, Yk)  D do 

xk-xk;
end

2: matrix covMat = np.cov (meanRemoved, rowvar = 0)
3: The eigenvalues and eigenvectors of the covariance matrix were calculated by
SVD
4: Sort the eigenvalues from largest to smallest, and select the largest k of them.
Then the corresponding k eigenvectors are respectively used as column vectors
to from the eigenvector matrix.
5: The data is transformed into a new space constructed by k feature vectors.

Then input: dataset D = {(Xk, Yk)} , learning rate η.
Process: 
1: Random initializes all connection weights and thresholds in the network within
the range (0,1)
2: repeat
3:
4: Calculates the output of the current sample yk based on
the current parameters and f (x) = 1

1+e-x ;
5: Calculate the gradient parameter gj of the output layer neurons;
6: Calculate the gradient parameter eh of the hidden layer neurons;
7: Update the weights whj, vih and thresholds θj, γh of the hidden layer to the
output layer;
8: end for
9: until the conditions are met
Output: Multilayer feedforward neural networks with invariant weights and
thresholds

Figure 3: Pseudocode for examining process based on the proposed model.
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Figure 4: Outputs of the SVD-based PCA.
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Comparing the performance of the SVM model and the
SVD-PCA-ANNmodel, we also find that the proposed model
performs better. 1e SVD-PCA-ANN model explains about
80% of the variability in the training, validation, and testing
data sets with a good accuracy (RMSE <0.43). 1e SVM
model can only explain 12.1%, 48%, and 61% of the variability
in the training, validation, and testing data sets, respectively,
and the generated RMSE >1.1e SVD-PCA-ANNmodel also
performs better than LSTM. As seen in Table 1, LSTM ex-
plains about 33.8%, 32.7%, and 27.2% of the variability in the
training, validation, and testing data sets, respectively, and the
generated RMSE values are obviously bigger than the

generated RMSE from SVD-PCA-ANN. 1e calculated RPD
further demonstrates a better prediction of PCA-ANN than
SAE, SVM, and LSTM.

4. Discussion

Differing from the variability in soil surface CO2 concen-
tration and the atmospheric CO2 concentration, the dy-
namics of CO2 concentration beneath the ground might be
influenced by many environmental factors and unknown
subterranean processes [9–17]. Until now, the whole story of
soil CO2 absorption in arid regions is still a gap in our
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Figure 5: R2 of the SVD-PCA-ANN model at various phases for the training, validation, and test data sets.
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Figure 6: RMSE of the SVD-PCA-ANN model at various phases for the training, validation, and test data sets.
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knowledge [31]. 1e calculated contribution ratios of the
considered 12 environmental variables in the presented
study suggest that soil moisture, soil alkalinity, and wind
direction are 3 leading controls among the considered 12
environmental variables. Possible mechanisms are as fol-
lows. Soil moisture can integrate with CO2 under the
condition that soil salinity is high. 1e integrating processes
can be influenced by wind speed [32]. Additionally, our
experimental results also imply that the wind direction is less
significant than wind speed. Among the other 9 variables,
the contribution ratio of groundwater level is only less than
soil temperature. 1is presents new evidence for the ne-
cessity to take into account groundwater discharge and
recharge as a factor in analyzing the underground CO2
concentration in arid regions [33].

In the present study, we proposed the SVD-PCA-ANN
model for predicting the CO2 concentration 4m beneath the

soil. 1is is a first SVD-PCA-based neural network for
learning the underground CO2 concentration in arid regions.
Based on all the experimental results in the present study, the
major advantage of the proposed method is that SVD-PCA-
ANN integrated the linear model PCA and the nonlinear
model ANN. However, according to the outputs of the SVD-
based PCA, the 9 principal components can only explain
96.73% of changes in the underground CO2 concentration.
1is represents one limitation of the proposed method. 1e
SVD-PCA-ANN model introduces 9 linear components in
predicting the underground CO2 concentration in arid re-
gions to improve the interpretability of traditional neural
networks [34–36]. 1is is also the major reason why the
proposedmethod has a better prediction than SAE, SVM, and
LSTM. However, there are still 11.3%, 18.1%, and 23.4% in the
variability of the training, validation, and testing data sets
beyond the explanation of the proposed model. 1is repre-
sents another limitation of the SVD-PCA-ANN model.

A next research priority in the subsequent studies is to
break through these two limitations of the SVD-PCA-ANN
model for a fully understanding of changes in the under-
ground CO2 concentration in arid regions. To break through
such limitations, the first principles to be considered in the
subsequent studies include constructing better linear com-
ponents for the preview model, finding more efficient
learning systems, and introducing new environmental fac-
tors to reduce the uncertainty in the model analyses.

5. Conclusion

1e considered environmental variables, including the soil
and meteorological factors, can be recognized as potential
controls of the underground CO2 concentration in arid
regions, among which soil moisture, soil salinity, and wind
speed are leading controls. Experimental results demon-
strated that the proposed method performs better than SAE,
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Figure 7: RPD of the SVD-PCA-ANN model at various phases for the training, validation, and test data sets.

Table 1: Comparison of the SVD-PCA-ANN model with SAE,
SVM, and LSTM.

Accuracy evaluation index R2 RMSE RPD

Training

SVD-PCA-ANN 0.8874 0.3351 2.7929
SVM 0.1209 1.0552 0.7001
LSTM 0.3375 0.8087 0.5367
SAE 0.0074 0.6074 0.1999

SVD-based PCA 0.4890 1.2330 2.9422

Validation

SVD-PCA-ANN 0.8197 0.4121 1.9069
SVM 0.4800 1.2130 0.2723
LSTM 0.3271 0.8253 0.5366
SAE 0.1698 0.9435 0.1289

SVD-based PCA 0.5028 1.2468 2.9516

Testing

SVD-PCA-ANN 0.7661 0.4257 1.9043
SVM 0.6070 1.0491 0.6071
LSTM 0.2722 0.8096 0.5337
SAE 0.3713 0.9435 0.2439

SVD-based PCA 0.4931 1.2328 2.4960
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SVM, and the well-known LSTM on the training, validation,
and test data sets.1e relationship between the underground
CO2 concentration in arid regions and the considered en-
vironmental variables cannot be characterized as a single
linear function. 1e SVD-PCA-ANN model can effectively
predict the underground CO2 concentration in arid regions
by integrating the advantages of both linear and nonlinear
models and therefore presents a novel method for studying
soil CO2 absorption in arid regions.
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