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Wear degree detection of gears is an effective way to prevent faults. However, due to the interference of high-speed meshing
vibration and environmental noise, the weak vibration signal generated by the gear is easily covered by the noise, which makes it
difficult to detect the degree of wear. To address this issue, this paper proposes a novel gear wear degree diagnosis method based on
local weighted scatter smoothing method (LOWESS), wavelet packet transform (WPT), and least square support vector machine
(APSO-LSSVM) optimized by adaptive particle swarm algorithm. According to the low signal-to-noise ratio characteristic of gear
vibration signal, LOWESS is first used to preprocess the signal spectrum.-en, the characteristic parameters used to characterize
gear wear are extracted from different decomposition depths by WPT and, finally, combined with APSO-SVM to diagnose the
degree of gear wear. Compared with the basic least squares support vector machine, the improved method has better performance
in sample classification. -e experimental results show that the method in this paper can effectively reduce the diagnosis error
caused by background noise, and the diagnosis accuracy reaches 98.33%, which can provide a solution for the health status
monitoring of gears.

1. Introduction

With the popularity of electric vehicles, the evaluation of
mechanical durability (reliability) of electric vehicles has al-
ways been a research hotspot in the field of electric drive
systems. As devices that transmit power or rotational motion,
the health status of gears is closely related to the life of an
electric vehicle’s drivetrain.-erefore, there is a great need for
advanced wear diagnosis technology to minimize unplanned
downtime caused by gear wear and predict its future de-
velopment trend so that corrective measures can be taken in
time before any further damage occurs to the machine [1, 2].

In general, gear faults produce shocks, with the result
that transient excitations can be observed in the vibration
signal. However, local wear of gear tooth surfaces usually
leads to faint transients in the signal, and the accuracy of the
collected signal is greatly affected by background noise,
measurement point location, and operating environment,

which makes it difficult to capture the intrinsic information
about local defects of gears, resulting in the original fault
detection method not applicable to the distinction of wear
degree [3, 4]. Although the fault detection method has a
certain manifestation of the degree of wear detection, it is
still not enough to support the judgment of the degree of
wear. Since the degree of wear detection can prevent the
occurrence of fault, it is necessary to develop a new weak
fault detection method that can effectively detect gear wear
to learn the wear characteristics and accurately evaluate the
health of the gear. -e gearbox health monitoring tech-
nology based on vibration analysis is very effective for the
diagnosis of gear wear, as the change of the vibration signal is
a response to gear defects and wear growth. -is study
adopts the diagnosis method based on vibration analysis.
Compared with the diagnosis after the fault, the wear di-
agnosis during the operation can realize the early warning of
the fault and the tracking of the defect [5, 6].
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At present, fault diagnosis of rotating machinery is
usually divided into three steps: fault signal acquisition, fault
feature extraction, and fault pattern identification. One of
the most critical of these steps is fault feature extraction,
which involves mapping the original vibration signal to
relevant feature parameters to characterize the degree of
wear of the gear. In order to realize the intelligent diagnosis
of health status, in-depth research has been carried out in the
field of fault diagnosis. For example, Islam et al. [7] focused
on the process of feature extraction and recognition and
provided azimuthal health status information by defining
new evaluation indicators-defect rate and two-dimensional
visualization of acoustic signals. Liang et al. [8] applied
wavelet transform to extract time-frequency image features
and verified the effectiveness of the method by two exper-
iments. Yu [9] proposed a new time-frequency analysis
method-transient extracting transform, which can effec-
tively characterize and extract the transient components in
the vibration signal of rotating machinery. Zhang et al. [10]
used shift-invariant K-means singular value decomposition
dictionary learning to detect early faults in gearbox bearings.
Teng et al. [11] used the cepstrum method to distinguish the
approximate frequency components and applied complex
wavelet transform to detect the characteristics of weakly
loaded faults buried in high energy. Babouri et al. [12] in-
troduced an advanced signal processing method called
cyclostationarity analysis. -e experimental results prove
that this method has the ability to diagnose defects in ro-
tating machinery. Wang et al. [13] defined the cross-cor-
relation kurtosis as an indicator to clarify and reconstruct
the preprocessed signals by a stochastic resonance method,
which is combined with a machine learning method based
on ensemble bagged trees to detect early faults in bearings.
Liu et al. [14] proposed an improved variational modal
decomposition based method to distinguish planetary gear
failures under different operating conditions. -e above
studies have proposed new methods or improved related
algorithms for the early detection of rotating machinery, but
the early health monitoring of gears under the background
of strong noise still needs further research.

In order to solve the problem that strong noise back-
ground is not enough to realize online monitoring, this
paper combines the locally weighted scatter smoothing
method (LOWESS) with the wavelet packet transform
(WPT) to smooth the noise and enhance the signal-to-noise
ratio. -e LOWESS can eliminate meaningless extreme
points, maximize the elimination of noise effects, and protect
the local integrity of the original signal. Algorithms based on
wavelet packet transform can better describe the signal
characteristics of early gear wear. Other signal decompo-
sition algorithms (VMD, EMD, etc.) differ in that they are
very sensitive to frictional vibrations in time series. Due to
the high sensitivity of characteristic parameters, this method
is particularly suitable for early monitoring of gear health
status. Li et al. [15] used the second-generation redundant
wavelet packet transform to extract statistical features, di-
agnosed gear faults through support vector machines, and
applied this method to gearbox fault diagnosis. Derkacheva
et al. [16] used the LOWESS algorithm to reduce the noise of

satellite observation data to accurately measure the glacier
speed. To process nonstationary gear vibration signals,
Bafroui et al. [17] combined the resampling technique at
constant angle increment with continuous wavelet trans-
form and identified gear faults throughMLP neural network.
To eliminate the influence of noise, Lu et al. [18] applied the
bootstrap resampling method to optimize the parameters of
CEEMD and diagnosed bearing faults through support
vector machines. Shao et al. [19] proposed a method for
estimating the direction of arrival of a weak nonstationary
signal, which utilizes the spatial time-frequency distribution
of cross terms to solve the problem of weak signals that
cannot be extracted under a noise background. It can be
found from the above literature that a suitable preprocessing
method helps a lot in the analysis of nonstationary signals.

For LS-SVM, there is a possibility of classifier performance
degradation when dealing with certain highly correlated
features of nonstationary signals. However, the least squares
support vector machine classifier based on APSO optimization
has good potential to classify any nonstationary signal, while the
traditional LS-SVM-based fault diagnosis method has the
disadvantages of easy failure in handling nonstationary
vibration signals and large dependence on the classifier
hyperparameters. In the literature,Wei et al. [20] appliedmoth-
flame (MFO) optimized LS-SVM to detect rolling bearing faults.
Dutta et al. [21] proposed a feature extraction framework based
on the combination of multivariate empirical mode
decomposition and phase space reconstruction and applied LS-
SVM to classify EEG signals. Ma and Liu [22] proposed an
intelligent optimal weighted LS-SVM identificationmethod and
applied APSO to optimize its parameters. Experiments proved
that the method has the identification ability of nonlinear
models. Wu [23] used the APSO algorithm to optimize SVM
and applied the method to mixed model prediction.

In order to overcome the above problems, this paper
proposes a WPT-assisted LS-SVM method for gear wear
degree diagnosis. To solve the problems of noise interference
and parameter adjustment for health assessment, an opti-
mized method for signal decomposition and feature ex-
traction was used. -en APSO is applied for the selection of
the parameter optimal solution of LS-SVM. Finally, the
extracted features were used to train LS-SVM to classify the
health status of gear in the wear process. -e novelty of the
proposed method is the implementation of signal smoothing
techniques to filter the noise and the APSO algorithm to
select the optimal solution of the vector machine parameters
to facilitate a high-quality and efficient training process.

2. Theoretical Background

2.1. Locally Weighted Scatter Smoothing Method. Locally
weighted scatter smoothing method (LOWESS) [24] is a
useful tool to view the relationship between two-dimen-
sional variables.-emain idea is to take a certain percentage
of local data to fit a polynomial regression curve to observe
patterns and trends in the local presentation of the data. In
data smoothing, it works similarly to the moving average
technique, where the value of each point within a specified
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window is obtained by a weighted regression of data from
neighboring points within the window.

Taking point x as the center, a fixed length of data is
intercepted before and after, record (x, y∧) is the central
value of the regression line, and y∧ is the corresponding
value of the curve after fitting. For all n data points,
nweighted regression lines can be made, and the connection
of the center value y∧ of each regression line is the LOWESS
curve of this piece of data. -e definition of its loss function
is as follows:
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where θTx(i) is the predicted value of each sample, the actual
value is y(i), and the sample weight is w(i). Its mathematical
expression is as follows:
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where τ is the attenuation factor, x is the sample to be
predicted, and x(i) are the surrounding samples. When
predicting the sample x, the farther the surrounding sample
is from it, the smaller the weight of the surrounding sample
is. When τ is smaller, the weight decays faster as the distance
increases.

2.2.Wavelet Packet Transform. WPT [25] is an effective tool
for dealing with nonstationary sequences, with the difference
that the Fourier transform requires the signal to be trans-
formed in either the time or the frequency domain. Wavelet
analysis can decompose the signal in two scales of time
domain and frequency domain at the same time; it can not
only well portray the locality of the signal in time domain,
but also reflect the locality of the signal in frequency domain,
so it can focus on any detail of the object.

Wavelet packet transform (WPT) is an extension of the
discrete wavelet transform. Its multiresolution analysis ca-
pability can further decompose the detailed information of
the signal in the high-frequency region. WPTdecomposes a
signal into two subsignals, the approximation signal and the
detail signal, and the wavelet packet decomposition tree
formed is shown in Figure 1. -e definition of the wavelet
packet function is as follows:

W
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where j is the scaling parameter and k is the translation
parameter. When n � 0 and n � 1, the first two wavelet
packet functions W0

0,0(t) � ϕ(t) and W1
0,0(t) � ψ(t) repre-

sent the scaling function and the mother wavelet function,
respectively. When n � 2, 3, ..., N, the recursive relations of
other wavelet packet functions are defined as follows:
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where h(k) and g(k) are low-pass and high-pass filters
associated with the scaling function and the mother wavelet
function. -e wavelet coefficients are obtained by the inner
product of the signal x(t) and the wavelet packet function, as
shown in the following formula:
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Each wavelet packet coefficient Ωn
j(k) is a specific

subspace of each frequency resolution level, which is related
to the scaling parameter j and the oscillation parameter n.
WPT performs complete decomposition on each node to
produce two components, low-pass approximation and
high-pass detail coefficients. Downsampling operation
causes the signal to be decomposed from
Ω10(k), k � 1, 2, ..., N  to Ωn

j(k), k � 1, 2, ..., (N/2)j
 .

2.3. Least Square Support Vector Machine. Least squares
support vector machine (LS-SVM) [26], as an improved
algorithm that can improve the computing power and
performance of the model, overcomes the deficiencies of
long training time, randomness of training results, and
overlearning compared with artificial neural networks,
making the efficiency much higher.

-e least squares support vectormachine (LS-SVM) is an
improvement of the support vector machine (SVM), with
the difference that LS-SVM changes the inequality con-
straints in the original method into equality constraints.
Least squares method is achieved by solving a set of linear
equations, thus greatly facilitating the solution of Lagrange.
-e classification problem can be expressed as

minimize : LPLS−SVM
�
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Figure 1: Wavelet packet decomposition tree of the signal.
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where C is the regularization parameter. For nonlinearly
separable samples, the optimization problem of LS-SVM is
equivalent to solving the following dual optimization
problem:

LDLS−SVM
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where αi is the Lagrange multiplier, derivation of the various
variables of the Lagrange function; the optimality conditions
of the above formula can be obtained as follows:
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-e aforementioned equations can be equivalently
written as
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where 1
→

� [1, 1, ..., 1]T, T � [t1, t2, ..., tN]T, and α � [α1, α2,
..., αN]T. For a new sample, the decision function of the LS-
SVM classifier can be expressed as

f(X) � sign 
N

i�1
αitiK X, Xi(  + b⎛⎝ ⎞⎠. (10)

-e Lagrange multipliers αi in LS-SVM are proportional
to the training error ξi. -e solution of linear equations
makes the calculation efficiency much higher than the SVM
model.

3. Optimization of LS-SVM and Diagnosis
Model Description

3.1. Parameter Selection Based on Adaptive Particle Swarm
Optimization. Due to the use of LS-SVM for health status
recognition, its parameters have a great impact on the
performance of classification. We need to adopt an algo-
rithm to calculate the optimal value of the parameter.

Particle swarm algorithm [27] is a heuristic swarm in-
telligence optimization algorithm, and its basic concept
comes from the study of bird predation behavior. -e al-
gorithm calculates the fitness value of the sample data by the
fitness function and finds the best position based on the
position of the target point and the current position, as well
as all particles in the whole population. -e next position of

each particle is determined by its own motion experience
and the motion experience of other particles, and the op-
timal solution is found through continuous iteration. -e
particle velocity and position update iteration are as follows:

vi � w · vi + c1rand0 · pbesti − xi(  + c2 · rand0 · gbesti − xi( ,

xi � xi + vi,

(11)

where xi is the current position of the particle, vi is the
particle velocity, w is the inertia factor, and c1 and c2 are the
coefficients.

Particle swarm algorithm has a fast convergence speed,
but it also has the disadvantages of easy premature con-
vergence, low search accuracy, and low efficiency of late
iteration. To this end, variation operations are introduced
into the PSO algorithm to reinitialize certain variables with a
certain probability, allowing the optimized particle swarm
algorithm to jump out of the currently searched local op-
timum position and carry out the search in a larger space,
thus increasing the possibility of the algorithm to find the
optimum value in the space.

3.2. Diagnostic Model. In order to better solve the problem
of diagnosing gear wear diagnosis under complex condi-
tions, a new diagnostic scheme based on WPT and LS-SVM
is proposed in this paper. Figure 2 shows the overall
framework of our proposed method. -e method is divided
into three main steps, namely, signal preprocessing and
wavelet packet transformation, feature extraction, and early
gear health status recognition:

Step1 : the vibration sensor is used to collect and store
the gear vibration signal, and then the LOWESS
algorithm is used to preprocess the original
signal to obtain the signal data after noise re-
duction and smoothing.

Step2 : Wavelet packet transform is used to process
vibration signals at different decomposition
depths to improve the signal-to-noise ratio.
-en, features are extracted from the obtained
wavelet packet coefficients to obtain a dataset
that can effectively describe the health status of
the gears.

Step3 : LS-SVM is used to train the feature set and
identify the health status of the gear.

After the gear vibration signal with noise is sampled by
the vibration sensor, the noise is attached to the gear vi-
bration signal by means of amplitude modulation, which
results in extreme points on the original signal and causes
interference in the subsequent process of health status
identification. In order to achieve online detection, it is
necessary to eliminate those meaningless extreme points to
obtain real gear vibration data. For this purpose, we pre-
process the spectrum of the signal by LOWESS. -e
LOWESS algorithm chooses a first-order polynomial model
to replace local information and uses linear weighted least
squares tomatch the polynomial. In the algorithm, we set 2%
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of the signal length as the matching length. Experiments
have proved that the 2% matching length not only guar-
antees the local characteristics of the signal’s frequency
spectrum but also eliminates meaningless extreme points.

-e preprocessed signal considers the wavelet packet
decomposition level from 1 to 3, and there will be 14 wavelet
packet nodes. -e db9 wavelet, as a wavelet basis function
widely used for gear health condition monitoring, is used as
a wavelet basis function for WPT filtering in this paper. -e
wavelet packet node with the maximum depth of 3 is plotted
in Figure 3. To achieve early gear health status monitoring, 7
features were extracted from 14 wavelet packet nodes. Ta-
ble 1 lists 7 feature parameters, including standard deviation,
kurtosis, mean value, skewness, clearance factor, square root
amplitude value, and crest factor. A total of 98 characteristic
parameters are generated for LS-SVM training.

As mentioned earlier, in order to promote high-effi-
ciency and high-speed training, it is necessary to select the
best training parameters. -e APSO algorithm not only
converges to the global optimum quickly but also has good
discrimination ability.-e algorithm updates the position by
updating the optimal position in the position experienced by
the individual and the optimal position of the fitness
searched by all the particles in the population and finds the
optimal parameters by update iterations. It should be noted

that the parameters in the extracted feature set are highly
correlated, and there are differences in the sensitivity con-
tribution of different parameters to the classification. To
maximize the implementation of efficient training, the
APSO-LSSVM-based diagnostic model can accurately
identify the health status of gears.

4. Construction of Experimental Platform and
Description of Experimental Data

Gear with a worn tooth surface may cause a fatal accident. To
avoid this situation, the defect of the gear must be found as
early as possible in order to track the growth of the defect. It
is important to improve the diagnosis of gear health status to
minimize the economic loss due to downtime. To conduct
evaluation experiments, a unipolar gearbox experiment
platform was created to collect gear vibration signal data and
simulate several common wear faults types in gearboxes to
verify the effectiveness of the method.

4.1. Construction of the Experimental Platform. In order to
verify the effectiveness of the proposed method, the
experiment involves three faults, namely, gear wear,
pitting, and cracks, and they were researched and

Start

Wavelet packetd ecomposition with depth 3

Extract features from wavelet packet
coefficients of different depths

Feature
Extraction

Signal pre-processing

Build LS-SVM
classifier

Gear health status identification

Training samples Test samples

Fault pattern
recognition

Locally weighted scatter smoothing pre-
processed signals

APSO algorithm parameter optimization Parameter
optimization

Figure 2: Framework of the proposed method.
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analyzed using the experimental test rig shown in
Figure 4(a). -e overall framework of the experimental
test platform is shown in Figure 4(b). It can be noted that
the experimental test platform mainly consists of three
parts: gearbox, signal acquisition device, and signal
storage device, where the gearbox mainly consists of a
DC brushless motor, active wheel, driven wheel, and belt
used to drive the gear. -e signal acquisition device
consists of a vibration sensor and tachometer, the vi-
bration sensor is located at 0.5 cm above the vertical of
the driving wheel, and a total of 6 types of gear vibration
signals are collected. -e gear vibration signal is sampled
during gearbox operation and transferred to the com-
puter for storage, with a sampling frequency of
fs � 5120 Hz and a speed setting of 880r/min.

4.2. Experimental Data Description. All experimental data
are obtained under the same operating conditions, and the
gear speed and load are constant. -e collected subhealthy
gear vibration signals are all under the condition that the
gear can still operate normally without breakage of teeth and
other faults. -e health status of the experimental gear is
described in Table 2.

In this paper, six types of subhealth gear vibration
signals are collected, which are divided into three dif-
ferent degrees of tooth surface wear and three different

levels of tooth surface cracks. 120 samples are collected
for each category of data, of which 60 are used for training
and 60 are used for testing, and all samples are 720 in
total, with category labels set to 1, 2, 3, 4, 5, and 6. -e
dataset description is as follows (Table 3.

5. Experimental Results and Discussion

By implementing LOWESS, the envelope spectrum of the
preprocessed vibration signal is obtained as shown in
Figure 5(b). Figure 5(a) shows the envelope spectrum of
the original signal. In Figure 5(b), under the premise of
protection of local structure of spectrum, most of the
extreme points caused by noise amplitude modulation are
eliminated. It also means that it is possible to evaluate the
gear health in the early wear stage by monitoring the
vibration changes of the preprocessed gear vibration
signal.

Generally, the wear condition of the gears needs to be
disassembled for inspection, so the current detection
method is not conducive to the implementation of online
detection. In this paper, to avoid excessive consumption of
detection time, a large amount of collected data is used to
provide a guarantee for the identification of gear health
status. In order to prove the superiority of the proposed
method, the improved LS-SVM and the basic LS-SVM
model were tested according to the adaptive parameters.

Table 1: -e 7 feature parameters extracted.

Attributes Calculation method Attributes Calculation method
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Figure 3: -e wavelet packet node with the maximum depth of 3.
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We obtained the classification results of two different
models of the test set data, as shown in Table 4.

It can be observed that when the same features are
used as input, the diagnosis result of the proposed
method is much better than the basic LS-SVM model. At

the same time, it also shows that appropriate parameters
can facilitate the high-precision and high-efficiency
training of LS-SVM. Overall, the method used in this
paper is more representative in the identification of
health status of gears.

Table 2: Gear health status description.

Gear category Depth of wear Gear category Crack depth (mm)
Mild wear -e public law line shortens by 0.05 Mild crack Crack depth 0.35
Moderate wear Public law line shortening <0.1 Moderate crack Crack depth 0.68
Heavy wear Public law line is shortened by 0.1–0.2 Heavy crack Crack depth 1.23

Table 3: Description of gear dataset.

Health status Number of training samples Number of test samples Label
Mild wear 60 60 1
Moderate wear 60 60 2
Heavy wear 60 60 3
Mild crack 60 60 4
Moderate crack 60 60 5
Heavy crack 60 60 6
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Figure 5: Preprocessed signal diagram. (a) Original signal envelope spectrum. (b) Envelope spectrum after LOWESS.
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Because the proposed model is a multiclassification
model based on sensitive features, it is necessary to in-
vestigate the influence of the number of feature param-
eters on the classification results of the model. -e
features extracted by the wavelet packet transform, al-
though highly correlated, suffer from the problem of
feature redundancy. If a smaller number of features is
chosen, the computational complexity will be reduced
accordingly, and if a sufficient number of features are
used, the recognition accuracy will be greatly improved.
To find a balance between computational burden and
recognition accuracy to ensure high accuracy, this article
investigates the relationship between the number of
features and accuracy, as shown in Figure 6, and with the
increase in the number of features, the accuracy rate
increases first, and the accuracy rate remains high when
the number of features changes from 70 to 98. However,
when the number of features drops to 56, the recognition
rate decreases.

Tables 5 and 6 summarize the single fault diagnosis
results of the proposed method and the comparison
model. Obviously, the recognition rate of the method
used in this paper is better than that of the comparison
model, and the diagnostic results of samples belonging to
different health states under the same number of features
have achieved satisfactory performance.

For the data in Table 6, under the premise of the same
number of features, the accuracy of label 2 and label 5 is lower,
because different features have different sensitivity to classifi-
cation. After comparing the misdiagnosed samples in label 2
and label 5, for adjacent fault categories, the difference in signal

part feature values is small, which affects the performance of the
classifier. But in general, the diagnosis method in this paper can
provide a solution for the diagnosis of gear health.

6. Conclusion

-is paper introduces a new method for diagnosing the
health status of gears. -e main idea of this method is to
use LOWESS to reduce noise and then extract feature
parameters from the wavelet packet nodes in layers 0 to 3.
Finally, the APSO optimized LS-SVMwas used to identify
6 gear faults with different wear degree at the same motor
speed. A large amount of experimental data verifies that
the accuracy of this method for gear wear diagnosis is
98.33%. By comparing the experiments, we obtained the
following conclusions:

(1) Under the same working conditions, the combina-
tion of LOWESS and WPT can effectively reduce
noise interference and enhance the ability of certain
features in classification

(2) -e parameters selected by the APSO algorithm are
optimal values, which can provide a solution for
monitoring the health status of gears

(3) Compared with the basic LS-SVM, the method used
in this article has better performance and higher
accuracy

Data Availability

-e codes used in this paper are available from the author
upon request.

Table 4: Model diagnosis result.

Model Number of correctly classified samples Number of misclassified samples Accuracy (%)
APSO-LSSVM 354 6 98.33
LS-SVM 255 105 70.83
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Figure 6: Accuracy versus number of features graph.

Table 5: Test results of APSO-LSSVM with different number of
features.

Feature number
Label

1 2 3 4 5 6

Result (%)

84 100 96.67 100 100 95 100
70 100 96.67 100 100 95 100
56 100 90 100 100 95 100
42 100 90 100 100 95 80

Table 6: Test results of LS-SVM with different number of features.

Feature
number

Label
1 2 3 4 5 6

Result
(%)

84 91.67 61.67 58.33 66.67 63.33 75
70 100 70 66.67 58.33 63.33 66.67
56 100 56.67 66.67 66.67 61.67 66.67
42 100 58.33 66.67 66.67 60 66.67
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