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In this study, a new computing model is developed using the strength of feed-forward neural networks with the Lev-
enberg–Marquardt scheme-based backpropagation technique (NN-BLMS). It is used to find a solution for the nonlinear system
obtained from the governing equations of the magnetohydrodyanmic (MHD) boundary layer flow over a stretching sheet.
Moreover, the partial differential equations (PDEs) for the MHD boundary layer flow over a stretching sheet are converting into
ordinary differential equations (ODEs) with the help of similarity transformation. A dataset for the proposed NN-BLMM-based
model is generated at different scenarios by a variation of various embedding parameters: Deborah number (β) and magnetic
parameter (M). -e training (TR), testing (TS), and validation (VD) of the NN-BLMS model are evaluated in the generated
scenarios to compare the obtained results with the reference results. For the fluidic system convergence analysis, a number of
metrics, such as the mean square error (MSE), error histogram (EH), and regression (RG) plots, are utilized for measuring the
effectiveness and performance of the NN-BLMS infrastructure model. -e experiments showed that comparisons between the
results of proposed model and the reference results match in terms of convergence up to E-02 to E-10. -is proves the validity of
the NN-BLMS model. Furthermore, the results demonstrated that there is a decrease in the thickness of the boundary layer by
increasing the Deborah number and magnetic parameter. -e importance of the experiment can be seen due to its industrial
applications such as MHD power generation, MHD generators, and MHD pumps.

1. Introduction

-e boundary layer flow of an incompressible liquid over a
stretching sheet is common in many engineering and in-
dustrial processes. -e field has attracted researchers in the
last few decades. -e boundary layer flow has major ap-
plications in industries such as in the aerodynamic extrusion
of a polymer sheet from a die, hot rolling, the cooling of an

infinite metallic plate in a cooling bath, the boundary layer
along a liquid film in condensation process, and glass-fiber
production [1–3]. Many metallurgical processes contain the
cooling of continuous filaments by drawing them through a
quiescent fluid. -e mechanical properties of the product
depend on the rate of cooling and the stretching. Sakiadis
[4, 5] pioneered the study on the stretching sheet and
boundary layer flow. -e boundary layer flow over a
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continuous stretching sheet with constant speed was studied
with various conditions. Cran [6] studied the closed form
solution of the boundary layer flow with the stretching sheet.
Gupta and Gupta [7] investigated the magnetic field effects
on the boundary layer flow with the stretching sheet.
Anderson [8] studied the porosity effects on the stretching
sheet with the conducting particles of fluid. Ariel [9] in-
vestigated the combined effect of viscoelasticity and mag-
netic field on the Cranes problem. Since stretching sheet can
occur in a variety of ways, the flow through the stretched
sheet does not always need to be of two sizes. If the extension
is radial, it can be three. A flat surface of three stretches and
the same width was examined by Wang [10]. Brady and
Acrivos [11] monitor the flow inside the channel or tube and
the Wang flow outside the performing tube [12]. Wang [13]
and Usha and Sidharan [14] tested the unstable stretching
sheet. Ariel et al. [15] used HPM and expanded HPM to
obtain a solution for analysis in the axisymmetric flow across
the flat layer of the boundary layer flow. A noniterative
solution for MHD flow of the boundary layer flow over a
stretching sheet was provided by Ariel [16]. Magnetohy-
drodynamics (MHD) is the study of the interaction of
electromagnetic conditions with the transfer of liquid heat.
-e flow of conducting fluids is important in many areas of
science and engineering, such as MHD power generation,
MHD generators, and MHD pumps. Recently, many re-
searchers worked on boundary layer flow [17–25]. -ey
considered the MHD effects of different boundary layer flow
with the stretching sheet. Recently, many scientists studied
the effects of MHD and heat transfer on various boundary
layer flows for different parameters [26–31]. All these nu-
merical methods are applied to solve the problem in different
scenarios, and each has advantages and disadvantages. Al-
though stochastic numerical computing based on artificial
intelligence has been developed to solve stiff nonlinear
problems, these solvers are not yet used to analyze this
boundary layer flow model’s governing system. Stochastic
numerical computing solvers are generated basically by
taking advantage of computing based on artificial neural
networks (ANN) modeling and its optimization of the
process to solve different problem systems of ordinary or
partial differential equations. -ere are many modern ap-
plications of stochastic numerical computing solvers in
various branch of sciences such as thermodynamics, as-
trophysics, offline circuits, atomic physics, MHD, plasma
physics, fluid dynamics, electromagnetics, nanotechnology,
bioinformatics, electricity, energy and finance, and random
matrix theory [31–48]. Inspired from these facts, the authors
study to explore and incorporate the soft computing ar-
chitectures as an alternative, precise, and feasible compu-
tational approaches for solving the fluid mechanics systems
associated with the boundary layer flow. -e main purpose
of this study is to analyze the effect of physical parameters
associated with the boundary layer flow system under the
influence of the magnetic effect by using an intelligent
computing technique based on the Levenberg–Marquard
algorithm, whereas, Levenberg–Marquard (LM) inherits
accuracy and fastness from the Newton method. Moreover,
it also has the steepest descent method convergence

capability [42]. Optimization of the data used in the training
of deep networks is a very important parameter for the
prediction performance of the model [49]. Some of the
recent development in AI methods can be seen [50–55].
Some structures of our discussion are noted as follows.

-e key aspects of the proposed computing paradigm are
given as follows:

A new application based on artificial intelligence-based
computing using neural network backpropagated with
Levenberg–Marquard is implemented to study the
MHD boundary layer flow with the stretching sheet
-e dataset for the NN-BLMS is generated for varia-
tions of Deborah and magnetic parameters through the
OHAM
-e governing equations are transformed from a set of
PDEs into ODE by using similarity transformation
-e processing of NN-BLMS means training, testing,
and validation in employed on the boundary layer flow
model for different scenarios to obtain the approximate
solution and comparison with reference results
-e convergence analysis based on mean square, error
histogram, and regression plots are employed to ensure
the performance of NN-BLMS for the detailed analysis
of the boundary layer flow model

-emathematical modeling of the boundary layer flow
model has been presented in Section 2. -e method for the
analysis of the MHD boundary layer flow over a stretching
sheet has been discussed in Section 3. -e numerical and
graphical results with discussion and comparison for the
MHD boundary layer flow over a stretching sheet through
the proposed technique NN-BLMS with numerical ref-
erence results are given in Section 4. Finally, concluding
remarks for the study on the proposed methodology for
the MHD boundary layer flow over a stretching sheet is
presented in Section 5.

2. Mathematical Formulation of the Boundary
Layer Flow Model

Consider a viscous fluid on a stretching sheet. Initially,
both the sheet and the fluid are at rest. -e plate is
stretched in the x direction, and fluid starts flowing
uniformly. A uniform magnetic field B (x) is applied
perpendicular to the flow. -e flow is considered steady
and incompressible. A boundary layer is originated as
shown in Figure 1.

-e fundamental equations in the form of continuity and
momentum equations are given as [17]
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v(x, 0) � 0,

u(x,∞) � 0.

(2)

In order to reduce the governing equation into boundary
value problem using the following similarity transformation
[17],

u(x, y) � ux
k
f′(η),

η � y

�������

c(k + 1)

2υ



x
k− 1/2

y,

υ(η) � −

�������
c(k + 1)

2



x
k− 1/2

f(η) +
(k − 1)

(k + 1)
ηf′(η) .

(3)

We obtain

d3f
dη3

+ f
d2f
dη2

− β
df

dη
 

2

− M
df

dη
� 0,

f(0) � 0, f′(0) � 1, f′(∞) � 0,

(4)

where β � 2n/1 + n and M � 2σβo
2/ρc(1 + n).

3. Solution Procedure

-e single neural network model for the proposed NN-
BLMS is shown in Figure 2. -e general procedure of NN-
BLMS presented step by step is given in Figure 3. NN-BLMS
is accomplished with the help of nftool in MATLAB by
setting for fitting the neural network tools with back-
propagation of Levenberg–Marquardt executing the weight
of neural networks. It is clear from the analysis that the NN-
BLMS is implemented for the fluidic model MHD boundary
layer flow over a stretching sheet by setting the values of one
parameter β and treating the other physical parameters M as
fixed. In the same fashion, the other parameters are
changeable, and a total of three scenarios and each scenario
have three cases. -e proposed NN-BLMS is performed for
four scenarios by varying beta and magnetic parameters for
f andf′ with different cases for each scenario as shown in
Table 1. For using the NN-BLMS, we used the step size of

0.03 between the intervals of the problem by using the
OHAM. We select 80%, 10%, and 10% for testing, training,
and validation, respectively, for 301 data input points for the
f values randomly. TR is used for the assembly of a result
assembled on MSE, and VD data is used for representing
NN, while TT data is used to test the PF of random
contributions.

-e NN-BLMS-based computing paradigm with 1-layer
structure of neural networks (hidden and output) is shown
in Figure 4.

4. Analysis of Results

-e proposed NN-BLMS is used for cases 1 and 3 of all
scenarios. Figures 4 and 5 show the results of state and
performance, whereas fitting the solution is given in
Figures 6–13 . EH plots are given in Figure 14, and the
regression analysis is given in Figures 15–22 of the MHD
boundary layer flow over a stretching sheet. For cases 1 and 3
of all scenarios, MSE assembly of TR, VLD, and TS processes
are given in Figures 4(a)–4(h). One can see that the best PF
has been achieved at 6, 153, 3, 12, 479, 391, 440, and 611
epochs with MSE around 3.4885×10–5, 1.3071× 10–9

4.295×10–6, 7.7450×10–6, 1.5272×10–7, 5.3331× 10–7,
3.5795×10–8, and 3.0441× 10–7, respectively, given in Fig-
ure 4. Appropriate values for GD and step Mu size of
backpropagation are 4.2526×10–04, 9.9537×10–08,
1.678×10–04, 2.3718×10–5, 9.9666×10–8, 9.9689×10–8,
9.9879×10–8, and 9.983×10–08 and 10–09, 10–11, 10–08, 10–07,
10–08, 10–09, 10–09, and 10–08 as shown in Figure 5. From
these figures and results, it is clearly demonstrated that the
NN-BLMS is accurately and reliably convergent in each case
of MHD boundary layer flow over a stretching sheet. For
cases 1 and 3 of all scenarios of MHD boundary layer flow
over a stretching sheet model, the effectiveness of NN-BLMS
is scrutinized with the reference numerical results of OHAM
along with the error dynamics given in Figures 6–13. -e
maximum error achieved in the testing, performance, and
validation by the proposed NN-BLMS is less than 3.5×10–04,
0.8×10–03, 0.2×10–03, 0.4×10–03, 3.5×10–04, 0.8×10–03,
0.3×10–03, and 1.4×10–03 as given in Figures 6–13. Error
variability is also assessed with EH, and the results are given
in Figures 14(a)–14(f ). Error variability is also assessed with
error histogram for each input point, and the results are
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Figure 1: Sketch of the flow problem.
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given in Figure 14. -e maximum error achieved is less than
5.5E− 4,−9.8E− 5, −3.7E− 5, −4.3E− 3, −4E− 6, 5.02E− 6,
2.94E – 6, and −4.1E− 5 in all cases of the MHD boundary
layer flow over a stretching sheet. -e investigation over
regression is given with the help of correlation studies. -e
results of RG are given in Figures 15–22. -e study of
correlation is piloted by regression studies. -e results of
regression for each scenario are around unity, and the values
of correlation R are reliable, which mean that testing,
training, and validations are accurately modeled to perform
the NN-BLMS. Moreover, for all three cases of each scenario
of the MHD boundary layer flow over a stretching sheet, the
convergence attains parameter in terms of PF, MSE, per-
formed period, time of performance, and backpropagation
measures which are prescribed in Table 2 for all cases of each
scenario separately.-e PF is approximately 10–09, 10–10 to
10–09, 10–09, 10–08, 10–08, and 10–08 for all scenarios with
1 and 3 cases of MHD boundary layer flow over a stretching
sheet.-ese results show the stable PF of NN-BLMS for each
case of MHD boundary layer flow over a stretching sheet

model. -e effects of the physical parameters on the velocity
profile based on the results of NN-BLMS are given in
Figures 23(a)–26(a) . -e variation (rise) of the physical
parameter Deborah number β results to decrease the velocity
profile. Initially, the effect of β is very small in interval [0,
0.5], and the effect of increasing β is very clear in 0.5 to 3
causing decrease in the velocity profile as shown in
Figure 23(a). Similarly, the effect of magnetic parameters M

on velocity profile is shown in Figures 24(a). It is observed
that, by increasing the values ofM, a decrease in velocity
profile (boundary layer thickness) is observed. -ese pa-
rameters have low effect near the origin and have a clear
impact away from origin. By increasing the physical
parametersβ and M, a decrease in the velocity profiles is
observed. It is due to the fact that the parameters increase the
opposing forces which turn to reduce the velocity profile.
-e effects of these parameters for the velocity profile f′are
given in Figures 25(a) and 26(b). Again, increasing the
opposite effects has been observed as shown in Figures 23(a)
and 24(a). -e NN-BLMS results are verified by comparing
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Figure 3: -e methodology workflow of ANN-BLMS for MHDFF BLPSS: (a) sketch of the flow problem, (b) problem formulation, (c)
developed intelligent computing network model, (d) results, and (e) comparative analysis.

Table 1: Description of scenarios along with the cases for MHD boundary layer flow over a stretching sheet: physical parameters of interest.

Scenario Case β M

For f 1
1 1 1
2 2 1
3 3 1

2
1 1 1
2 1 2
3 1 3

For f′ 3
1 1 1
2 2 1
3 3 1

4
1 1 1
2 1 2
3 1 3
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Figure 4: Continued.
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Figure 4: Performance of MSE for proposed NN-BLMS for solving MHD BLFSS.
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Figure 5: Continued.
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Figure 5: State transition dynamics of NN-BLMS for solving the MHD BLFSS.
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the results with numerical, and hence, the validation of our
method is proved. In the Figures 20(b), 21(b), and 22(b), the
absolute errors (AE) are shown for all scenarios. In these
figures, the AE is observed 10–04 to 10–08, 10–03 to 10–06,

10–03 to 10–06, 10–03 to 10–05, and 10–05 to 10–06, re-
spectively. -ese illustrations clearly indicate the perfor-
mance of NN-BLMS for the solution of the fluid model. -e
AE further validates the accuracy and precision of the
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Figure 10: Comparison of NN-BLMS result with reference solution for case 1 of scenario 3 of MHD BLFSS.
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Figure 11: Comparison of NN-BLMS result with reference solution for case 3 of scenario 3 of MHD BLFSS.
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Figure 13: Comparison of NN-BLMS result with reference solu-
tion for case 3 of scenario 4 of MHD BLFSS.
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Figure 12: Comparison of NN-BLMS result with reference solu-
tion for case 1 of scenario 4 of MHD BLFSS.
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Figure 14: Continued.
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Figure 14: Error histogram studies for NN-BLMS result for cases 1 and 3 of scenarios 1–4. (a) Error histogram: case 1 of scenario 1. (b)
Error histogram: case 3 of scenario 1. (c) Error histogram: case 1 of scenario 2. (d) Error histogram: case 3 of scenario 2. (e) Error
histogram: case 1 of scenario 3. (f ) Error histogram: case 3 of scenario 3. (g) Error histogram: case 1 of scenario 4. (h) Error histogram:
case 3 of scenario 4.
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Figure 15: Regression illustrations for NN-BLMS result for case 1 of scenario 1 of MHD BLFSS.
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Figure 16: Regression illustrations for NN-BLMS result for case 3 of scenario 1 of MHD BLFSS.
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Figure 17: Regression illustrations for NN-BLMS result for case 1 of scenario 2 of MHD BLFSS.
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Figure 18: Regression illustrations for NN-BLMS result for case 3 of scenario 2 of MHD BLFSS.
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Figure 19: Regression illustrations for NN-BLMS result for case 1 of scenario 3 of MHD BLFSS.
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Figure 20: Regression illustrations for NN-BLMS result for case 3 of scenario 3 of MHD BLFSS.
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Figure 21: Regression illustrations for NN-BLMS result for case 1 of scenario 4 of MHD BLFSS.
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Figure 22: Regression illustrations for NN-BLMS result for case 3 of scenario 4 of MHD BLFSS.

Table 2: Results of NN-BLMS for all scenarios of MHD boundary layer flow.

Sen 1 case
Mean square error

Performance Gradient Mu Epoch Time
Training Validation Testing

1 7.78496E− 6 3.48513E− 5 1.4815E− 4 9.54E− 7 1.00E− 07 1.00E− 09 12 <1
2 1.12825E− 6 2.41437E− 6 4.0604E− 4 5.00E− 9 1.27E− 07 1.00E− 011 13 <1
3 1.4067E− 12 1.30713E− 9 1.0364E− 5 1.41E− 12 9.95E− 08 1.00E− 011 153 <1
Sen 2 case
1 2.078E− 05 4.2949E− 06 5.040E− 05 7.79E− 07 1.68E− 05 1.00E− 08 9 <1
2 3.494E− 05 1.6595E− 06 4.323E− 05 3E – 10 1.45E− 05 1.00E− 10 12 <1
3 6.130E− 05 7.7458E− 06 5.980E− 05 3.56E− 10 2.37E− 05 1.00E− 10 13 <1
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Table 2: Continued.

Sen 1 case
Mean square error

Performance Gradient Mu Epoch Time
Training Validation Testing

Sen3 case
1 3.70E− 10 1.527E− 07 7.261E− 06 3.7E− 10 9.97E− 08 1.00E− 08 479 <1
2 3.387E− 10 5.572E− 09 6.568E− 09 3.31E− 10 9.99E− 08 1.00E− 08 494 <0.5
3 7.531E− 10 5.333E− 09 1.137E− 09 7.53E− 11 9.17E− 08 1.00E− 09 397 <0.5
Sen4 case
1 2.91467E− 11 3.5794E− 08 3.2101E− 06 2.91E− 11 9.99E− 08 1.00E− 09 440 <0.5
2 3.3877E− 10 5.5722E− 9 6.5688E− 06 3.39E− 10 9.99E− 08 1.00E− 09 494 <0.5
3 6.4273E− 10 3.0440E− 10 9.3666E− 07 6.43E− 10 9.98E− 08 1.00E− 09 611 <0.5
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Figure 23: Comparison between proposed NN-BLMMwith reference numerical results for scenario 1 of MHDBLFSS. (a) Variation of beta.
(b) Analysis on AE.
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Figure 24: Comparison between proposed NN-BLMM with reference numerical results for scenario 2 of MHD BLFSS. (a) Variation ofM.
(b) Analysis on AE.
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Figure 25: Comparison between proposed NN-BLMMwith reference numerical results for scenario 3 of MHDBLFSS. (a) Variation of beta.
(b) Analysis on AE.
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Figure 26: Comparison between proposed NN-BLMM with reference numerical results for scenario 4 of MHD BLFSS. (a) Variation ofM.
(b) Analysis on AE.

Table 3: Comparsion of results of OHAM and NN-BLMM along with absolute errors: OHAM results [56]; MOHAM [56]; NN-BLMM
results.

η f(η)

β � 1,

f(η)

M � 2
f(η)

β � 1,

f(η)

M � 2
f(η)

β � 1,

f(η)

M � 2 Absolute errors β � 1, Absolute errors M � 2,

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.25 0.187589 0.186587 0.187589 0.186587 0.187589 0.186587 2.145872E− 15 1.245635E− 15
0.5 0.279172 0.271245 0.279172 0.271245 0.279172 0.271245 3.001245E− 15 2.124586E− 15
0.75 0.307801 0.306587 0.307801 0.306587 0.307801 0.306587 0.124578E− 15 1.854756E− 15
1.0 0.296615 0.295467 0.296615 0.295467 0.296615 0.295467 1.002145E− 15 2.548756E− 15
1.25 0.262061 0.265468 0.262061 0.265468 0.262061 0.265468 1.002145E− 16 6.325486E− 16
1.5 0.215993 0.212145 0.215993 0.212145 0.215993 0.212145 2.000458E− 16 1.548796E− 16
1.75 0.167061 0.166548 0.167061 0.166548 0.167061 0.166548 1.003546E− 17 1.254862E− 17
2.0 0.121651 0.125246 0.121651 0.125246 0.121651 0.125246 1.879631E− 17 1.658752E− 17
2.25 0.084524 0.085478 0.084524 0.085478 0.084524 0.085478 5.124569E− 18 2.154856E− 18
2.5 0.059257 0.059254 0.059257 0.059254 0.059257 0.059254 1.021022E− 19 3.265478E− 19
2.75 0.048559 0.048458 0.048559 0.048458 0.048559 0.048458 1.054632E− 19 1.658962E− 19
3.0 0.054407 0.054546 0.054407 0.054546 0.054407 0.054546 1.875962E− 20 1.897563E− 20

Mathematical Problems in Engineering 23



method. In future, we may apply this method to recent
developments in nanotechnology, energy, and biological
model like COVID-19 etc.

In order to validate the efficiency and accuracy of the
new proposed method, we compare its results with the
methods available in the literature like OHAM and
MOHAM as given in Table 3 and Figure 27. All of these
numerical and graphical diagrams ensure the precise, flex-
ible, and robust functionality of the NN-BLMS for the MHD
boundary layer flow over a stretching sheet.

5. Conclusions

-e computational strength in terms of the supervised
learning method NN-BLMS is exploited to obtain a nu-
merical solution for the MHD boundary layer flow over a
stretching sheet after the transformation of PDEs based on
the flow model into a system of ODEs by using similarity
variable conversions. -e optimal homotopy asymptotic
method is used for the present dataset for the flow model.
-e data containing training, testing, and validation for NN-
BLMS depending on various scenarios are determined by
80%, 10%, and 10%, respectively. -e close agreement of
both proposed and a reference result is 10− 2 to 10− 8. -is
means that the proposed model provides highly accurate
results for the fluidic system under consideration. -e ef-
ficacy and performance of the proposed NN-BLMT for the
solution of the flow model appears via mean squared error
functions, performance measures, regression metrics, and
histograms. Some of the key points are given as follows:

NN-BLMS contains less computational work and do
not required linearization and is fastly convergent.
NN-BLMS is simple in applicability.
NN-BLMS has better PF as compared to other nu-
merical methods.
NN-BLMS minimizes the absolute error.
-e correctness of NN-BLMS is authenticated by MSC,
EH, RG, AE, FT, PF, TS, and TR.

NN-BLMS uses 80%, 10% and 10% of the reference data
are used as a TR, TS, and VL.
Also, the physical variation of the parameters indicates
that the boundary layer thickness decreases by in-
creasing the Deborah, porosity, and magnetic
parameters.
-e boundary layer flows have many applications in
engineering and industries such as in the aerodynamic
extrusion of a polymer sheet from a die, hot rolling, the
cooling of an infinite metallic plate in a cooling bath,
the boundary layer along a liquid film in condensation
process, and glass-fiber production.
-e conducting boundary layer flows have industrial
and engineering applications such as MHD power
generation, MHD generators, and MHD pumps
productions.
-is procedure will be used for the nanofluid flow
problems and nanotechnology.
In future, the new types of platforms based on artificial
intelligence will be developed for the flow problems.

Nomenclature and SI units

a, b, c: Constants.
Β: Magnetic field (NmA− 1).
Ε: Electric field intensity (NC− 1).

F
⌢

1, F
⌢

2: Homotopic functions.
h: Distance between the plates(m).

M: Magnetic parameter
β: Boundary layer parameter
O: Origen.
P: Fluid pressure (Pa).

T: Fluid temperature (K)

u, v w: Velocities components (ms− 1).

uw: Stretching velocity (ms− 1).

x, y, z: Coordinates
X,Y: Topological space
α: -ermal diffusivity (m2s− 1).

η: Similarity variable.
μ: Dynamic viscosity (mPa).

υ: Kinematic coefficient of viscosity.
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dimensional Bödewadt flow of water and hexanol base fluid
suspended by Fe3O4 and MoS2 hybrid nanoparticles,” Pra-
mana, vol. 95, no. 2, p. 57, 2021.

[28] Kh. Hosseinzadeh, S. Roghani, A.R. Mogharrebi, M. Waqas,
and D. D. Ganji, “Investigation of cross-fluid flow containing
motile gyrotactic microorganisms and nanoparticles over a
three-dimensional cylinder,” Alexandria Engineering Journal,
vol. 59, no. 5, pp. 3297–3307, 2020.

[29] Y.-Q. Song, H. Waqas, K. Al-Khaled et al., “Bioconvection
analysis for Sutter by nanofluid over an axially stretched
cylinder with melting heat transfer and variable thermal
features: A Marangoni and solutal model,” Alexendria engi-
neering journal, vol. 60, pp. 4663–4675, 2021.

[30] K. Hosseinzadeh, E. Montazer, M. B. Shafii, and D. D. Ganji,
“Heat transfer hybrid nanofluid (1-Butanol/MoS2-Fe3O4)
through a wavy porous cavity and its optimization,” Inter-
national Journal of Numerical Methods for Heat and Fluid
Flow, vol. 31, no. 5, pp. 1547–1567, 2021.

[31] S. Salehi, N. Amin, and D. D. Ganji, “Hydrothermal analysis
of MHD squeezing mixture fluid suspended by hybrid
nanoparticles between two parallel plates,” Case Studies in
'ermal Engineering, vol. 20, Article ID 1000650, 2021.

[32] M. Gholinia, Kh. Hosseinzadeh, and D. D. Ganji, “Investi-
gation of different base fluids suspend by CNTs hybrid
nanoparticle over a vertical circular cylinder with sinusoidal
radius,” Case Studies in 'ermal Engineering, vol. 21, Article
ID 100666, 2020.

[33] Z. Sabir, A. Z. R. Muhammad, U. Muhammad, and
S. Muhammad, “Design of neuro-swarming-based heuristics
to solve the third-order nonlinear multi-singular
Emden–Fowler equation,” 'e European Physical Journal
Plus, vol. 135, no. 6, pp. 1–17, 2020.

[34] Z. Sabir, H. A. Wahab, M. Umar, M. G. Sakar, and
M. A. Z. Raja, “Novel design of Morlet wavelet neural network
for solving second order Lane-Emden equation,” Mathe-
matics and Computers in Simulation, vol. 172, pp. 1–14, 2020.

Mathematical Problems in Engineering 25



[35] A. Mehmood, Z. Aneela, S. A. Muhammad, and
A. Z. R. Muhammad, “Design of Nature-Inspired Heuristic
Paradigm for Systems in Nonlinear Electrical Circuits,”
Neural Computing and Applications, vol. 32, pp. 7121–7137,
2019.

[36] M. A. Z. Raja, A. Mehmood, S. A. Niazi, and S. M. Shah,
“Computational intelligence methodology for the analysis of
RC circuit modelled with nonlinear differential order system,”
Neural Computing & Applications, vol. 30, no. 6, pp. 1905–
1924, 2018.

[37] S. I. Ahmad, F. Faisal, S. Muhammad, and M. A. Z. Raja, “A
new heuristic computational solver for nonlinear singular
-omas–Fermi system using evolutionary optimized cubic
splines,” 'e European Physical Journal Plus, vol. 135, no. 1,
pp. 1–29, 2020.

[38] Z. Sabir, M. A. Manzar, M. A. Z. Raja, M. Sheraz, and
A. M. Wazwaz, “Neuro-heuristics for nonlinear singular
-omas-Fermi systems,” Applied Soft Computing, vol. 65,
pp. 152–169, 2018.

[39] M. A. Z. Raja, M. Ammara, A. K. Adeel, and Z. Aneela,
“Integrated Intelligent Computing for Heat Transfer and
-ermal Radiation-Based Two-phase MHD Nanofluid Flow
model,” Neural Computing and Applications, vol. 32, no. 9,
2019.

[40] M. A. Z. Raja, F. H. Shah,M. Tariq, I. Ahmad, and S. I. Ahmad,
“Design of artificial neural network models optimized with
sequential quadratic programming to study the dynamics of
nonlinear Troesch’s problem arising in plasma physics,”
Neural Computing & Applications, vol. 29, no. 6, pp. 83–109,
2018.

[41] M. A. Z. Raja, M. A. Manzar, F. H. Shah, and F. H. Shah,
“Intelligent computing for Mathieu’s systems for parameter
excitation, vertically driven pendulum and dusty plasma
models,” Applied Soft Computing, vol. 62, pp. 359–372, 2018.

[42] M. A. Z. Raja, M. A. Manzar, S. M. Shah, and Y. Chen,
“Integrated intelligence of fractional neural networks and
sequential quadratic programming for Bagley–Torvik systems
arising in fluid mechanics,” Journal of Computational and
Nonlinear Dynamics, vol. 15, no. 5, 2020.

[43] I. Ahmad, H. Ilyas, A. Urooj, M. S. Aslam, M. Shoaib, and
M. A. Z. Raja, “Novel applications of intelligent computing
paradigms for the analysis of nonlinear reactive transport
model of the fluid in soft tissues and microvessels,” Neural
Computing & Applications, vol. 31, no. 12, pp. 9041–9059,
2019.

[44] S. Akbar, M. A. Z. Raja, F. Zaman, T. Mehmood, and
M. A. R. Khan, “Design of bio-inspired heuristic techniques
hybridized with sequential quadratic programming for joint
parameters estimation of electromagnetic plane waves,”
Wireless Personal Communications, vol. 96, no. 1, pp. 1475–
1494, 2017.

[45] J. A. Khan, M. A. Z. Raja, M. M. Rashidi, M. I. Syam, and
A. M. Wazwaz, “Nature-inspired computing approach for
solving non-linear singular Emden-Fowler problem arising in
electromagnetic theory,” Connection Science, vol. 27, no. 4,
pp. 377–396, 2015.

[46] M. A. Z. Raja, T. Ahmed, and S. M. Shah, “Intelligent
computing strategy to analyze the dynamics of convective heat
transfer in MHD slip flow over stretching surface involving
carbon nanotubes,” Journal of the Taiwan Institute of
Chemical Engineers, vol. 80, pp. 935–953, 2017.

[47] M. A. Zahoor Raja, Z. Shah, M. Anwaar Manzar, I. Ahmad,
M. Awais, and D. Baleanu, “A new stochastic computing
paradigm for nonlinear Painlevé II systems in applications of
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