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Optimal structure of the micromixer with a two-layer serpentine crossing device was accomplished by a multiobjective genetic
algorithm and surrogate modeling based on a Navier–Stokes analysis using the trade-off objective functions behavior. ,e
optimization analysis was conducted with three design parameters, i.e., channel width to the pitch span (w/P) ratio, major channel
width to the pitch span (H/P) ratio, and channel depth to the pitch span (d/P) ratio. Two objective functions (i.e., mixing index and
pressure drop) with trade-off characteristics have been used to solve the multiobjective optimization problem.,e design domain
was predetermined by a parametric investigation; afterward, the Latin hypercube sampling method was employed to select the
appropriate design points surrounded by the design domain. ,e numerical data of the thirty-two design points were used to
create the surrogate model; among the different surrogate models, in this study, the Kriging metamodel has been used. ,e
concave pareto-optimal curve signifies the trade-off characteristics linking the objective functions.

1. Introduction

Proficient and fast mixing of the liquids is mainly a very
difficult task in the enhancement of lab-on-a-chip (LOC)
as well as μ-TAS investigations. For the low Reynolds
number where the inertia force of liquid is insufficient, the
mixing mechanism in the microfluidic system is mostly
conducted by the diffusion behavior of fluids as a re-
placement for of turbulence [1–4]. Furthermore, the
diffusion mechanism depends on retention time of fluids
that is very sluggish; thus, the process needs longer travel
length. To resolve the complexity of the mixing mecha-
nism in the microscale, numerous active mixing

mechanisms, such as ultrasonic vibration, electrokinetic
instability, and bubble-induced acoustic actuation, were
employed. Although the active micromixer provides fast
mixing, the mechanism to incorporate with microfluidic
components is very complicated. Also, the active device
creates difficulty in its production, process, and cleaning.
On the other hand, passive devices do not need any power
unit, and mixing can occur by the structural variations;
therefore, passive devices are very simple to fabricate and
amalgamate with the microfluidic system [4–6]. As a
result, passive micromixers turn out to be much admired
selection in the microfluidic analysis compared to the
active micromixers.
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Different commercial softwares have become a very
reliable and convenient tool to investigate the fluid flow and
mixing performance in microfluidic devices [7–9]. In recent
times, various micromixers have been invented to acquire
the proficient and fast mixing. In laminar flow regime, the
chaotic mechanism behavior created by the cyclic distur-
bance, with the fluid flow, can evidently develop the mixing
mechanisms [10, 11]. ,e three-dimensional serpentine
device [12] was investigated numerically to construct the
chaotic behavior through enlarging and shrinking of the
fluid flow streams. To generate the appropriate chaotic
behavior, the device requires relatively high Reynolds
number greater than 25. ,e micromixer with slanting
grooves at the base floor could produce the twisting flow
mechanism studied by Stroock et al. [13]. A chaotic
micromixer incorporating with square barriers on the
oblique grooves design is investigated by Kim et al. [14], and
the chaotic flow behavior of fluids was produced due to the
regular perturbation. Researchers [15] observed the mech-
anism of chaotic flow with staggered double-layer of
crisscross microdevices; expanding and crimping of the fluid
streams methods are responsible to create the chaotic ad-
vection. Two-layer crossing microchannels (TLCCM) were
proposed and designed [16]; the experimental and simula-
tion findings represent micromixers could perform very
high performance of mixing at (Re< 0.2) low Reynolds
number. Recently, the Lattice Boltzmann method (LBM)
[17–19] becomes a very popular and advance numerical tool
to solve the fluid flow phenomena.

Structural optimization through the CFD method be-
comes a popular and well-situated tool to enhance the
micromixers performance. Structural optimization of a
micromixer with slanted groove was performed [9] using
the electroosmotic flow mechanism; their study illustrates
the enhanced mixing performance. ,e study also repre-
sents that the objective function is very sensitive to grooves
angle and grooves depth. Structural optimize of the SHG
micromixer [20] was performed using the radial basis
neural network (RBNN) with three design parameters. ,e
structural optimization of the micromixer with a pattern
grooves microchannel was performed [21] with four dif-
ferent parameters; analysis confirms that the performance
of the micromixer was reasonably enhanced with the design
parameters. A surrogate model based on the weighted-
average (WTA) technique has been used to determine the
optimal geometry [22] of the modified Tesla structure in
terms of mixing performance and pressure drop; the two
objective functions were merged with a weighting factor to
create the single-objective optimization problem. ,e
structural optimization of the staggered herringbone
micromixer (SHG) with the pattern grooves microchannel
was performed using two different objective functions
[23, 24], i.e., mixing performance at the exit and pressure
drop. Researchers performed [25, 26] the double-objective
optimization process to find the best match of a micromixer
with sinusoidal walls (convergent-divergent) and a struc-
ture with Sigma unit. Concave pareto-optimal curves were
found to demonstrate the connection between objective
functions.

Recently, various researchers performed the develop-
ment of the different micromixer designs and optimization
methodologies. From the above discussion, we can conclude
that multiobjective optimization is beneficial to negotiate the
optimal finding between the various objective functions.,e
optimization technique (multiobjective) is a very popular
and convenient method for the designer to choose required
outfits. ,e existing work signifies a multiobjective opti-
mization problem of a two-layer serpentine crossing device
combined with the multiobjective genetic algorithm
(MOGA), Navier–Stokes analysis, and surrogate technique.
Two objective functions (i.e., mixing index and pressure
drop) with trade-off characteristics have been used to solve
the multiobjective optimization problem. ,e numerical
data of the thirty-two design points were used to create the
surrogate model; among the different surrogate models, in
this study, the Kriging metamodel has been used. ,e
concave pareto-optimal curve signifies the trade-off char-
acteristics linking the objective functions.

2. Dimensions of the Geometry

From our preceding work [27], to examine the performance
of the micromixer coupled with different layers (upper and
lower layer), a microdevice was projected (Figure 1). Inlets
were coupled with a crossing (main) microchannel and
formed 90° angle, represented in Figure 1(a). Due to the
repeated arrangement of ten mixing segments, the sample
fluid streams splits and rejoined repetitively.,e dimensions
of the device were as follows: major channel width
(H� 1.07mm), channel width (w � 0.15), depth of the each
channel (d� 0.15mm), pitch span (P � 0.64), vertical seg-
ment (b� 0.15), and number of mixing units is ten.

3. Numerical Method

,e investigation of the flow of the sample fluid and mixing
performance study was performed through an inclusive CFD
software package i.e., ANSYS CFX-15.0® [28]. ,e subse-
quent three-dimensional (3D) continuity (steady) and
Navier–Stokes equations were solved analytically to carry
the numerical investigations.

Mass equation is as follows:

∇ · (ρV
→

) � 0. (1)

Momentum equation is as follows:

(V
→

· ∇)V
→

� −
1
ρ
∇p + ]∇2 V

→
, (2)

where the velocity, density, and kinematic viscosity of the
sample fluid were indicated by V, ρ, and ν, correspondingly.
,e unstructured grid system has been formulated using
ANSYS ICEM 15.0. ,e diffusion problem (which cannot be
completely ignored) was optimized using the higher-order
numerical method [29]. For each fluid particle, the mass
transport equation having steady density and viscosity are an
equation of advection-diffusion [30] that can be expressed as
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(v · ∇)C � α∇2C, (3)

where the diffusivity coefficient, α, and fluid concentration,
C, were symbolized. For the modeling of the diffusive mixing
phenomena, the scalar transport equation has been applied
for different micromixers investigation in recent studies and
experimentally validated [31–33].

To solve the above equations, subsequent circumstances
have been considered. At inlets and outlets, steady velocity of

fluid flow and atmospheric pressure were mentioned, cor-
respondingly, and zero speed of the fluid was considered at
the walls. Water and dye-water mixture were initiated at
inlet 1 and inlet 2, and the mass fraction of water was zero
and one, correspondingly. ,e water was found [16] at 25°C
as follows: 8.8×10−4 kg/m-s is the dynamic viscosity (μ) and
997 kg/m3 is the density (ρ) of the sample fluid [34]. ,e
coefficient of the diffusivity was considered 1× 10−11m2/s
[16] for the dye-water mixture. For the confirmation of the
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Figure 1: Diagram of the two-layer crossing micromixer [27]. (a) Structural view of upper and bottom layers. (b) Two-dimensional view of
the proposed micromixer. (c) ,ree-dimensional view of the proposed micromixer.
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highest quality of the results, the governing equation was
solved iteratively until the values of the normalized root
mean square (RMS) were less than 10−8. ,e performance of
the micromixer was articulated on a cross-sectional plane
along with the flow direction. For an explicit plane, the mass
fraction variation of the mixture is expressed as

σ �

�������������

1
N



N

i�0
ci − cm( 

2




, (4)

where the sampling points on plane are represented by N, at
point i, mass fraction is represented by ci, and optimal mass
fraction is represented by cm. Satisfactory sampling points
were measured to confirm the highest quality of the result.
For any particular plane, the mixing index is expressed as

M � 1 −

����

σ2

σ2max




, (5)

where σ and σmax symbolize the deviation of the concen-
tration (standard deviation) at any cross-sectional plane and
maximum deviation. ,e superior value of M indicates
better mixing quality, where the mixing index of the sample
fluids changes from zero to one. ,e Reynolds number has
been used to approximate the velocity of the sample fluids
articulated as follows:

Re �
ρVD

µ
, (6)

where D characterizes the diameter (hydraulic) of the inlet
channel.

4. Design Variables Selection and Objective
Functions Determination

For structural optimization of the micromixer design, the
effective parameters have been confirmed through the
parametric study. ,e most important and crucial practice
throughout the optimization problem is to pick the proper
design boundaries to facilitate the value of objective functions.
,e involved parametric analysis was examined to pick the
sensitive parameters for multiobjective optimization. ,ree
geometric parameters (dimensionless), i.e., channel width to
the pitch span (w/P) ratio, major channel width to the pitch
span (H/P) ratio, and channel depth to the pitch span (d/P)
ratio, were selected to formulate an optimization problem for
the projected micromixer. ,e variety of the design (three)
variables was constrained as given in Table 1.,e result of the
design parameters (i.e., H/P, d/P, and w/P) on the perfor-
mance of the mixing index at Re� 40 has been studied as
shown in Figure 2. Length of the micromixer was constant
during investigations. At Re� 40, the mixing performance at
the outlet of the microdevice is marginally varied with the
design parameter w/P. ,e result signifying the deviation of
mixing index values was very much sensitive to H/P (42%
deviation within constrain) than to d/P (31% deviation within
constrain) and w/P (25% deviation within constrain).

In this study, the LHS technique was utilized to select the
(thirty-two) design points. To examine the trade-off be-
havior, two objective functions have been considered,
namely, mixing enhancement (FME at Re�50) and overall
pressure loss (F∆P at Re�50) at Reynolds number 50. Table 2
provides the reference design with objective functions
values. ,e overall pressure loss is related with the energy
required to drive the sample fluids during mixing. Overall
pressure loss has been estimated using variation among area-
weighted average pressure on a cross-sectional plane to be
found at first vertical unit and at the end of the mixing unit.

5. Surrogate Construction and MOGA

To formulate the multiobjective optimization problem, the
effective design parameters and appropriate design space
were chosen cautiously. To compute the values of the ob-
jective functions, the 3D Navier–Stokes analysis was used at
each design points. ,e surrogate model has been formu-
lated on the basis of the objective functions values. Surrogate
has been formulated to diminish the computational period,
as the multiobjective optimization [35] procedures require
lots of calculations of the objective functions values in the
design space. ,e flow chart for the multiobjective opti-
mization process to create a global pareto-optimal curve
(POF) is shown in Figure 3. ,e hybrid MOGA has been
considered for the solutions of the global pareto-optimal
font [36]. Among various surrogate techniques, the Kriging
model has been found very suitable match for this work.

,is is the deterministic method for the optimization
procedure, also nominated as Kriging metamodeling [37].
,e model is a function of linear polynomial combined with
the Gauss correlation function. ,e Kriging model mathe-
matically expressed as a pair of the global model and de-
parture can be articulated as

Table 1: Design variables and their constrains.

Design variables Lower limit Upper limit
w/P 0.28 0.57
H/P 1.26 1.89
d/P 0.16 0.31
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Figure 2: Effect of the design on the mixing index at Re� 40.
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F(x) � f(x) + Z(x), (7)

where f(x) is the global model, F(x) is the required function
which is unknown, and Z(x) represents the localized vari-
ation. Z (x) is used to integrate the sampled data points
through the Gaussian correlation technique with nonzero
and mean zero covariance. ,e following equation has been
used to articulate the covariance matrix:

cov z xi( , z xj   � σ2 exp − 
N

k�1
Θk x

k
i − x

k
j 

2
⎛⎝ ⎞⎠, (8)

where N is the design variables, σ is the standard deviation,
and Θ represents the correlation parameter which has been
used to construct a relation among the sample data next to
the k direction.

6. Result and Discussion

,e good quality grid system is very much essential to di-
minish the numerical incorrectness to stimulate using the
discretization process. To perform the study, the grid system
with tetrahedral mesh used is shown in Figure 4. ,e grid
sensitivity analysis was performed for the enhancement of
the mixing index along the microchannel length to deter-
mine the suitable number of nodes with the grid system.
Grid systems with four different numbers of nodes (i.e.,
0.72×106, 1.42×106, 1.74×106, and 1.89×106) were exe-
cuted for the grid dependency test at Re� 50 for the ref-
erence micromixer (i.e., w/P� 0.47, H/P� 1.67, and d/
P� 0.24) as shown in Figure 5. A slight difference in mixing
performance along the channel length has been visualized
for number nodes 1.74×106 and 1.89×106. ,erefore, a grid
system having 1.74×106 numbers of nodes was preferred as
the optimal grid system for further simulations. ,e nu-
merical model was evaluated qualitatively and quantitatively
and with the experimental findings in our earlier article [38].

Mixing index progression is estimated as a function of
downway channel length for the micromixer at different
Reynolds numbers, i.e., 0.2, 10, 30, 60, and 80 (Figure 6).
Succeeding planes (cross-sectional) positioned at every
crossing point of the microstructures has been considered to
estimate the mixing index. Unluckily, for insufficient inertia
energy of sample fluids and the residual period of fluid time,
the lowest mixing index was observed at Re� 10. Beyond
this, Reynolds number coincidentally by strong inertia en-
ergy of sample fluids mixing performance enhances sig-
nificantly as Reynolds numbers increase.

Figure 7 shows the 3D streamlines of the sample fluids to
be mixed signifying two various color initiated using each

inlets (inlet 1 and inlet 2) at Re � 10, 30, and 80 were
captured to examine the flow configuration which developed
the mixing quality. Primarily, sample fluids mixed at the
center of the upright segment and go through to the main
microchannel. Because of the microchannel construction,
the fluid streams are keeping their initial flow passage after
the contact of the sample fluid to be mixed. Next, different
colored streams came into contact at the very first crossing
point. A portion of streamlines is swapped; thus, elongation
and thinning of the sample fluids interface occurred at the
crossing points which develop the chaotic advection phe-
nomenon. Hence, the two-colored fluid streams are regu-
larly separated into many sublayers throughout a succession
of the mixing units. ,e above mechanism of fluid flow
expanded the interfacial segment of flow fluids and reduces
the diffusion period through the sample fluids layers;
therefore, the method assists the rapid diffusion process and
prompt mixing. ,ese processes are rapidly amplified as the
Reynolds numbers increases consequently increasing the
mixing performance rapidly.

On the basis of the multiobjective optimization algo-
rithm as described, the POFs portentous of the behavior of
optimal trade-off involving the pair of (two) contradictory
objective functions (mixing enhancement and overall
pressure loss) has been obtained. Figure 8 demonstrates the
POF for above two objective functions, i.e., FME at Re�40 vs.
F∆P at Re�40. As shown in figure, the concave POF curve
corresponds to a considerable development in the mixing
index with the increase in the pressure drop. Each solution
within the POF is a global pareto-optimal solution; there-
fore, every objective function has comparable importance
within the pareto-optimal solutions. Six different pareto-
optimal designs (PODs) have been selected carefully on the
POF curve to investigate the pareto-optimal solution. At the
top extreme end, the POD-1 signifies the maximum mixing
performance value with the minimum overall pressure loss;
on the other hand, the POD-6 shows the maximum value of
overall pressure loss with the lowest mixing performance
value. As mentioned, the behavior of objective functions are
paradoxical; thus, the improvement of any objective func-
tion (i.e., mixing enhancement) guide to degradation of the
other objective functions (i.e., overall pressure loss). ,e
behavior trade-off study demonstrates that maximum
mixing performance values could be found at the uppermost
overall pressure loss value, while lower overall pressure loss
values represent the lower value of the mixing performance.
From Figure 8, as contrast to POD-6, POD-1 signifies 38%
comparative improvement in the mixing performance, with
307.4% improvement in the overall pressure loss.

,e accurateness of the optimization algorithm has been
evaluated using numerical findings. ,e numerical solutions
of six PODs (i.e., 1, 2, 3, 4, 5, and 6) have been performed as
given in Table 3. Table represents the assessment of objective
functions values calculated by numerical simulation and
with the surrogate predicted values at Reynolds number 50.
Table also represents the variation in the mixing enhance-
ment at the exit, and overall pressure loss was exaggerated by
the design parameters w/P and d/P; on the other hand, the
other parameter, H/P, remains almost constant through the

Table 2: Reference design with objective functions values.

Reference design
Design
variables Objective functions

w/P H/P d/P Mixing index at
Re� 50

Pressure drop (Pa) at
Re� 50

0.47 1.67 0.24 0.69 1.32×103

Mathematical Problems in Engineering 5



POF. ,e error proportion enhances as the PODs curve
proceeds from top to bottom. Table also corresponds to a
good match (between 3.66% and 10.0%) connecting the
numerical analysis values and surrogate predicted values.

Figures 9(a) and 9(b) represent the plot of velocity
vectors and local vorticity deviations on the planes per-
pendicular to the flow direction (y-z) at different PODs (i.e.,
POD-1 and POD-6), respectively. ,e plane was taken at the
end of the last unit. Two reverse revolving vortices have been
observed in each y-z planes. ,e micromixer with POD-1
shows couple of tiny circular-shaped (reverse revolving)
vortices packed within the whole plane; on the other hand,

(Design of experiments)
selection of design

space and design points

(Numerical analysis)
calculation of the objective

functions at each design
point

(Surrogate
construction)

kriging method [37] 

(MATLAB optimization toolbox)
invokes gamultiobj function in MATLAB [34] to

generate pareto-optimal solutions

(Pareto-optimal front)
representation of solutions in

functional space 

(Representative
points)

cluster points 

(Problem formulation)
min f (x) = f1 (x), f2 (x), ...., fM (x)

subject to g (x) ≤ 0, h (x) = 0

Figure 3: Multiobjective optimization algorithm used in this study.

y

x
0 0.00035

0.000175 0.000525
0.0007 (m)

Figure 4: Tetrahedral grid system used in this study.
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the micromixer with POD-6 represents couple of oval-
shaped vortices (reverse revolving) reallocated to the right
wall; therefore, the strength of velocity vectors become
comparatively weaker.

,e velocity vector for the micromixer with POD-1
indicates the strong crosswise sample fluid flow mechanism,
and vectors are almost equally spread to the plotted plane.

,e strongest crosswise fluid flow mechanism makes the
variation in performance of mixing for the micromixer with
POD-1 as compared to the micromixer with POD-6.
Figure 9(b) represents the vorticity distributions (local),
captured for the micromixer with POD-1 and POD-6 on the
y-z plane. ,e vorticity was mathematically calculated using
the following method:

Re = 10

Re = 30

Re = 80

Figure 7: Streamlines distribution invented from inlets (inlet 1 and inlet 2) for the proposed micromixer for Re� 0.2, 10, 30, 60, and 80.
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Figure 8: Pareto-optimal front for mixing enhancement and overall pressure loss at Re� 40 (FME at Re� 40 vs. FΔP at Re� 40).

Table 3: Objective function values at six different PODs (mixing enhancement at the exit and pressure drop at Re� 40).

PODs
Design variables Surrogate prediction Numerical analysis % error
H/P w/P d/P Mixing enhancement Pressure drop (Pa) Mo Pressure drop (Pa) Mo Pressure drop (Pa)

1 1.78 0.33 0.21 0.86 1946.5 0.83 1512.00 3.61 28.74
2 1.74 0.39 0.22 0.82 1436.2 0.79 1034.50 3.80 38.83
3 1.75 0.42 0.21 0.77 1078.0 0.70 781.33 10.00 37.97
4 1.76 0.41 0.20 0.72 793.2 0.66 577.25 9.09 37.41
5 1.72 0.38 0.22 0.68 603.6 0.62 487.01 9.68 23.94
6 1.73 0.33 0.19 0.62 477.3 0.65 382.2 −4.62 24.88
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ωx �
zvz

zy
−

zvy

zz
 , (9)

where ωx is the vorticity through x-direction, w is the ve-
locity component along z direction, and v is the velocity
component along y direction. ,e development of nor-
malized circulation for the micromixer with POD-1 and
POD-6 is shown in Figure 9(b).

7. Conclusions

Optimal structure of the micromixer with a two-layer ser-
pentine crossing device was accomplished by a multiobjective
genetic algorithm and surrogate modeling based on a
Navier–Stokes analysis using the trade-off objective functions
behavior. ,e optimization analysis was conducted with three
design parameters, i.e., channel width to the pitch span (w/P)
ratio, major channel width to the pitch span (H/P) ratio, and
channel depth to the pitch span (d/P) ratio. Two objective
functions (i.e., mixing index and pressure drop) with trade-off
characteristics have been used to solve the multiobjective

optimization problem. ,e contradictory behaviors of the
objective functions have been explained through concave POF.
,us, the multiobjective optimization system demonstrates
enhancement in the mixing index leaned to rise in the overall
pressure loss and vice versa. ,e numerical data of the thirty-
two design points were used to create the surrogate model;
among different surrogate models, in this study, the Kriging
metamodel has been used. Results show, as contrast to POD-6,
the POD-1 signifies 38% comparative improvement in the
mixing performance, with 307.4% improvement in the overall
pressure loss. ,e study also concludes a good match (between
3.66% and 10.0%) connecting the numerical analysis values and
surrogate predicted values.
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