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)is research article deals with the nonlinear thermally radiated influences on non-Newtonian nanofluid considering Jeffrey
fluid in a rotating system. )e governing equations of the nanofluid have been transformed to a set of differential nonlinear
equations, using suitable similarity variables. )e Homotopy Analysis Method (HAM) and Runge–Kutta Method of order 4
(RK Method of order 4) are used for the solution of the modeled problem. )e variation of the skin friction, Nusselt number,
Sherwood number, and their impacts on the velocity distribution, temperature distribution, and concentration distribution
have been examined.)e influence of the Hall effect, rotation, Brownian motion, porosity, and thermophoresis analysis are also
investigated. Moreover, for comprehension of the physical presentation of the embedded parameters, Deborah number β,
viscosity parameter R, rotation parameter Kr, Brownian motion parameter Nb, porosity parameter c, magnetic parameter M,
Prandtl number Pr, thermophoretic parameter Nt, and Schmidt number Sc have been plotted and deliberated graphically. For
large values of Brownian parameter, the kinetic energy increases, which in turn increases the temperature distribution, while
the thermal boundary layer thickness decreases by increasing the radiation parameter, and the Hall parameter increases the
motion of the fluid in horizontal direction. Also, the mass flux has been observed as a decreasing function at the lower
stretching plate.

1. Introduction

)e word nanofluid denotes the nanoparticles deferred into
the base fluid. Usual examples of nanoparticles contain
metals such as copper, aluminum, and silver, nitrides like
silicon nitride, carbides such as silicon carbides, oxides like
aluminum oxide, and nonmetals such as graphite. )e usual
liquids are water, oil, and ethylene glycol. )e combination
of nanoparticles through base liquid enormously develops
the thermal qualities of the vile liquid. Choi et al. [1] in-
troduced the term nanofluid and heat transfer features of vile
fluids, such as thermal conductivity that is enriched by the
addition of nanoparticles into it [2, 3].

Magnetohydrodynamics (MHD) are the information of
themagnetic assets of electrically conducting fluids. Plasmas,
electrolytes, water, and liquid metals are examples of the
such magnetofluids. Hannes Alfven [4] was the first to in-
troduce the field of MHD. Magnetohydrodynamics have
several applications in the field of industries and engineering
such as plasma, crystal growth, magnetohydrodynamic
sensors, liquid-metal cooling of reactors, electromagnetic
casting, MHD power generation, and magnetic drug tar-
geting. MHD depends on the strength of the magnetic field;
the stronger the magnetic field, the greater the magneto-
hydrodynamic effects, and vice versa. B.J. Gireesha et al.
studied the thermal radiation on MHD boundary layer flow
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of Jeffrey nanofluid over stretching sheet [5]. When the
magnetic force becomes stronger, then we cannot neglect
the Hall effects produced due to the Hall currents. Hall
effect is produced due to the potential difference across an
electrical conductor when a magnetic field is acting in a
direction vertical to that of the flow of current. Edwin Hall
[6] was the pioneer to give the concept of Hall current. It is
of substantial status and attractive to investigate hydro-
dynamical problems improved by the influence of Hall
currents with their results. Hall currents change flows to
cross flow, making it three-dimensional. Pop and Soun-
dalgekar [7] have studied Hall effect on time independent
hydromagnetic viscous fluid flow. Ahmed and Zueco [8]
have investigated the heat and mass transmission influence
to flow in a rotating porous channel by captivating the
influence of Hall current and obtained exact solution of the
modeled problem. Abdel Aziz [9] has studied Hall effects
on the nanofluid flow of viscid flow with heat transmission
through a stretching sheet. Hayat [10] has scrutinized the
influence of viscous dissipation on mixed convection
Jeffrey fluid flow over a vertical stretching surface under
the Hall and ion effects. Sulochana [11] has studied un-
steady fluid flow over a permeable medium in a rotating
parallel plate with Hall effects considering it in three di-
mensions. Because eccentric features of the nanoliquids
make them proficient in many applications, nanofluids are
used in the hybrid powered engines, pharmaceutical
procedures, fuel cells, and microelectronics, and currently,
they are mostly used in the field of nanotechnologies [12].
Wang et al. [13] have given a brief review on nanofluids on
the view of their experiments and applications. It enhances
the thermal conduction of the base liquid; hence, in the
investigation of the flow of nanofluids in a rotating system,
the scientists are intensely interested in it. Especially, the
flow of nanofluid between parallel plates is one of the
standard problems that have significant applications like in
accelerators, MHD power generators and pumps, purifi-
cation of crude oil, aerodynamic heating, petroleum in-
dustry, different automobiles sprays, and designing
cooling systems with liquid metal. Goodman [14] was the
first to study viscous fluid in parallel plates. Borkakoti and
Bharali [15] have investigated hydromagnetic viscous flow
between parallel plates, where one of them is being a
stretching sheet. Attia et al. [16] have examined viscous
flow between parallel plates with magnetohydrodynamics.
Sheikholeslami et al. [17] have investigated nanofluid flow
of viscous fluids between parallel plates with rotating
systems in three dimensions under the magnetohydro-
dynamics (MHD) effects. For the solution of the modeled
problems, they used numerical techniques and described
the effects of achieving parameters in detail. Mahmoodi
and Kandelousi have [18] investigated the hydromagnetic
effect of kerosene− alumina nanofluid flow in the occur-
rence of heat transfer analysis, and differential transfor-
mation method is used in their work. Tauseef et al. [19] and
Rokni et al. [20] have observed the magnetohydrody-
namics and temperature effects on nanofluids flow in
parallel plates with rotating system. M. Fiza et al. Studied
three-dimensional MHD rotating flow of viscoelastic

nanofluid in porous medium between two parallel plates
[21]. In the current situation, different hybrid technology is
developing day by day. In order to save the energy, the
hybrid technology is developed. Fluid flow in a rotating
system is a natural phenomenon. In fact, this rotation
exists among the fluid particles internally and increases
when fluid starts flowing. So, in the natural phenomenon
of fluid, flow rotation exists up to some extent. )e ex-
perimental idea of the viscous fluid motion in a rotating
system was given by Taylor and Geoffrey [22]. Greespan
[23] has investigated the detailed study of fluid movement
in a rotating system. Vajravelua and Kumar [24] have
examined magnetohydrodynamics viscous fluid flow
amongst binary horizontal and parallel plates in a rotating
system, in which one plate is stretched, and the other is
permeable. )ey obtained numerical solution and studied
the effect of physical parameters. )eir work was extended
by Mehmood and Asif [25]. In everyday life’s industries
and technologies, non-Newtonian fluids are used fre-
quently, and extremely less studies of Newtonian nano-
fluids to rotating system are found. Hayat et al. [26] have
studied non-Newtonian fluid flow with rotation using
different models and extended their work in two and three
dimensions. Nadeem et al. [27] have investigated micro-
polar nanofluid in two horizontal and parallel plates with
rotation. )ey obtained the analytical solution of the
problem and discussed the embedded parameters. Jena
et al. [28] have investigated viscoelastic fluid with the effect
of MHD and internal heat in porous channel with rotating
system. Jeffrey fluid is the significant subclass of non-
Newtonian fluids, which were initially studied by Jeffrey
[29]. Shehzad et al. [30] have extended the same work
using convective conditions. )e detailed study of Jeffery
fluid other than the rotating system can be seen in [31–37].
In the field of science and engineering, most of the
mathematical problems are complex in their nature, and
the exact solution is almost extremely difficult or even not
possible. So, for the solution of such problems, numerical
and analytical methods are used to find the approximate
solution. One of the important and popular techniques for
the solution of such type problems is the Homotopy
Analysis Method. It is a substitute method, and its main
advantage is applying to the nonlinear differential equa-
tions without discretization and linearization. Liao [38–40]
was the first to investigate this technique for the solution of
nonlinear high ordered problems and generally proved
that this technique is quickly convergent to the approxi-
mated series solutions. Z. shah et al. applied successfully
this technique to solve the three-dimensional third-grade
nanofluid flow in a rotating system between parallel plates
with Brownian motion and thermophoresis effects [41].
Also, this technique provides series solutions in the form of
a single variable. Solution by this technique is significant,
because it involves all of the physical parameters of a
problem, and we can easily discuss its behavior. In all these
studies, the impact of Hall current with MHD on Jeffrey
fluid has not been studied. So, for this aim, the impact of
Hall current with MHD Jeffrey nanofluid with nonlinear
thermal radiations in the rotating frame is considered.
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2. Problem Formulation

In this section, we describe the physical description and
mathematical description of the proposed model.

2.1. Physical Description. )e flow of electrically conducting
Jeffrey nanofluid between two parallel and horizontal plates
is considered. )e distance between the upper and lower
plates is denoted with h. )e coordinate system is selected in
such a method that the plate and fluid both are rotated about
the y-axis with an angular velocity Ω.. )e two forces are
assumed to have the same magnitude, but they are opposite
in direction, to stretch the lower plate along x-axis, so that
the origin (0, 0, 0) remains constant. )e flow of the fluid
and temperature transfer is considered in steady state, which
is incompressible, laminar, and stable. )e surface tem-
perature of the nanofluid between parallel plates is taken
after the influence of convective heating process, and its
temperature of the hot fluid is T0 under the surface. )e free
stream is occupied at a uniform ambient nanofluid tem-
perature Th with T0 >Th. A magnetic field B0 is acting in y
direction, with which the system is rotating. In addition, the
effect of Hall current is taken in the nanofluid model. Here,
the fluids are electrically conducting, and when the magnetic
field becomes stronger, the Hall current is produced, which
affects the nanofluids. )is effect gives increase to a force in
z− direction, which tempts a cross flow in the same direction,
and hence, the nanofluid flows in a deflected way into three
dimensions, as shown in Figure 1.

2.2. Mathematical Description. Ohm’s law in generalized
form containing the Hall current is written as [3–7]

J +
ωete

B0
×(J × B) − σnf(E + V × B) −

σnfPe

ene

� 0. (1)

Here, J � (Jx, Jy, Jz) represents the current density, B �

(0, B0, 0) represents the magnetic field, E represents the
intensity of electric field, V � (u, v, w) represents the ve-
locity components, ωe represents the oscillating frequency of
the electron, te denotes the time of electron collision, σnf

denotes the electrical conductivity, e is the charge of elec-
tron, ne is the number density of electron, and Pe is the

pressure of the electron. We take E � 0, because the applied
voltage imposed on the flow of nanofluid is zero. In case of
weak ionized molecules, the Law of Ohm in a generalized
form in the view of the aforementioned circumstances
provides (Jy � 0) in the flow field. Using these assumptions,
we get Jx and Jy as
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2
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2 (mu − w), (2)
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2 (u + mw). (3)

Here, m � ωete is the Hall parameter. )e rheological
model that illustrates the Jeffrey fluids is known as [24–34]

S �
μ
λ1

L+λ2
DL
Dt

􏼒 􏼓. (4)

S denotes Cauchy stress tensor, μ denotes the dynamic
viscosity of the Jeffrey fluid L � ∇v + (∇v)T, and λ1 and λ2
are a ratio of relaxation and retardation time respectively.
Observance in light of the above deliberation, the elementary
equations of continuity, velocity, energy, and concentration
are articulated as
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Figure 1: Physical model of the nanofluid flow problem.

Mathematical Problems in Engineering 3



ρf u
zv

zx
+ v

zv

zy
􏼠 􏼡 � −

zP

zy
+

μ
1 + c1

z
2
v

zx
2 +

z
2
v

zy
2􏼠 􏼡 +

μc2

1 + c1

· 2
zv

zy

z
2
v

zy
2 + 2

zu

zy

z
2
v

zy zx
􏼠 􏼡 +

z
3
v

zx
3 +

z
3
v

zx zy
2􏼠 􏼡u +

z
3
v

zx
2
zy

+
z
3
v

zzy
2􏼠 􏼡v􏼢

+
z
2
u

zx zy
+

z
2
v

zx
2􏼠 􏼡

zu

zx
+

z
2
u

zy
2 +

z
2
v

zx zy
􏼠 􏼡

zv

zx
􏼣,

(7)

ρf u
zω
zy

+ v
zω
zy

− 2Ωu􏼠 􏼡 �
μ

1 + λ1

z
2ω

zx
2 +

z
2ω

zy
2􏼠 􏼡 −

σnfB
2
0

1 + m
2 (mu − w) +

μc2

1 + λ1
−
]
κ

w

·
z
2ω

zy
2 +

z
2ω

zx zy
􏼠 􏼡

zv

zy
+ u

z
3ω

zy
3 + v

z
3ω

zx
2
zy

􏼠 􏼡v +
z
2ω

zx zy

zu

zy
+

zu

zx

z
2ω

zx
2 +

z
3ω

zx
3 +

z
3ω

zx zy
2􏼠 􏼡􏼢 􏼣,

(8)

u
zT

zx
+ v

zT

zy
+ w

zT

zz
� α

z
2
T

zx
2 +

z
2
T

zy
2 +

z
2
T

zz
2􏼠 􏼡 −

1
(ρc)f

zqr

zy
−

Q0

(ρc)f

T − T0( 􏼁

+ τ DB

zC

zx

zT

zx
+

zC

zy

zT

zy
+

zC

zz

zT

zz
􏼨 􏼩 +

DT

TC

􏼠 􏼡
zT

zx
􏼠 􏼡

2

+
zT

zy
􏼠 􏼡

2

+
zT

zz
􏼠 􏼡

2⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦,

(9)

u
zC

zx
+ v

zC

zy
+ w

zC

zz
� DB

z
2
C

zx
2 +

z
2
C

zy
2 +

z
2
C

zz
2􏼠 􏼡 +

DT

T0

z
2
T

zx
2 +

z
2
T

zy
2 +

z
2
T

zz
2􏼨 􏼩. (10)

Here, u, v and w symbolize the components of the ve-
locity along x, y and z directions. In equations (2)–(10), the
symbols υ, μ represent the coefficient of kinematic and
dynamic viscosities, respectively, ρ is density, σ denotes
electrical conductivity, and Ω is the angular velocity. In
equation (9), T represents temperature, α is the thermal
diffusivity, cp represents specific heat, thermal conductivity
of fluid is represented by k, the coefficient of Brownian
diffusion is denoted by DB, and the thermophoretic diffusion
coefficient is denoted by DT. )e τ � ((ρc)p/(ρc)f) is de-
fined as nanoparticles and effective heat capacity ratio, ρf

denotes the base fluid density, ρb represents density of the
particles, and C is coefficient concentration of the fluids
particles. qr indicates the radioactive heat fluctuation, which
is given by Rosseland approximation as
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zT
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where φ denoted the Stefan Boltzmann constant and K

denoted the mean absorption coefficient. Using Taylor Se-
ries, equation, we get
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Inserting equations (13) into (11), it is reduced to the
form
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For state problem, the boundary conditions are defined
as

u � ax,

v � 0,

w � 0,

T � Th,

C � Cd, wheny � 0,

u � v � 0,

w � 0,

T � T0,

C � C0, wheny � h.

(15)

)e nondimensional variables are presented as

u � αxf′(η),

v � − αhf(η),

w � αxg(η),

Θ(η) �
T − Th

T0 − Th

,

Φ(η) �
C − Ch

C0 − Ch

,

(16)

where η � (y/h).
Substituting the nondimensional variables from the

equations (16) in (1)–(10), equation (1) holds identically, and
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the other governing equations are reduced to the following
form:
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Using of equation (16) in (15), it reduced the boundary
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)e nondimensional physical parameters after gener-
alization are
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where Kr denotes rotation parameter, M is the magnetic
parameter, Re is the viscosity parameter, c is the porosity
parameter, β is the Deborah number, Pr is P and tl number,
Sc denotes the Schmidt number, Nb is the parameter of
Brownian, Rd is the radiation parameter, and Νt is the
thermophoretic parameter.

)e Skin friction is defined as
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where Rex is called local Reynolds number defined as
Rex � (Uwx/]). )e Nusselt number is defined as Νu �

(hQw/􏽢k(T0 − Th)). Qw is the heat flux and Qw � − 􏽢k(zT/
zy)y�0. )e Sherwood number is defined as Sh � (hJw/
DB(C0 − Ch)), Jw is the mass flux, and Jw � − DB(zC/zy)y�0.
Here, the dimensionless forms of Νu and Sh are obtained as

Νu � − 1 +
4
3
Rd Θf + Θf − 1􏼐 􏼑􏼐 􏼑Θ􏼒 􏼓Θ′(0),

Sh � − Φ′(0).

(25)

3. Solution by HAM

Liao was the first one who proposed the Homotopy analysis
method (HAM). He deduced HAM from one of the fun-
damental ideas of the topology called Homotopy. He used
twoHomotopic functions in the derivation of this technique.
)e functions are called Homotopic functions when one of
them can be continuously distorted into another. Consider
that f1, f2 are two functions that are continuous, and X,
Yare two topological spaces, where f1 andf2 map from X to
Y, and then f1 is said to be homotopic to f2 if they produce
continuous function 􏽢F

􏽢F: X ×[0, 1]⟶ Y. (26)

such that ∀, x ∈ Χ
􏽢F[x, 0] � f1(x) & 􏽢F[x, 1] � f2(x). (27)

)en, this mapping 􏽢F is called Homotopic. Ham is a
substitute method, and it is mainly applied to the nonlinear
differential equations without discretization and lineariza-
tion. )is technique has several advantages; some of them
are as follows: (i) it is free from the values of the parameters,
which may be small or large. (ii) It assures the convergence
of the solution. (iii) It is self-determining for an assortment
of base function and linear operator.

)e solutions of equations (17)–(20) with the consistent
boundary conditions (21) are obtained by the use of analytic
technique. Solution results obtained by HAM contained the
assisting parameters h, which adjust and control to converge
the solutions and bases functions. )e initial guesses are

f0(η) � η − 2η2 + η3,
g0(η) � 0,

Θ0(η) � 1 − η,

Φ0(η) � 1 − η.

(28)

)e linear operators are selected in the following way:

Lf(f) � fηηηη,

Lg(g) � gηη,

LΘ(Θ) � Θηη,

LΦ(Φ) � Φηη.
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)e above-mentioned differential operators contents are
shown as follows:
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m�1κm where m � 1, 2, 3, . . . are arbitrary

constants.

3.1. Zeroth-Order Deformation Problem. Expressing
Ρ ∈ 0 1􏼂 􏼃 as an embedding parameter with associate pa-
rameters Zf, Zg, Zθ and Zϕ where Z≠ 0, then, the problem in
case of zero order deforms to the following form:
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􏽢f(η, P), 􏽢Θ(η, P), 􏽢Φ(η, P)).

(31)

)e boundary conditions in homotopic form are written
as

􏽢f(0, P) � 􏽢f′(0, P) � 􏽢g(0, P) � 􏽢Θ(0, P) � 􏽢Φ(0, P) � 0,

􏽢f(1, P) � 􏽢f′(1, P) � 􏽢g(1, P) � 􏽢Θ(1, P) � 􏽢Φ(1, P) � 0.

(32)

)e resultant nonlinear operators are

Nf(􏽢f(η; P), 􏽢g(η; P)) � 􏽢fηηηη(η; P) 1 + λ1( 􏼁
M

1 + m
2

􏽢fηη(η; P) + m􏽢gη(η; P)􏼐 􏼑 − c􏽢fηη(η; P)􏼠 􏼡

+ 1 + λ1( 􏼁 R 􏽢f(η; P)􏽢fηηη(η; P) − 􏽢fη(η; P)􏽢fηη(η; P)􏼐 􏼑 − 2Kr􏽢gη(η; P)􏼐 􏼑

+ β 2􏽢fηη(η; P)􏽢fηηη(η; P) − 􏽢f(η; P)􏽢fηηηη(η; P) − 􏽢fη(η; P)􏽢fηηηηη(η; P)􏼐 􏼑,
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Ng(􏽢g(η; P), 􏽢f(η; P)) � 􏽢gηη(η; P) − 1 + λ1( 􏼁
M

1 + m
2 m􏽢fη(η; P) − 􏽢g(η; P)􏼐 􏼑 − c􏽢g(η; P)

+ 1 + λ1( 􏼁 R 􏽢f(η; P)􏽢gη(η; P) − 􏽢g(η; P)􏽢fη(η; P)􏼐 􏼑 + 2Kr􏽢fη(η; P)􏼐 􏼑

+ β 􏽢gη(η; P)􏽢fηη(η; P) − 􏽢f(η; P)􏽢gηηη(η; P)􏼐 􏼑,

NΘ(
􏽢Θ(η; P), 􏽢f(η; P), 􏽢Φ(η; P)) �

d
dη

1 +
4
3
Rd Θf + Θf − 1􏼐 􏼑􏼐 􏼑Θ􏼒 􏼓 􏽢Θη(η; P)􏼔 􏼕

+ Pr R􏽢f(η; P) 􏽢Θη(η; P) + Nb 􏽢Φη(η; P) 􏽢Θη(η; P) + Nt 􏽢Θη(η; P)􏼐 􏼑
2

􏼒 􏼓,

NΦ(
􏽢f(η; P), 􏽢g(η; P), 􏽢Θ(η; P), 􏽢Φ(η; P)) � 􏽢Φηη(η; P) + RSc􏽢fη(η; P) 􏽢Φη(η; P)

+
Nt
Nb

􏽢Θηη(η; P).

(33)

Using Taylor’s series expansion to expand 􏽢f(η; P), 􏽢g

(η; P), 􏽢Θ(η; P) and 􏽢Φ(η; P) in termd of P, we get

􏽢f(η, P) � f0(η) + 􏽘
∞

i�1
fi(η),

􏽢g(η, P) � g0(η) + 􏽘
∞

i�1
gi(η),

􏽢Θ(η, P) � Θ0(η) + 􏽘
∞

i�1
Θi(η),

􏽢Φ(η, P) � Φ0(η) + 􏽘
∞

i�1
Φi(η),

(34)

where

fi(η) �
1
i!

􏽢fη(η, P)|P�0,

gi(η) �
1
i!

􏽢gη(η, P)|P�0,

Θi(η) �
1
i!

􏽢Θη(η, P)|P�0,

Φi(η) �
1
i!

􏽢Φη(η, P)|P�0.

(35)

3.2. ith-Order Deformation Problem. Differentiating zeroth-
order equation i th time, we obtained the i th order defor-
mation equations with respect to P, dividing by i! and then
inserting P � 0. So, ith order deformation equations are as
follows:

Lf fi(η) − ξifi− 1(η)( 􏼁 � hfR
f
i (η),

Lg gi(η) − ξigi− 1(η)( 􏼁 � hgR
g
i (η),

LΘ Θi(η) − ξiΘi− 1(η)( 􏼁 � hΘR
Θ
i (η),

LΦ Φi(η) − ξiΦi− 1(η)( 􏼁 � hΦR
Φ
i (η).

(36)

)e resultant boundary conditions are

􏽢fi � 􏽢f′i � 􏽢gi � 􏽢Θi � 􏽢Φi � 0, at η � 0,

􏽢fi � 􏽢f′ � 􏽢gi � 􏽢Θi � 􏽢Φi � 0, at η � 1,

R
f

i (η) � f
iv
i− 1 + 2Κrgi− 1 + 1 + λ1( 􏼁

· R 􏽘
i− 1

j�0
fi− 1− jf

″′
j − fi− 1− j
′ fj
″􏼒 􏼓⎡⎢⎢⎣

−
M

1 + m
2 fi− 1″ + mgi− 1′( 􏼁 − cfi− 1″ 􏼣

+ β􏽘
i− 1

j�0
2fi− 1− j
″f″
′
j − fi− 1− jf

iv
j f − fi− 1− j

′ f
v
j􏼒 􏼓,

R
g
i (η) � gi− 1″ − 1 + λ1( 􏼁R 􏽘

k− 1

j�0
fi− 1− jgj

′ − gi− 1− jfj
′􏼐 􏼑 + Krfi− 1′

−
M

1 + m
2 mfi− 1′ − gi− 1( 􏼁 − cgi− 1

+ β 􏽘
i− 1

j�0
gi− 1− j
′ fj
″ − fi− 1− jgj

″⎛⎝ ⎞⎠,

R
Θ
i (η) �

d
dη

1 +
4
3
Rd Θf + Θf − 1􏼐 􏼑􏼐 􏼑Θ􏼒 􏼓Θi− 1′􏼔 􏼕

+ Pr Re􏽘
i− 1

j�0
fi− 1− jΘj

′ + Nb􏽘
i− 1

j�0
Φi− 1− j
′ Θj
′⎡⎢⎢⎣

+ Nt􏽘
i− 1

j�0
Θi− 1− j
″ Θj
′⎤⎥⎥⎦,

R
Φ
i (η) � Φi− 1″ + RSc􏽘

i− 1

j�0
fi− 1− jΦj

′ +
Nt
Nb
Θi− 1″ ,

(37)

Mathematical Problems in Engineering 7



where

ξi �
1, if P> 1,

0, if P≤ 1.
􏼨 􏼩 (38)

)e overall homotopic solutions(fi, gi,Θi,Φi) of
equation (27) in terms of special solutions (􏽢fi, 􏽢gi,

􏽢Θi,
􏽢Φi) are

specified as

fi(η) � 􏽢fi(η) + κ1 + κ2η + κ3η
2

+ κ4η
3
,

gi(η) � 􏽢gi(η) + κ5 + κ6η,

Θi(η) � 􏽢Θi(η) + κ7 + κ8η,

Φi(η) � 􏽢Θi(η) + κ9 + κ10η.

(39)

4. Convergence of HAM Solution

When we compute the series solutions of the velocity,
temperature, and concentration functions to use HAM, the
assisting parameters Zf, Zg, ZΘ and ZΦ appear. )ese
assisting parameters are responsible for adjusting the con-
vergence of these solutions. In the possible region of Z,
Z-curves of f‴(0), g′(0),Θ′(0) and Φ′(0) for 12th order
approximation are plotted in Figures 2 and 3 for different
values of embedding parameter. )e Z-curves consecutively
display the valid region. Table 1 displays the numerical
values of HAM solutions at different approximations using
dissimilar values of parameters. It is clear from the table that
homotopy analysis technique is a speedily convergent
technique. )e region of convergence for the velocity dis-
tribution f(η) and g(η) is given as − 3≤ Z≤ 1 and − 3.8≤
Z≤ 1.7, respectively, while, for the temperature and con-
centration profile, the convergence regions are given as
− 2.6≤ Z≤ 0.5 and − 2.1≤ Z≤ 0.4, respectively.

5. Results and Discussion

5.1.GraphicalDiscussion. )epresent investigation has been
carried out to study the flow of non-Newtonian nanofluid
(considering the Jeffrey fluid) in a rotating system under the
influence of MHD between parallel plates. In addition, the
effect of Hall current is given, where the medium between
the plates is kept porous. )e main aim of this subsection is
to study the physical effects of different embedding pa-
rameters on the velocity distributions f(η), g(η), temper-
ature distribution Θ(η), and concentration distribution
Φ(η), which are illustrated in Figures (4)–(18).)e influence
of viscosity parameter Re on the velocity distributions f(η)

and g(η) is shown in Figures 4(a) and 4(b). It is clear that
increasing the viscosity parameter Re decreases the velocity
distributions f(η) and g(η). )e larger values of Re reduce
the viscous forces, which generate the stronger inertial
forces, and as a consequence, the velocity field retarded. )e
strong inertial forces resist the flow, and as a result, the
velocity distribution recues. Figure 5(a) displays the effect of
viscosity parameter Re on the temperature distribution
Θ(η), and the same effect of temperature distribution has
been observed, because the larger values of viscosity pa-
rameter Re strengthen the inertial forces and tend to reduce

the temperature field. Figure 5(b) shows the effect of Re on
the concentration distributionΦ(η). )e rise in Re increases
the concentration distribution Φ(η). It means that the
thermal conductivity contributed to improve the heat
transfer. Also, these observations have been found to be the
same as what has been discussed in Sheikholeslami et al. [17],
Mahmoodi et al. [18], and Jena et al. [20].)e influence ofΚr
on the velocity profiles has been shown in Figures 6(a), and
6(b). It is ostensible that when a rotation parameter Κr
increases, it raises the fluid motion, and this effect is clearer
at the stretching plate, because the rise in rotation parameter
Κr increases the Coriolis force, which results in a rise in
rotational velocity. An increase in rotation parameter of the
fluid increases the kinetic energy of the fluid particles, which
in turn increases the flow motion. )e effect of Hall pa-
rameter m on the velocity profiles f(η) and g(η) is shown in
Figures 7(a) and 7(b). )e Hall effect is the production of
potential difference. Here, the Hall parameter m plays an
important role in the nanofluid flow. )e large value of Hall
parameterm reduces the effective conductivity, which drops
the magnetic damping force, and so, the velocity profile
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Figure 2: Combined h curves of functions velocity f(η) and g(η)

profiles at 12th order approximation.
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Figure 3: Combined h curves of temperature and concentration
Θ(η) and Φ(η) profiles at 12th order approximation.
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along the y direction and greater value of Hall parameter m
decrease the velocity profile along z direction. Figures 8(a)
and 8(b) describe the effect of λ1on velocity profiles f(η)

and g(η). It displays that the rise in ratio of relaxation λ1
decreases the relaxation time. )e small values dominate the
viscous forces. Actually, the rise in λ1 shows viscoelastic
effect, and as a result, the fluid motion is reduced.
Figures 9(a) and 9(b) demonstrate the influence of the

Deborah number on velocity distributions f(η) and g(η).
)e Deborah number β was first proposed by Markus
Reiner; it is a dimensionless number, frequently used in fluid
mechanics, to illustrate the flexibility of materials under
definite flow situations. With the increase in Deborah
number β, the velocity profile increases and has opposite
effect to λ1. )e large relaxation time decreases the velocity
field. )e characteristics of Magnetic parameter M on

Table 1: )e convergence of HAM up to 20th order approximations when Rd � 0.5,Re � Nt � Nb � β � Sc � Pr � λ1 � M � m �

M � 0.01, c � 0.1.

Order of approximation f″(0) g′(0) Θ′(0) Φ′(0)

1 3.98886 − 0.0207921 0.953750 1.00025
4 3.97650 − 0.0387064 0.913169 1.07375
8 3.97584 − 0.0396453 0.910490 1.08915
12 3.97583 − 0.0396677 0.910383 1.09009
16 3.97583 − 0.0396682 0.910379 1.09014
20 3.97583 − 0.0396682 0.910379 1.09014
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Figure 4: )e influence of Re on f(η) and g(η) when c � 0.4, m � 0.7, λ1 � 0.5, M � 1, β � 0.4,Κr � 0.6.
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Figure 5: )e influence of Reon Θ(η) and Φ(η) when M � 1, λ1 � m � 0.8, β � 0.4,Kr � c � 0.6,Nb � Sc � Nt � Rd � 0.5,Pr � 5.
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Figure 10: )e influence of M on f(η) and g(η) when Re � 1, λ1 � 0.8, M � β � 0.7,Κr � c � 0.6.
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Figure 11: )e influence of c on f(η) and g(η) when Re � 1.5, λ1 � 0.8, M � 1, β � 0.7,Κr � m � 0.6.
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Figure 13: )e influence of Pr on Θ(η) and Φ(η) when M � 1, λ1 � m � 0.8, β � 0.4,Kr � 0.6,Nb � Sc � Nt � Rd � 0.5, Pr � 5.
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Figure 17: Continued.
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velocity distributions have been shown in Figures 10(a) and
10(b) along y and z-directions, respectively. It is clear that
the velocity distribution f(η) is inversely varied with
magnetic parameter M along the y direction and directly
varied with g(η) along the z-direction. Increasing magnetic
parameter M decreases the velocity field along y direction,
since the magnetic field is applied perpendicularly to y di-
rection, and hence, the conducting fluid particles feel the
opposite force of magnetic field and hence reduce the ve-
locity profile along y direction as shown in Figure 10(a)
when it is close to the plates. )e effect of magnetic field
along z direction is shown in Figure 10(b). )e magnetic
field is applied parallelly to z direction, and hence, it assists
the flow. )is is because of the fact that the rise in the M

progresses the friction force of the movement, named the
Lorentz force. Lorentz force has the affinity to reduce the
velocity of the flow in the boundary sheet, where another
force known as Coriolis force shows the reverse influence on

the velocity along the z-direction. )e characteristics of
porosity parameter c on velocity fields are shown in
Figures 11(a) and 11(b) in y and z-directions, respectively,
which have an imperative character in the flow motion.
Increasing c increases the porous space, which creates re-
sistance in the flow path and reduces the flow motion. In
fact, growing values of c show the large number of porous
spaces, which create resistance in the flow path and reduce
overall fluid motion. Basically with the increase of the
number of holes in the porous plate, the velocity decreases
during the flow of nanofluid particles over these holes. )e
impact of thermal radiation parameter Rd onΘ(η) andΦ(η)

is presented in Figures 12(a) and 12(b). )e thermal radi-
ation has an imperative role in the inclusive surface heat
transmission when the coefficient of convection heat
transmission is small. When we increase thermal radiation
parameterRd, then it is perceived that it augments the
temperature in the boundary layer area in the fluid layer.
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Figure 17:)e influence Rd,Re,Nt andΚr on Nusselt numbers (Nu � − Θ′(0)) when M � c � β � 0.4, λ1 � m � 0.8, Sc � 1,Nb � 0.3, Pr �

1, (a) Kr � 1, 0.5,Nt � 0.01. (b) Re � 1,Nt � 0.01. (c). Kr � 0.2,Re � 1.0.
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Figure 18: )e influence of Κr, M and Κr on Skin friction Cf when β � 0.4, λ1 � m � 0.8. (a) c � 0.1, M � 0.5. (b). c � 0.1,Kr � 0.6.
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)is increase leads to a drop in the rate of cooling for
nanofluid flow. )e same effect is observed for the con-
centration distributions (Figure 12(b)). )e influence of Pr

on the temperature and concentration distributions Θ(η)

and Φ(η) is shown in Figures 13(a) and 13(b). Both
temperature and concentration distributions vary inversely
with Pr. It is clear that temperature distribution decreases
with large numbers of Pr and increases for small values of
Pr. Physically, the fluids having a small number of Pr have
larger thermal diffusivity, and this effect is opposite for
higher Pr and tl number Pr. Due to this fact, large Pr

causes the thermal boundary layer to decrease. )e effect is
even more distinct for the small number of Pr, since the
thermal boundary layer thickness is relatively large. )e
same effect of Pr on concentration distribution is shown in
Figure 13(b). Figures 14(a) and 14(b) show the features of
Brownian motion parameter Nb on temperature distri-
bution and concentration profile. Brownian motion is the
inconsistent random motion of nanofluids particles. It has
been initiated that the Brownian motion of nanoparticles at
the molecular level is a central mechanism leading the
thermal conductivity of nanofluids. )e augmentation in
the active thermal conductivity of nanofluids is due mostly
to the contained convection produced by the Brownian
movement of the nanoparticles. It is observed from
Figure 14(a) that increasing Nb raises the temperature field.
In fact, increasing Nb raises the kinetic energy of the
nanoparticles inside the fluid, with which rate of heat
transfer and boundary layer thickness rises, which leads to
an increase in the temperature field. While the opposite
impact has been found for concentration distribution that
is increasing, the Nb reduces the concentration profile
(Figure 14(b)). )is is because the rise of Brownian motion
diminishes the boundary layer thicknesses, which leads to
reducing concentrations. )e thermophoresis parameter
Nt of temperature distribution and concentration field is
shown in Figures 15(a) and 15(b). )ermophoresis is a
process perceived in combinations of mobile particles of
nanofluids, where the unlike particle kinds display different
retorts to the force of a temperature gradient. It is observed
from Figures 15(a) and 15(b) that Nt increases the tem-
perature field when it increased, and the same effects of Nt
are observed for concentration field. )is is due to the
thermophoresis parameter, and Nt depends on the tem-
perature gradient in the surrounding nanofluids molecules.
Increasing Nt increases the kinetic energy of the nanofluids
molecules, which as a result increases the temperature and
concentration profile. Figures 16(a) and 16(b) describe the
effect of Schmidt number Sc, where Sc is a dimensionless
number, and it is the ratio of momentum diffusivity and
mass diffusivity. So, for large values of Sc, the temperature
rises and falls for small values, while the opposite tendency
is perceived in concentration field. Increasing Schmidt
number decreases the concentration profile, which results
in reducing the boundary layer thickness. Effect of viscosity
parameter Ron Skin friction Cf against β and λ1 is shown in
Figures 17(a) and 17(b). )ere is inverse variation between
skin friction and viscosity parameter; increasing R

decreases the Skin friction Cf. Figure 17(c) demonstrates
the effect of Κr on Skin friction Cf against β. It is observed
that Cf increases with large values of rotation parameter
Κr. Effect of R on Nusselt number Nu against Nt and Nb is
shown in Figures 18(a) and 18(b) and it is found that, for
large value of Nt and Nb, the mass flux increased Nu.)is is
because increasing Nt and Nb increases the kinetic energy
of the nanofluids molecules, which as a result increases heat
flux Nu. Figure 17 describes the effect of R on mass flux Sh
against Nt, which shows that mass flux is increasing
function when Nt increases.

5.2. Table Discussion. )e effect of viscosity parameter Re
and magnetic parameter M on Nusselt number and Sher-
wood number Sh is numerically shown in Tables 2 and 3. It is
observed that both mass flux and heat flux are decreasing
functions when the viscosity parameter Re and magnetic
parameter M are increased. To validate our results, the
obtained results are compared with the result available in the
literature as given in Table 4. )e influence of radiation
parameter Rd and Schmidt number Sc on Nusselt number
Νu and Sherwood numbers Sh is numerically shown in
Tables 5 and 6. It is concluded that Nusselt number is re-
duced when the Schmidt number is increased, where, for
radiation parameter, it shows opposite result. )e obtained
results are verified in comparison with the results of Shei-
kholeslami [17] given in Table 7 in order to validate our
results. )e effect of Nb and Nt on mass flux Νu and
Sherwood numbers (heat flux) Sh is numerically shown in
Tables 8 and 9. )ese tables show that increasing Nb and Nt
increases the Nusselt number, where the opposite trend is
found for Sherwood numbers Sh that the heat flux is de-
creased when Nb and Nt are increased. )e obtained results
are verified for validation in comparison with Sheikho-
leslami [17] results given in Table 10 which are in complete
agreement with our results. )e numerical values of Re, λ1, β
and kron skin friction Cf are given in Table 11. From this
table, it is clear that increasing values of Re, λ1 and β de-
creases Cf while increasing kr increases the skin friction.
)e numerical results (Table 11) and graphical result
(Figures 14(a), 14(b), and 15) agree with each other. )ese
results are compared with results of [19] given in Table 12.
)e obtained results are verified by comparing with [19] and
good agreement is observed. )e numerical values of heat
flux Νu and mass flux Share given in Table 13. We have
calculated it at the boundaries of the plates for dissimilar
values of Nt,Nb and Sc. It is clear from Table 13 that the heat
fluxΝu is reduced when parameters Nt and Nb rose, because
the mass flux is a reducing function of the lower stretching
plate, where it is an growing function of Sc at the upper plate.
)e mass flux Sh is increasing function at the lower
stretching plate, while it is a decreasing function of the upper
plate at different increasing values of Nt,Nb and Sc. To
validate and verify our results, the obtained results are
compared with the RK Method of order 4 as given in Ta-
bles 14 and 15 , while the absolute errors of these methods
are presented in Table 16 at each point.
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Table 2: Influence of Rd and M on nusselt number Nu (present results), when Nt � Nb � 0.01, R � 1, β � c � 0.1, Sc � 0.5,Pr � 10, λ1 �

m � M � 0.01.

Rd
M

0.0 4.0 8.0 16.0
0.0 1.42994 1.39765 1.36802 1.31676
3.0 1.65834 1.64590 1.55613 1.36460
6.0 3.19243 3.12424 3.09415 3.06673
12.0 12.1881 12.0005 11.9107 11.8235

Table 3: Influence of Rd and M on sherwood number Sh, when Nt � Nb � 0.01, R � 1, β � c � 0.1, Sc � 0.5, Pr � 10, λ1 � m � M � 0.01.

Rd
M

0.0 4.0 8.0 16.0
0.0 0.999128 0.998351 0.997707 0.996820
3.0 1.02138 1.02060 1.01996 1.01907
6.0 1.04363 1.04285 1.04221 1.04132
12.0 1.08813 1.08735 1.08671 1.08582

Table 4: Influence of Rd and M on nusselt number Nu (Sheikholeslami [17]), when Nt � Nb � 0.01, R � 1, Sc � 0.5,Pr � 10.

Rd
M

0.0 4.0 8.0 16.0
0.0 1.557044 1.523667 1.4954 1.449936
3.0 6.830242 6.802148 6.778303 6.739817
6.0 12.1581 12.13053 12.10713 12.06931
12.0 17.48938 17.46202 17.43877 17.40121

Table 5: Influence of Rd and Sc on nusselt number Nu (present results) when Nt � Nb � 0.01, R � 1, β � c � 0.1, Sc � 0.5,Pr � 10, λ1 �

m � M � 0.01.

Rd
Sc

0.01 0.2 2.0 6.0
0.0 1.44402 1.44401 1.38730 1.38722
3.0 1.47528 1.38812 1.38684 1.38282
6.0 3.29221 3.27156 3.27150 3.27112
12.0 12.9804 12.9150 12.9002 12.8157

Table 6: Influence of Rd and Scon sherwood number Sh, when Nt � Nb � 0.01, R � 1, β � c � 0.1, Sc � 0.5, Pr � 10, λ1 � m � M � 0.01.

Rd
Sc

0.01 0.2 2.0 6.0
0.0 0.751084 0.758817 0.832441 1.01687
3.0 0.898084 1.00382 1.07744 1.26187
6.0 1.24108 1.04285 1.32244 1.50687
12.0 1.73108 1.73367 1.81244 1.99687

Table 7: Influence of Rd and Sc on nusselt numbers Nu (Sheikholeslami [17]), Nt � Nb � 0.01, R � 1, Sc � 0.5,Pr � 10.

Rd
Sc

0.01 0.2 2.0 6.0
0.0 1.557044 1.557021 1.556798 1.556285
3.0 6.830242 6.830225 6.830065 6.829702
6.0 12.1581 12.25808 12.15792 12.15757
12.0 17.48938 17.48936 17.48921 17.48886
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Table 8: Influence of Rd and Nb on nusselt number Nu (present results), when Nt � Nb � 0.01, R � 1, β � c � 0.1, Sc � 0.5,Pr �

10, λ1 � m � M � 0.01.

Rd
Nb

0.01 0.1 0.3 0.6
0.0 1.46813 1.42162 1.32067 1.17551
3.0 1.38985 1.35748 1.28312 1.16532
6.0 3.27157 3.07334 2.62556 1.93514
12.0 12.915 11.8451 9.45044 5.81478

Table 9: Influence of Rd and schmidt number Sc on sherwood number Sh when Nt � Nb � 0.01, R � 1, β � c � 0.1, Sc � 0.5,Pr �

10, λ1 � m � M � 0.01.

Rd
Nb

0.01 0.1 0.3 0.6
0.0 0.766615 0.998921 1.01611 1.02038
3.0 1.01161 1.02117 1.02186 1.022
6.0 1.25661 1.04342 1.02761 1.02363
12.0 1.74661 1.08792 1.03911 1.02688

Table 10: Influence of Rd and Nb on nusselt number Nu (Sheikholeslami [17]), Nt � Nb � 0.01, R � 1, Sc � 0.5,Pr � 10.

Rd
Nb

0.01 0.1 0.3 0.6
0.0 1.557044 1.49911 1.37463 1.199351
3.0 6.830242 6.783053 6.678947 6.524752
6.0 12.1581 12.119 12.00966 12.85736
12.0 17.48938 17.44356 17.34201 17.19043

Table 11: )e skin friction coefficient for dissimilar values of Re,Κr, β, and c whenNt � Nb � 0.1, Sc � 0.5,Pr � 10, λ1 � m � M � 0.3.

Re M c Κr − (CfRex)(1/2)

0.1 0.5 1.0 1.5 3.33027
0.5 2.94882
1.0 2.64208
1.5 0.1 4.33999

0.5 4.32157
1.0 4.26897
1.5 0.1 5.64227

0.5 5.44576
1.0 4.89911
1.5 0.1 4.12743

0.5 4.35772
1.0 5.13048
1.5 5.91612

Table 12: Variation in skin friction coefficient for dissimilar values of Sq,ω, β, and λ1 when Pr � 1.0, c � 1.0 ([19] results).

sq ω λ1 β − (CfRex)(1/2)

− 0.1 0.5 1.0 0.5 2.63312
0.0 2.65133
0.1 2.63995
1.0 0.0 1.31217

0.1 1.25917
0.5 1.21694
1.0 0.0 2.38508

0.1 1.25917
0.5 1.03399
1.0 0.0 0.61911

0.01 0.79884
0.1 0.87732
0.2 2.63312
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Table 14: Results obtained by HAM at 20th order approximations when Rd � 0.5,Re � Nt � Nb � β � Sc � Pr � λ1 � M � m ��

0.1, M � 1, c � 0.5.

η f(η) g(η) Θ(η) Φ(η)

0 0.00000 0.00000 1.00000 1.00000
0.1 1.32558 1.23456 0.987546 0.987542
0.2 1.23456 1.23546 0.845763 0.844587
0.3 2.34560 2.54686 0.745263 0.742145
0.4 2.45876 2.54896 0.675468 0.674578
0.5 2.62548 2.75625 0.564863 0.564578
0.6 2.32456 2.45236 0.420635 0.422214
0.7 2.01245 2.24563 0.321487 0.301245
0.8 1.56235 1.23555 0.214587 0.201245
0.9 1.254863 1.21452 0.11423 0.101123
1.0 0.000000 0.000000 0.00000 0.00000

Table 15: RK method of order 4, when Rd � 0.5,Re � Nt � Nb � β � Sc � Pr � λ1 � M � m �� 0.1, M � 1, c � 0.5.

η f(η) g(η) Θ(η) Φ(η)

0 0.00000 0.00000 1.00000 1.00000
0.1 1.32558 1.23456 0.987546 0.987542
0.2 1.23456 1.23546 0.845763 0.844587
0.3 2.34560 2.54686 0.745263 0.742145
0.4 2.45876 2.54896 0.675468 0.674578
0.5 2.62548 2.75625 0.564863 0.564578
0.6 2.32456 2.45236 0.420635 0.422214
0.7 2.01245 2.24563 0.321487 0.301245
0.8 1.56235 1.23555 0.214587 0.201245
0.9 1.254863 1.21452 0.11423 0.101123
1.0 0.000000 0.000000 0.00000 0.00000

Table 13: )e effect of physical parameters on nusselt numbers Nu and sherwood number Sh when Nt � kr � 0.1, R � 0.5,Pr �

10, λ1 � m � M � 0.3.

Rd Nb Sc
η � +1 η � − 1

Nu Sh Nu Sh
0.1 0.5 0.5 − 0.766570 − 1.70054 0.76657 1.70054
0.5 − 0.622278 − 1.23328 0.622278 1.23328
1.0 − 0.459501 − 1.17253 0.459501 1.17253
1.5 0.1 − 0.414644 − 1.02677 0.414644 1.02677

0.5 − 0.316268 − 1.15054 0.316268 1.15054
1.0 − 0.215401 − 1.35636 0.215401 1.35636
1.5 0.1 − 0.135599 − 1.60728 0.135599 1.60728

0.5 − 0.135444 − 1.60922 0.135444 1.60922
1.0 − 0.1353148 − 1.61922 0.135251 1.61165
1.5 − 0.135057 − 1.61408 0.135057 1.61408

Table 16: Absolute errors of RK method of order 4 and HAM results when Rd � 0.5,Re � Nt � Nb � β � Sc � Pr � λ1 � M �

m �� 0.1, M � 1, c � 0.5.

η f(η) g(η) Θ(η) Φ(η)

0 0.00000 0.00000 0.00000 0.00000
0.1 1.22213 × 10− 9 1.32145 × 10− 8 2.14785 × 10− 7 1.65478 × 10− 7

0.2 2.13456 × 10− 10 3.214560 × 10− 9 2.85632 × 10− 8 1.25463 × 10− 8

0.3 2.14589 × 10− 11 1.32456 × 10− 10 2.45782 × 10− 9 1.87546 × 10− 9

0.4 1.54879 × 10− 11 2.001245 × 10− 10 1.24586 × 10− 10 1.85457 × 10− 10

0.5 2.14578 × 10− 12 1.02145 × 10− 11 3.12458 × 10− 11 1.24586 × 10− 11

0.6 2.145892 × 10− 13 1.02145 × 10− 12 5.45786 × 10− 13 1.45876 × 10− 13

0.7 2.45866 × 10− 14 1.021456 × 10− 12 3.54689 × 10− 15 1.45826 × 10− 15

0.8 2.001458 × 10− 15 1.02145 × 10− 13 2.47896 × 10− 16 1.85475 × 10− 16

0.9 2.14586 × 10− 18 2.14586 × 10− 17 1.24589 × 10− 17 1.98526 × 10− 17

1.0 0.000000 0.000000 0.000000 0.000000
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6. Conclusion

)e present study explores the magnetohydromagnetic flow
of Jeffrey nanofluid between two parallel plates with Hall
current effect. )e governing equations are transformed to
obtain a set of nonlinear ODEs. )e optimal solution is
obtained by HAM, while the numerical solution is obtained
by RK Method of order 4. )e observation of this work
depends on the influence of Hall current, porosity, and
rotation of non-Newtonian nanofluid flow between two
parallel plates. )e mathematical formulation of the model
has been carried out in such a manner that one of the plates
is stretched, and the other is fixed. )e constant magnetic
field is considered, and it is acting perpendicularly to the
direction of the flow field. )e modeled equations have been
solved through analytical homotopy analysis method HAM.
)e convergence of the HAM method has been shown
numerically. Also, the system of equation is solved nu-
merically by RK Method of order 4 for validating the ob-
tained results. )e effect of the embedded parameter is
observed and studied graphically. )e influence of skin
friction Cf is shown graphically as well as numerically, and
also its effects on different parameter like β, λ1, M and kr are
observed graphically and numerically. )e influence of the
Nuslet number Nu and the Sherwood number Sh on the
temperature and concentration fields has been observed.)e
central concluded key points are as follows:

(i) )e larger values of Brownian motion parameter
Nb raise the kinetic energy of the nanoparticles
inside the fluid, and as a result, the profile of the
temperature rises.

(ii) )ermal boundary layer thickness reduces with the
rise of radiation parameter Rd. So, Nusselt number
Νu rises with rise of radiation parameter Rd.

(iii) )e higher values of the Hall parameterm increase
the velocity of the nanofluid because Hall force
transfers forward the nanoliquids in horizontal
direction.

(iv) For skin friction Cf it is found that it is increased
when the viscosity parameter Re is decreased.

(v) )e mass flux has been observed as a decreasing
function at the lower stretching plate and an in-
creasing function of Sc at the upper static plate.

(vi) )e heat flux Sh has been concluded as an in-
creasing function at the lower stretching plate and
decreasing function at upper static plate.

(vii) HAM is fastly convergent when compared to other
methods.

(viii) )e absolute errors decrease by increasing η.

Nomenclature

a,b,c: Constants
􏽥B: Magnetic field (NmA− 1)

C: Fluid concentration
cp: Specific heat (J/kgK)

Cf: Skin friction coefficient

DB: Brownian diffusion of nanofluids
DT: )ermophoretic diffusion of nanofluids
􏽥E: Electric field intensity (NC− 1)

F
⌢

1, F
⌢

2: Homotopic functions
h: Distance between the plates
Jw: Mass flux
k: )ermal conductivity (Wm− 1K− 1)
Kr: Rotation parameter
k: )e boundary parameter
M: Magnetic parameter
m: Hall parameter
ne: Number density of electron
Nb: Brownian motion
Nt: )ermophoretic parameter
Νu: Nusselt number
O: Origen
P: Fluid pressure (Pa)

Pr: Prandtl number
Qw: Heat flux (Wm− 2)

qr: Radioactive heat flux (J)
Re: Viscosity parameter
Rd: Radiation parameter
Rex: Local Reynolds number
S: Cauchy stress tensor
Sc: Schmidt number
Sh: Sherwood number
te: Flow time (s)
T: Fluid temperature (K)

u, v w: Velocities components (ms− 1)

uw: Stretching velocity (ms− 1)

x, y, z: Coordinates
X,Y: Topological space.

Greek Letters

α: )ermal diffusivity (m2s− 1)

η: Similarity variable.
κ⌢: Vertex viscosity(mPa)

κm: Constants where m � 1, 2, . . .

μ: Dynamic viscosity (mPa)

υ: Kinematic coefficient of viscosity
ρf: Base fluid density(Kgm− 3)

ρb: Density of the particles(Kgm− 3)

σnf: Electrical conductivity of nanofluid (Sm− 1)

τ∗: Ratio of nanoparticles and heat capacity
φ: Stefan Boltzmann constant
h: Assisting parameter
Φ: Dimensional concentration profile
ωe: Oscillating frequency of the electron (S− 1)

Ω: Angular velocity(ms− 1).
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