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+is paper discusses the finite-time stable and finite-time H∞ control problems of affine nonlinear singular systems subject to
actuator saturation. Some sufficient conditions, to guarantee the system is finite-time stable, are established for the affine nonlinear
singular systems subject to actuator saturation. First, the finite-time stable problem is investigated by the state undecomposed
method, and then the finite-time robust H∞ control law is presented for the system. Finally, the effectiveness of the designed
controllers is shown by an example of a nonlinear singular circuit system in this paper.

1. Introduction

Singular system, also called descriptor system, is applied to
many areas, such as engineering, economic, and biological
systems [1]. In the past decades, the singular system has
attracted interest of more and more researchers, and a lot of
results are proposed for the linear singular system [1–10].
However, due to the complexity of the structure, few explore
the nonlinear singular systems [11–15]. With the linear
matrix inequality (LMI) method, the author in [11] has
studied the robust control problem in connection with a set
of stochastically nonlinear singular jump systems, while the
guaranteed cost control and stabilization problems have
been investigated for a set of time-delay nonlinear singular
systems in [12, 13], respectively. Based on the approach of
state undecomposed, scholars have considered the asymp-
totic stabilization of the nonlinear singular system in [14],
including systems subject to actuator saturation in [15]. In
[16], the control design of singular discrete-time systems has
been studied based on simulation relations and behavioral
theory.

It is well known that actuator saturation can compromise
the functions of the closed loop system and cause instability
of the system. Hence, scholars have been studying the

stabilization problem of systems subject to actuator satu-
ration for two decades [2–5, 17, 18]. Scholars have studied
the stability problem in connection with the singular system
with input saturation via the Lyapunov method in [2]. For
the linear singular system with actuator saturation, the
studies are proposed based on the stabilization conditions of
the closed loop system, and the domain of attraction has
been estimated by LMI technique in [3], while the authors in
[4] proposed the estimate of the domain of attraction by the
saturated state feedback method. In [5], the stochastic sta-
bility has been investigated for singular discrete-time
Markov jump systems subject to input saturation by LMI
approach. +e stabilization controller has been designed
based on the adaptive dynamic programming algorithm on
nonlinear systems with input saturation in [17]. Fridman
et al. [18] have studied local stabilization and H∞ control for
the system with time delay and input saturation via the LMI
and Lyapunov–Krasovskii functional method. +e robust
output regulation problem has been studied for discrete-
time singular systems subject to actuator saturation with an
additional control term to the nonlinear feedback in [19].
Zong et al. [20] investigated the decentralized adaptive
output feedback saturated control problem for inter-
connected nonlinear systems with strong interconnections.
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For nonlinear systems with actuator fault and saturation, the
authors in [21] applied the surface control technique to
address the finite-time adaptive output feedback control and
the authors in [22] used the sliding mode and neutral
networks methods to design the adaptive fault-tolerant
controller.

Unlike the asymptotical stability [23–26], the finite-time
stable (FTS) is that the state (weighted) norm does not
exceed a certain boundary within a fixed time T. In many
practical applications, FTS plays an important role, such as
analyzing the transient behavior of the controlled system
within a finite interval. Due to its extensive engineering
application background, the FTS problem has attracted
much scholarly interest [6, 7, 27–42]. In [27, 28], the FTS
problem of the linear system has been investigated. To
guarantee FTS of switched linear systems subject to actuator
saturation, the authors in [29] designed the FTS controllers
with the time domain approach. +e authors in [30, 31] gave
the sufficient and necessary conditions of FTS for the im-
pulsive linear system by using the LMImethod. Ma et al. and
Wang and Feng [6, 32] considered the FTS for singular
discrete-time Markov jump systems subject to input satu-
ration by using the Lyapunov–Krasovskii functional method
and using the mode-dependent parameter approach, re-
spectively. Feng et al. [7]investigated the FTS for the linear
singular system with the LMI method. Based on the sliding
mode control design, FTS and input-output FTS problems
are, respectively, dealt with in [33–35] for a class of nonlinear
systems. In [36–38], the finite-time asynchronous dissipative
filtering, finite-time asynchronous L2-gain control, and fi-
nite region asynchronous H∞ control have been, respec-
tively, studied for nonlinear Markov jump systems while an
annular finite-time H∞ filter has been considered for net-
worked switched systems in [39]. +e finite-time H∞
controller has been given for the nonlinear singular discrete-
time system in [40, 41] and for the nonlinear singular
continuous time system in [42], respectively. It is worth
pointing out that there is another definition of finite-time
stability, where all states of the system reach the equilibrium
point within a fixed time T and stay at the equilibrium point
permanently [21, 43–47]. Based on the Hamiltonian func-
tion method, the authors in [43] studied the observer design
problem of general nonlinear time-delay systems and gave
the finite-time robust stabilization results; the authors in
[44] investigated the finite-time stabilization problem for a
class of singular systems by the constructed new Lyapunov
functional while the finite-time robust simultaneous stabi-
lization and adaptive robust simultaneous stabilization have
been investigated for nonlinear systems with time delay in
[45, 46], respectively. In [47], the finite-time stabilization
problem has been considered for a class of high-order
stochastic nonlinear systems by using the backstepping
method.

Because the control input is limited by the saturation
nonlinear function, it is more difficult to design a control for
nonlinear singular systems with input saturation compared
with the case without actuator saturation. To the best of the
knowledge, the authors are only aware of few results related
to the FTS of the nonlinear singular systems with input

saturation. Compared with the mentioned results, the main
contributions of the paper are highlighted as follows:

(1) +e state feedback controllers designed in the paper
have simple form, so it has low computational
complexity

(2) +e design method proposed in the paper has low
conservative criteria, and the singular matrix E does
not need to satisfy any restriction conditions

(3) +e nonlinear function ϕ(x) does not need to satisfy
Lipschitz conditions

+is paper, in Section 2, introduces the definition of FTS
and provides the design method of FTS controller for affine
nonlinear singular systems subject to actuator saturation
(ANSSAS). With the state undecomposed method, Section 3
discusses the finite-time H∞ control problem and designs a
corresponding controller for the ANSSAS with external
disturbance. In Section 4, an example of a circuit system is
given to illustrate the effectiveness of the proposed con-
trollers, and the simulation curves are presented. Section 5
provides a brief conclusion.

Notations. In the paper, Rn denotes the n-dimensional
Euclidean space. A ∈ Rn×n implies that A is an n × n-matrix
in real number field. AT is the transpose of matrix A.
λmax(Q1) and λmin(Q1) are the maximum and minimum
eigenvalues of square matrix Q1, respectively.
Q1 > 0 (Q1 ≥ 0) implies that square matrix Q1 is positive
definite (positive semidefinite). +e Euclidean norm of
vectors z is denoted by ‖z‖.

2. FTS of ANSSAS

+is section discusses the FTS problem for ANSSAS.
Consider the ANSSAS as follows:

E _x(t) � ϕ(x(t)) + B(x(t))sat(u(t)),

Ex(0) � Ex0,

ϕ(0) � 0,

(1)

where x(t) ∈ Rn is the state, E ∈ Rn×n, 0< rank E � r< n;
B(x(t)) ∈ Rn×m, ϕ(x(t)) ∈ Rn is a sufficiently smooth
vector field; sat(u(t)) ∈ Rm is the saturation nonlinearity
control input, and

sat ui(t)(  �

lιi, ui(t)> ιi,

ui(t), −ιi ≤ ui(t)≤ ιi, i � 1, 2, . . . , m,

−ιi, ui(t)< ιi.

⎧⎪⎪⎨

⎪⎪⎩
(2)

To study system (1), we present the following definition
and lemmas.

Definition 1 (see [48]). For any initial condition Ex0, if the
resulted closed loop singular system is impulsive free, then
the control law u(x(t)) is said to be admissible, and the
original system is said to be impulse controllable.
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Lemma 1 (see [49]). If a vector function S(x(t)) with S(0) �

0 (x(t) ∈ Rn) has continuous n th-order partial derivatives,
then S(x(t)) can be rewritten as

S(x(t)) � a1(x(t))x1(t) + · · · + an(x(t))xn(t) � A(x(t))x(t),

(3)

where A(x(t)) � [a1(x(t)) a2(x(t)) · · · an(x(t))] ∈ Rn×n.

Lemma 2 (see [15]). Denote

sat(u(t)) � u(t) − δ(t). (4)

+en, there exists a positive real number ζ such that

δT
(t)δ(t)≤ ζu

T
(t)u(t), (5)

where 0< ζ < 1, δ(t) � [δ1(t), δ2(t), . . . , δm(t)]T ∈ Rm, and
δi(t) is the dead-zone nonlinearity function, i � 1, 2, . . . , m.

According to [7, 27, 41], we introduce the definition as
follows.

Definition 2. ANSSAS (1) is called FTS with respect to
(c1, c2, T, R), with 0< c1 < c2 and R> 0 if ANSSAS (1) is

impulse controllable and xT(0)ETREx(0) ≤ c1 such that
xT(t)ETREx(t)< c2, ∀t ∈ [0, T].

According to Lemma 1, system (1) can be transformed
into

E _x(t) � A(x(t))x(t) + B(x(t))sat(u(t)). (6)

To facilitate the analysis of system (6), we provide an
assumption and a lemma.

Assumption 1. Rank 0 E 0
E A(x(t)) B(x(t))

  �

n + rankE, ∀x(t) ∈ Rn.

Lemma 3 (see [14]). Assume Assumption 1 holds, then
system (6) is impulse controllable.

Under Assumption 1, the following result is given.

Theorem 1. Consider ANSSAS (1) and its equivalent system
(6). If Assumption 1 holds, there exist two positive real
numbers β and ζ and three matrices K(x(t)) ∈ Rm×n,
Q1 ∈ Rn×n, and P ∈ Rn×n such that

(A(x(t)) − B(x(t))K(x(t)))
T
PE + E

T
P(A(x(t)) − B(x(t))K(x(t))) + E

T
PBB

T
PE + ζK

T
K − βE

T
PE≤ 0, (7)

λmax Q1( c1e
βT < c2λmin Q1( , (8)

then the FTS controller of system (1) can be given as follows:

u � −K(x(t))x(t), (9)

where c2 > c1 > 0, 0< ζ < 1, R> 0, Q1 > 0, P> 0, and
P � R1/2Q1R

1/2.

Proof. Applying (4) and (9) to system (6), it has

E _x(t) � (A(x(t)) − B(x(t))K(x(t)))x(t) − B(x(t))δ(t).

(10)

According to Lemma 3, we know that system (10) has no
impulsive solution under Assumption 1.

Based on system (10), we construct a proper Lyapunov
function V(x(t)) � xT(t)ETPEx(t) ≥ 0; according to in-
equality (5) and condition (7), we have

_V(x(t)) − βV(x(t))

� (E _x(t))
T
PEx(t) + x

T
(t)E

T
PE _x(t) − βx

T
(t)E

T
PEx(t)

� x
T
(t)(A(x(t)) − B(x(t))K(x(t)))

T
PEx(t) + x

T
(t)E

T
P(A(x(t)) − B(x(t))K(x(t)))x(t)

− 2x
T
(t)E

T
PB(x(t))δ − βx

T
(t)E

T
PEx(t)

≤ x
T
(t) (A(x(t)) − B(x(t))K(x(t)))

T
PE + E

T
P(A(x(t)) − B(x(t))K(x(t))) x(t)

+ x
T
(t)E

T
PB(x(t))B

T
(x(t))PEx(t) + δTδ(t) − βx

T
(t)E

T
PEx(t)

≤ x
T

(A(x(t)) − B(x(t))K(x(t)))
T
PE + E

T
P(A(x(t)) − B(x(t))K(x(t)))

+E
T

PB(x(t))B
T
(x(t))PE + ζK

T
(x(t))K(x(t)) − βE

T
PEx(t)

≤ 0,

(11)
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which is
_V(x(t))≤ βV(x(t)), ∀t ∈ [0, T]. (12)

Next, we prove that system (10) is FTS. By integrating
inequality (12) between 0 and Twith t ∈ [0, T], it follows that

ln
V(x(t))

V(x(0))
≤ βt. (13)

It is clear that
V(x(t)) ≤ e

βt
V(x(0)). (14)

Given the chain of inequalities as follows:
V(x(t)) � x

T
(t)E

T
R
1/2

Q1R
1/2

Ex(t)

≥ λmin Q1( x
T
(t)E

T
REx(t),

(15)

V(x(0))e
βt

� x
T
(0)E

T
R
1/2

Q1R
1/2

Ex(0)e
βt

≤ λmax Q1( x
T
(0)E

T
REx(0)e

βT
.

(16)

According to xT(0)ETREx(0) ≤ c1, putting together
(14)–(16), we have

x
T
(t)E

T
REx(t) ≤

λmax Q1( c1e
βT

λmin Q1( 
. (17)

From (8) and (17), it can be obtained that
xT(t)ETREx(t) < c2, ∀t ∈ [0, T]. So, system (1) is FTS with
respect to (c1, c2, T, R). □
3. Finite Time H‘ Control of ANSSAS

Based on Section 2, this section studied the finite-time H∞
control law for the ANSSAS.

Consider ANSSAS as follows:
E _x(t) � ϕ(x(t)) + B(x(t))sat(u(t)) + E d(x(t))w(t),

Ex(0) � Ex0,ϕ(0) � 0,

y(t) � h2(x(t)),

z(t) � h1(x(t)),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

where y(t) ∈ Rs is the output, z(t) ∈ Rq is the penalty
signal, w(t) ∈ Rs is the external disturbance, and
d(x(t)) ∈ Rn×s, E, x(t), ϕ(x(t)), sat(u(t)), and B(x(t)) are
the same as those in ANSSAS (1).

Choose h1(x(t)) � L(x(t))BT(x(t))x(t), h2(x(t)) � dT

(x(t))ETx(t), where L(x(t)) is full column rank. From

Section 2, we know that we can design an admissible
finite-time H∞ control law u(t) for system (18) under
Assumption 1. +e design steps of the finite-time H∞
controller are as follows. First, we design an admissible
control law u such that the L2 gain of the closed loop
system is not greater than c, where c> 0 is a given dis-
turbance attenuation level. Next, we demonstrate that the
resulted closed loop system is FTS when w(t) � 0. To
design the finite-time H∞ controller for the ANSSAS, we
recall the following lemma:

Lemma 4 (see [50]). Consider an affine nonlinear system:

_x � f(x) + g(x)w, f x0(  � 0,

z � h(x),
 (19)

where x ∈ Rn, w ∈ Rs, and z ∈ Rq are the state, disturbance,
and penalty signal of the system, respectively. If there exists a
function V(x)≥ 0 (V(x0) � 0) such that the Hamil-
tonian–Jacobian inequality

z
T
V

zx
f(x) +

1
2c

2
z

T
V

zx
gg

TzV

zx
+
1
2
h

T
h≤ 0, (20)

holds, then the L2 gain of system (19) (from w to z) is bounded
by c, i.e.,


T

0
‖z(t)‖

2dt≤ c
2


T

0
‖w(t)‖

2dt, ∀w ∈ L2[0,T], (21)

where c is a positive number.

Based on with, we give the following theorem.

Theorem 2. Consider ANSSAS (18). Suppose that As-
sumption 1 holds. Let

u(t) � − K(x(t)) +
1
2

L
T
(x(t))L(x(t)) +

1
c
2Im B

T
(x(t)) 

x≕ − K1(x(t))x(t).

(22)

If

A(x(t)) − B(x(t))K1(x(t))( 
T
PE + E

T
P A(x(t)) − B(x(t))K1(x(t))(  +

2
c
2E

T
PE d(x(t))d

T
(x(t))E

T
PE

+
1
2

B(x(t))L
T
(x(t))L(x(t))B

T
(x(t)) + ζK

T
1 (x(t))K1(x(t)) + E

T
PBB

T
PE≤ 0,

(23)

λmax Q1( c1e
βT < c2λmin Q1( , (24)

then controller (22) is the finite-time H∞ control law of
ANSSAS (18), where P, Q1, β, ζ, c1, and c2 are the same as
those in Ceorem 1.

Proof. Based on Section 2 and controller (22), we can
give
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E _x(t) � A(x(t)) − B(x(t))K1(x(t))( x(t) − B(x(t))δ(t) + E d(x(t))w(t),

y(t) � d
T
(x(t))E

T
x(t),

z(t) � L(x(t))B
T
(x(t))x(t).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

Choose a proper Lyapunov function
V(x(t)) � xT(t)ETPEx(t); according to (23), we have

_V(x(t)) −
z

T
V(x(t))

zx(t)
d(x(t))w(t) +

1
2c

2
z

T
V(x(t))

zx(t)
d(x(t))d

T
(x(t))

zV(x(t))

zx(t)
+
1
2
h

T
1 (x(t))h1(x(t))

� x
T
(t) A(x(t)) − B(x(t))K1(x(t))( 

T
PE + E

T
P A(x(t)) − B(x(t))K1(x(t))(  x(t)

− 2x
T
(t)E

T
PB(x(t))δ(t) + w

T
(t)d

T
(x(t))E

T
PEx(t) + x

T
(t)E

T
PE d(x(t))w(t) − 2x

T
(t)E

T
PE d(x(t))w(t)

+
2
c
2x

T
(t)E

T
PE d(x(t))d

T
(x(t))E

T
PEx(t) +

1
2
x

T
(t)B(x(t))L

T
(x(t))L(x(t))B

T
(x(t))x(t)

≤x
T
(t) A(x(t)) − B(x(t))K1(x(t))( 

T
PE + E

T
P A(x(t)) − B(x(t))K1(x(t))( 

+
2
c
2E

T
PE d(x(t))d

T
(x(t))E

T
PE +

1
2

B(x(t))L
T
(x(t))L(x(t))B

T
(x(t))

+ζK
T
1 (x(t))K1(x(t)) + E

T
PB(x(t))B

T
(x(t))PEx(t)≤ 0.

(26)

By Lemma 4, the L2 gain of system (25) is not more than
c.

Next, we prove that the system is FTS if w(t) � 0.

_V(x(t)) − βV(x(t)) �
z

T
V(x(t))

zx(t)
x(t)

·

− βx
T
(t)E

T
PEx(t)

� x
T
(t) A(x(t)) − B(x(t))K1(x(t))( 

T
PE + E

T
P A(x(t)) − B(x(t))K1(x(t))( 

−βE
T
PEx(t) − 2x

T
(t)E

T
PB(x(t))δ

≤ x
T
(t) A(x(t)) − B(x(t))K1(x(t))( 

T
PE + E

T
P A(x(t)) − B(x(t))K1(x(t))( 

+ζK
T
1 (x(t))K1(x(t)) + E

T
PB(x(t))B

T
(x(t))PEx(t)

≤ x
T
(t) A(x(t)) − B(x(t))K1(x(t))( 

T
PE + E

T
P A(x(t)) − B(x(t))K1(x(t))( 

+
2
c
2E

T
PE d(x(t))d

T
(x(t))E

T
PE +

1
2

B(x(t))L
T
(x(t))L(x(t))B

T
(x(t))

+ζK
T
1 (x(t))K1(x(t)) + E

T
PB(x(t))B

T
(x(t))PEx(t)≤ 0.

(27)
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+e following proof is the same as that in +eorem 1.
So, the closed loop system (25) is FTS if w(t) � 0.

4. A Circuit Example

+is section proposes a circuit example to show the effectiveness
of the finite-time H∞ controller designed in +eorem 2.

Example 1. Consider the circuit system as Figure 1, where iw
is a disturbance signal, u1 � φ1(q1), u2 � φ2(q2).

From Kirchhoff’s current law and voltage law, the circuit
system can be expressed as

q1
·

+ q2
·

� sat Is(  −
φ1 q1( 

R3
− iw,

0 � sat Us(  + φ1 q1(  − φ2 q2( .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

We introduce φ1(q1) � q1,φ2(q2) � q32, R3 � (1/2)Ω,
and |Us|≤ 8V, |Is|≤ 4A. Let v � [v1, v2]

T � : [Us, Is]
T,

x(t) � [x1(t), x2(t)]T � : [q1, q2]
T, and w(t) � iw. +en,

system (28) can be rewritten as

1 1

0 0
  _x(t) �

−3x1(t) − x1(t)x
2
2(t)

x1(t) − 6x2(t) − 2x
3
2(t)

⎡⎢⎣ ⎤⎥⎦ +
0 1

1 0
 sat(v) +

−1

0
 w(t). (29)

Choose the penalty signal z � (1/2)[q2, q1]
T. +us,

system (29) and z can be combined to

1 1

0 0
  _x(t) �

−3x1(t) − x1(t)x
2
2(t)

x1(t) − 6x2(t) − 2x
3
2(t)

⎡⎢⎣ ⎤⎥⎦ +
0 1

1 0
 sat(v) +

−1

0
 w(t),

z �
1
2

cx2(t)

x1(t)
 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

where L(x(t)) �
1/2 0
0 1/2 .

According to ϕ(0) � 0, we have

A(x(t)) �
−3 − x

2
2(t) 0

1 − 6 − 2x
2
2(t)

 . It is not difficult to

verify that Assumption 1 holds.
Let

P �
2 1
1 2

 ,

Q1 �
2 1
1 2

 ,

R �
1 0
0 1

 ,

K(x(t)) �

5
2

0

0
8
5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(31)

for given disturbance attenuation c � 1; choose some parameter
values c1 � 0.5, c2 � 3, T � 6, β � 0.1, and ζ � 0.1, then

A(x(t)) − B(x(t))K1(x(t))( 
T
PE

+ E
T
P A(x(t)) − B(x(t))K1(x(t))( 

+
2
c
2E

T
PE d(x(t))d

T
(x(t))E

T
PE

+
1
2

B(x(t))L
T
(x(t))L(x(t))B

T
(x(t))

+ ζK
T
1 (x(t))K1(x(t)) + E

T
PBB

T
PE

�
−3.711 − 4x

2
2(t) − 5.319 − 4x

2
2(t)

−5.319 − 4x
2
2(t) − 6.230 − 4x

2
2(t)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦≤ 0,

λmax Q1( c1

λmin Q1( 
e
βT

� 3c1e
0.6 < c2,

(32)

hold.
Obviously, it is illustrated that all conditions of +eorem

2 can be satisfied.

6 Mathematical Problems in Engineering



Is w

iwi3

q1q2 u1
u2

i2

R3

i1

Us

+

–

+

–

Figure 1: Nonlinear singular circuit system.
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Figure 2: Response of ϖ � xT(t)ETREx(t) for the open loop system.
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Figure 3: Response of ϖ � xT(t)ETREx(t) for the closed loop system.
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+us, we can give the following finite-time H∞ con-
troller of system (29):

v � −

5
2

5
8

5
8

8
5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(t). (33)

To check the effectiveness of the control law (33), give
Ex(0) � [0.5, 0]T and input a square-wave disturbance of
amplitude [0, 2]T in the time duration [1 s − 2 s] for the
system. +e response of ϖ � xT(t)ETREx(t) is presented in
Figures 2 and 3 for the open-loop system and the closed loop
system, respectively. It is clear that xT(t)ETREx(t)> 3 in the
open loop system ∀t ∈ [3.5, 6], whereas xT(t)ETREx(t)< 3

in the closed loop system ∀t ∈ [0, 6]. +e responses of state x

and saturation input sat(v) are given in Figures 4 and 5,
respectively. According to Figures 2–5, it is clear that the
circuit system (29) is FTS with respect to (0.5, 3, 6, I) under
the admissible H∞ control law (33).

5. Conclusion

+is paper investigates the finite-time control problem for
affine nonlinear singular systems subject to actuator satu-
ration by using the state undecomposed method. First,
saturation input is represented by control input and dead-
zone nonlinear compensation. +en, the finite-time control
law has been designed under sufficient condition of the
system impulsive controllable. Based on with, the finite-time
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Figure 4: Response of the state x(t) for the closed loop system.
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Figure 5: Saturation control signal sat (v) for the closed loop system.
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H∞ control problem is solved via the suitable state feedback.
New results on the finite-time control and finite-time H∞
control problems have been presented for affine nonlinear
singular systems subject to actuator saturation. In the future,
the input-output finite-time control problems can be studied
for affine nonlinear singular systems subject to actuator
saturation.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is work was supported by National Nature Science
Foundation of China (61877028 and 61773015), Shandong
Province Nature Science Foundation (ZR2019MF032),
Shandong Province Key Research and Development Project
(2018GGX105003), and Shanghai Dianji University Nature
Science Foundation (B102882100701020).

References

[1] L. Y. Dai, Singular Control Systems, Springer-Verlag, Berlin,
Germany, 1989.

[2] J. R. Liang, H. L. Choi, and J. T. Lim, “On stability of singular
systems with saturating actuators,” IEICE Transactions on
Fundamentals of Electronics Communications and Computer
Sciences, vol. 86, no. 10, pp. 2700–2703, 2003.

[3] Z. Lin and L. Lv, “Set invariance conditions for singular linear
systems subject to actuator saturation,” IEEE Transactions on
Automatic Control, vol. 52, no. 12, pp. 2351–2355, 2007.

[4] Y. L. Li and Z. L. Lin, “Improved set invariance conditions
for singular linear systems subject to actuator saturation,”
Control Ceory and Applications, vol. 31, no. 7, pp. 955–961,
2014.

[5] S. P. Ma, C. Zhang, and S. Q. Zhu, “Robust stability for
discrete-time uncertain singular Markov jump systems with
actuator saturation,” IET Control Ceory and Applications,
vol. 5, no. 2, pp. 255–262, 2011.

[6] Y. Ma, X. Jia, and D. Liu, “Finite-time dissipative control for
singular discrete-time Markovian jump systems with actuator
saturation and partly unknown transition rates,” Applied
Mathematical Modelling, vol. 53, pp. 49–70, 2018.

[7] J. E. Feng, Z. Wu, J. B. Sun, and Z. Cheng, “Finite time control
of linear singular systems subject to parametric uncertain and
disturbances,” in Proceedings of the 5th World Congress on
Intelligence Control and Automation, Hangzhou, China, June
2004.

[8] J. Tian and S. Ma, “Existence of nonimpulsive unique solution
and stability for discrete-time linear rectangular descriptor
Markov jump systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 10, pp. 4245–4251, 2019.

[9] J. Wang, Z. Huang, Z. Wu, J. Cao, and H. Shen, “Extended
dissipative control for singularly perturbed PDT switched
systems and its application,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 67, no. 12, pp. 5281–5289,
2020.

[10] J. Wang, Z. G. Huang, Z. G. Wu et al., “Extended dissipative
control for singularly perturbed PDTswitched systems and its
application,” IEEE Transactions on Fuzzy Systems, vol. 67,
no. 12, pp. 5281–5289, 2021.

[11] Q. Zhu, “Stabilization of stochastically singular nonlinear
jump systems with unknown parameters and continuously
distributed delays,” International Journal of Control, Auto-
mation and Systems, vol. 11, no. 4, pp. 683–691, 2013.

[12] R. Q. Lu, H. Y. Su, J. Z. Wang, A. Xue, and T. Shi, “Robust
optimal control for a class of nonlinear uncertain singular
systems with time-delay,” in Proceedings of the 2006 American
Control Conference, pp. 5020–5024, Minneapolis, MN, USA,
June 2006.

[13] J. C. Wu, S. L. Wo, and G. P. Lu, “Asymptotic stability and
stabilization for a class of nonlinear descriptor systems with
delay,” Asian Journal of Control, vol. 13, no. 2, pp. 361–367,
2011.

[14] L. Sun and Y. Wang, “An undecomposed approach to control
design for a class of nonlinear descriptor systems,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 23, no. 6,
pp. 695–708, 2013.

[15] L. Sun, Y. Wang, and G. Feng, “Control design for a class of
affine nonlinear descriptor systems with actuator saturation,”
IEEE Transactions on Automatic Control, vol. 60, no. 8,
pp. 2195–2200, 2015.

[16] S. Haesaert, F. Chen, A. Abate, and S. Weiland, “Formal
control synthesis via simulation relations and behavioral
theory for discrete-time descriptor systems,” IEEE Transac-
tions on Automatic Control, vol. 66, no. 3, pp. 1024–1039,
2021.

[17] B. Zhao, L. H. Jia, H. B. Xia, and Y. Li, “Adaptive dynamic
programming-based stabilization of nonlinear systems with
unknown actuator saturation,” Nonlinear Dynamics, vol. 93,
pp. 2089–2103, 2018.

[18] E. Fridman, A. Pila, and U. Shaked, “Regional stabilization
and H∞ control of time-delay systems with saturating ac-
tuators,” International Journal of Robust and Nonlinear
Control, vol. 13, no. 9, pp. 885–907, 2003.

[19] E. Jafari and T. Binazadeh, “Robust output regulation in
discrete-time singular systems with actuator saturation and
uncertainties,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 67, no. 2, pp. 340–344, 2020.

[20] G. Zong, H. Sun, and S. K. Nguang, “Decentralized adaptive
neuro-output feedback saturated control for INS and its
application to AUV,” IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–10, 2021.

[21] R. Ji, J. Ma, D. Li, and S. S. Ge, “Finite-time adaptive output
feedback control for MIMO nonlinear systems with actuator
faults and saturations,” IEEE Transactions on Fuzzy Systems,
pp. 1–15, 2020.

[22] M. Qian, Z. Zheng, and P. Cheng, “Adaptive NFTSM-based
fault tolerant control for a class of nonlinear system with
actuator fault and saturation,” IEEE Access, vol. 7,
pp. 107083–107095, 2019.

[23] X. Yi, R. Guo, and Y. Qi, “Stabilization of chaotic systems with
both uncertainty and disturbance by the UDE-based control
method,” IEEE Access, vol. 8, no. 1, pp. 62471–62477, 2020.

[24] L. Liu, B. Li, and R. Guo, “Consensus control for networked
manipulators with switched parameters and topologies,” IEEE
Access, vol. 9, pp. 9209–9217, 2021.

[25] T. Hou, Y. Liu, and F. Deng, “Stability for discrete-time
uncertain systems with infiniteMarkov jump and time-delay,”
Science China: Information Sciences, vol. 64, p. 1C11, 2021.

Mathematical Problems in Engineering 9



[26] R. Peng, C. Jiang, and R. Guo, “Stabilization of a class of
fractional order systems with both uncertainty and distur-
bance,” IEEE Access, vol. 9, pp. 42697–42706, 2021.

[27] F. Amato, M. Ariola, and P. Dorato, “Finite-time control of
linear systems subject to parametric uncertainties and dis-
turbances,” Automatica, vol. 37, no. 9, pp. 1459–1463, 2001.

[28] F. Amato, M. Ariola, and C. Cosentino, “Finite-time stabi-
lization via dynamic output feedback,” Automatica, vol. 42,
no. 2, pp. 337–342, 2006.

[29] X. Lin, X. Li, Y. Zou, and S. Li, “Finite-time stabilization of
switched linear systems with nonlinear saturating actuators,”
Journal of the Franklin Institute, vol. 351, no. 3, pp. 1464–1482,
2014.

[30] R. Ambrosino, F. Calabrese, C. Cosentino, and
G. De Tommasi, “Sufficient conditions for finite-time stability
of impulsive dynamical systems,” IEEE Transactions on Au-
tomatic Control, vol. 54, no. 4, pp. 861–865, 2009.

[31] F. Amato, G. De Tommasi, and A. Pironti, “Input-output
finite-time stabilization of impulsive linear systems: necessary
and sufficient conditions,” Nonlinear Analysis: Hybrid Sys-
tems, vol. 19, pp. 93–106, 2016.

[32] G. Wang and B. Feng, “Finite-time stabilization for discrete-
time delayed Markovian jump systems with partially delayed
actuator saturation,”Discrete Dynamics in Nature and Society,
vol. 2016, Article ID 1304379, 12 pages, 2016.

[33] J. Song, Y. Niu, and Y. Zou, “Finite-time stabilization via
sliding mode control,” IEEE Transactions on Automatic
Control, vol. 62, no. 3, pp. 1478–1483, 2017.

[34] X. Lv, Y. Niu, and J. Song, “Finite-time boundedness of
uncertain Hamiltonian systems via sliding mode control
approach,” Nonlinear Dynamics, vol. 104, no. 1, pp. 497–507,
2021.

[35] J. Song, Y. Niu, and Y. Zou, “Finite-time sliding mode control
synthesis under explicit output constraint,” Automatica,
vol. 65, pp. 111–114, 2016.

[36] X. Zhang, S. P. He, V. Stojanovic et al., “Finite-time asyn-
chronous dissipative filtering of conic-type nonlinear Markov
jump systems,” Science China: Information Sciences, vol. 64,
pp. 152206:1–152206:12, 2021.

[37] C. Ren, S. He, X. Luan, F. Liu, and H. R. Karimi, “Finite-time
L2-gain asynchronous control for continuous-time positive
hidden Markov jump systems via T-S fuzzy model approach,”
IEEE Transactions on Cybernetics, vol. 51, no. 1, pp. 77–87,
2021.

[38] P. Cheng, S. He, X. Luan, and F. Liu, “Finite-region asyn-
chronous H∞ control for 2D Markov jump systems,”
Automatica, vol. 129, no. 2021, Article ID 109590, 2021.

[39] G. Zong, H. Ren, and H. R. Karimi, “Event-triggered com-
munication and annular finite-time H∞ filtering for net-
worked switched systems,” IEEE Transactions on Cybernetics,
vol. 51, no. 1, pp. 309–317, 2021.

[40] X. Lu, X. Zhang, and L. Sun, “Finite-time H∞ control for
nonlinear discrete Hamiltonian descriptor systems,” Journal
of the Franklin Institute, vol. 354, no. 14, pp. 6138–6151, 2017.

[41] M. Li, L. Sun, and R. Yang, “Finite-timeH∞ control for a class
of discrete-time nonlinear singular systems,” Journal of the
Franklin Institute, vol. 355, no. 13, pp. 5384–5393, 2018.

[42] M. Li and L. Sun, “Finite-time stabilisation for a class of
nonlinear descriptor systems,” IET Control Ceory & Appli-
cations, vol. 12, no. 17, pp. 2399–2406, 2018.

[43] R. Yang, G. Zhang, and L. Sun, “Observer-based finite-time
robust control of nonlinear time-delay systems via Hamil-
tonian function method,” International Journal of Control,
vol. 4, pp. 1–18, 2020.

[44] R. Yang, L. Sun, G. Zhang, and Q. Zhang, “Finite-time sta-
bility and stabilization of nonlinear singular time-delay sys-
tems via Hamiltonian method,” Journal of the Franklin
Institute, vol. 356, no. 12, pp. 5961–5992, 2019.

[45] R. Yang, G. Zhang, and L. Sun, “Finite-time robust simul-
taneous stabilization of a set of nonlinear time-delay systems,”
International Journal of Robust and Nonlinear Control, vol. 30,
no. 5, pp. 1733–1753, 2020.

[46] R. M. Yang, W. H. Pei, Y. Z. Han, and L. Sun, “Finite-time
adaptive robust simultaneous stabilization of nonlinear delay
systems by the Hamiltonian function method,” Science China
Information Science, vol. 64, no. 6, pp. 169201:1–169201:3,
2020.

[47] H. Wang and Q. Zhu, “Finite-time stabilization of high-order
stochastic nonlinear systems in strict-feedback form,” Auto-
matica, vol. 54, pp. 284–291, 2015.

[48] H. Xu and K. Mizukami, “Hamilton-Jacobi equation for
descriptor systems,” Systems & Control Letters, vol. 21, no. 4,
pp. 321–327, 1993.

[49] W. Langson and A. Allcync, “Infinite horizon optimal control
of a class of nonlinear systems,” in Proceedings of the 1997
American Control Conference, Albuquerque, NM, USA, June
1997.

[50] T. Shen, S. Mei, Q. Lu, W. Hu, and K. Tamura, “Adaptive
nonlinear excitation control with L2 disturbance attenuation
for power systems,” Automatica, vol. 39, no. 1, pp. 81–89,
2003.

10 Mathematical Problems in Engineering


