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In this study, we model a heterogeneous population assuming the three-component mixture of the Pareto distributions assuming
type I censored data. In particular, we study some statistical properties (such as various entropies, different inequality indices, and
order statistics) of the three-component mixture distribution. The ML estimation and the Bayesian estimation of the mixture
parameters have been performed in this study. For the ML estimation, we used the Newton Raphson method. To derive the posterior
distributions, different noninformative priors are assumed to derive the Bayes estimators. Furthermore, we also discussed the
Bayesian predictive intervals. We presented a detailed simulation study to compare the ML estimates and Bayes estimates. Moreover,
we evaluated the performance of different estimates assuming various sample sizes, mixing weights and test termination times (a fixed

point of time after which all other tests are dismissed). The real-life data application is also a part of this study.

1. Introduction

In the last decade, finite mixture models have emerged as
flexible models due to their applications in applied sciences,
engineering, and physical sciences. As explained by Men-
denhall and Hader [1], for real-life purposes, an engineer
split the failures of a structure into more than one kind of
causes. For example, to know the proportion of failures due
to a definite reason and to recover the engineering system,
Acheson and McElwee [2] separated electronic tube flops
into three different faults such as mechanical faults, gaseous
faults, and normal decline of the cathode.

Moreover, the mixture models can also be used in a
situation when the data are presented in the form of the
overall mixture models. The overall mixture models are also
called the direct application of the mixture models, and their
applications can be seen in medicine, botany, zoology, ag-
riculture, economics, life testing, reliability, and survival

analysis. The various aspects of mixture models were dis-
cussed by Li and Sedransk [3]. The interested readers can
refer the work of Harris [4], Kanji [5], and Jones and
McLachlan [6] on the application of mixture models for real-
life problems.

The mixture models have been extensively used for
heterogeneous nature of the process in comparison to the
simple models. Most of the researchers have comprehen-
sively applied mixture distributions in various real-life sit-
uations and estimated parameters using the Bayesian and
classical methods. For a detailed appraisal of classical
techniques for estimation and applications of mixture dis-
tributions, we refer to studies by Sultan et al. [7], Abu-
Zinadah [8], and Kamaruzzaman et al. [9] among others. On
the other hand, the estimation of parameters in Bayesian
framework for a mixture of two distributions has been
considered by many researchers [10-21]. Contrary to the
two-component mixture modeling, some authors have
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discussed situations where data are assumed to follow a
three-component mixture of suitable probability distribu-
tions [22-28].

Censoring is a significant characteristic of the real data
application. Due to time and cost problem, it is very difficult
to continue the lifetime testing experiment till observing the
last failure. Although there are many censoring schemes, the
type I right censoring is commonly used in life testing ex-
periments. In this scheme, we consider a fixed censoring
time, and the values larger than the specific t (life test
termination time) are observed as censored observations.
Romeu [29] and Kalbfleisch and Prentice [30] explained
various censoring schemes.

To motivate the readers about the mixture modeling,
consider a sample of sand which is based on the mixture of
some minerals. With the application of mixture modeling,
estimates of the proportions of various minerals in the sand
can be obtained. Similarly, the grain size distributions for the
different minerals can also be estimated. It is worth men-
tioning that mixture models can be classified into type I (if
component densities of the various components belong to
the same family) and type II (if the component densities
belong to different families) mixtures.
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It has been noticed that from the recent literature that
the Pareto distribution can be applied efficiently in various
situations rather than other distributions to model data. The
significance of Pareto distribution in forming various real
phenomena is patent from the following revealed research
and references mentioned therein, Abdel-All et al. [31],
Ismail [32], Sankaran and Nair [33], and Nadarajah and
Kotz [34]. Inspired by the wide real-life applications of
mixture distributions, the main objective of this study is to
develop a new three-component mixture of Pareto distri-
butions (TCMPD) for lifetime data modeling under type I
mixture. Furthermore, we also compare the maximum
likelihood (ML) estimates, ML variances (MLVs), Bayes
estimates, and their posterior variances (PVs) assuming type
I right censored data.

2. The Population and the Three-Component
Mixture Distribution

The finite k-components mixture density function can be
defined for random variable Y as f(y) = Zlézlwd fay),
where f;(y) is the d™ component density function, w,, (d =
1,2,...,h) is the d™ mixing proportion, and Z§:1wd =1.A
finite TCMPD is defined as

FiAn A A wiwy) = w1 (y34) +w, fr(y34,) + (1 - wy —w,) f5(y;45)

w,w, 20w, +w, <1,

where fa(yidy) = e QatDiny,

d=1,2,3.

1<y<00,1;>0,

F(y; A, A A5, w,w,) = wiFy (y;:4) + w,Fy (y34,) + (1

where F;(y;1;) =1 —e Mny,

3. Properties of the TCMPD

The statistical properties such as moments, mean, variance,
and mode of the TCMPD are derived in this section.

The cdf F(y) of a TCMPD is

—w; —wy)F; (1), (2)

h
M moment about zero: the " moment about zero of a

TCMPD is derived as

E(Y')=wA (4, - r)fl +w,d, (A, - ”)71 +(1—w; —wy)As (A; - ")71- (3)

k™ order negative moment: the k™ order negative
moment is derived as

E(Y ") =wd, (4 + k)" +wpdy, ( +k) 7+ (1w, —wy)As (A + ) (4)
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Factorial moments: the factorial moments can be de-
termined as

-1
EY(Y-1D(Y=2),..,(Y=8+1) = Y & (-1)°E(Y*"),
w=0

Where &)s is the real number. The E (Y®“) can be
obtained ash

(5)
E(Y" ) =wh (L -8+ 0)  +wdy (L, -8+ w) '+ (1-w, — w5 (A -8+ w) . (6)
Mean: the mean of a TCMPD is evaluated ash Median: the median (y) is determined by evaluating the
E(Y) = wd, (4, - 1),1 FwA, (L, - 1),1 following nonlinear equation for y.
(7) we MY e Y L (1 - w, —w,)e ™Y = 0.5,

+(1-w —w)hs (A - 1)

Variance: the variance of a TCMPD is derived as

3 3 2
Var(Y): deld(/\d—Z)_l _{zwdld(kd_l)_l} .
d=1

d=1

(8)

(9)

Mode: the mode (y) is obtained by solving the following
nonlinear equation for y.

wdy (A + De” B2y 1 + 1) By (1w —w) ) (A + 1) 5y < g (10)

Using the above expressions, mean, median, variance,
and coefficient of skewness (SK) are calculated for different
parameters’ values and are given in Table 1.

It is observed from the entries in Table 1 and Figure 1
that TCMPD is positively skewed as we have SK > 0 for all
the entries arranged in Table 1. We noticed that the variance
of the TCMPD was a declining function of the mixture
distribution’s parameters.

4. Entropies

The entropy is a quantity of unspecified extent of evidence in
a function. Here, we derive the expressions of the most
commonly used entropy measures such as Shannon’s en-
tropy, —entropy, and Re'nyi entropy, in this section. As
said by Song [35], Shannon’s entropy has a same behavior as
a measure of kurtosis in equating the forms of different
functions and computing substance of tails.

Shannon’s entropy: Shannon’s entropy for a random
variable Y, which follows TCMPD, is

50 = = [ F (iAo dss s w)loglf (3310 do ;)

0

Is(}’)Z—J

1

le)tle_ul“)l“ Y+ wz/\Ze_(’lf“l)ln T+(1-w, - wz)/\3e_(’13+1)lrl y} (11)

log{wl/lle_(hﬂ)ln b wzlze—(kzﬂ)ln b (1 —w, - wz)k3€_(/\3+1)ln y}]dy.

Re'nyi entropy: the Rényi entropy (Rényi, [36]) is
explained as

! .
Ig(y) = (l—f)log{,[l f (y,)tl,/lz,/\3,w1,w2)dy},
(12)
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TaBLE 1: Mean, median, variance, and coefficient of skewness of TCMPD.

A Ay A, wp,w, Mean Median Variance SK
5,6,7,0.1,0.2 1.1817 1.1112 0.0503 4.1248
5,6,7,02,0.3 1.1933 1.1170 0.0593 4.3907
5,6,7,03,04 1.2050 1.1232 0.0680 4.4905
5,6,7,04,05 1.2167 1.1299 0.0764 4.5080
7,6,5,0.2,0.1 1.2283 1.1353 0.0879 4.7192
8,7,6,0.3,0.2 1.1762 1.1080 0.0466 3.8285
9,8,7,04,03 1.1429 1.0897 0.0282 3.3279
10, 9, 8, 0.5, 0.4 1.1198 1.0767 0.0186 2.9837
6, 5,4, 0.5, 0.3 1.2417 1.1409 0.1083 6.5238
7,6,5,0.5,0.3 1.1933 1.1170 0.0593 4.3907
8,7,6,0.5,0.3 1.1614 1.1000 0.0377 3.6535
9,8,7,05,0.3 1.1387 1.0874 0.0262 3.2733
BE (UP)
BE (JP)
200
FiGure 1: The graph of the BE and MLE of parameter A, = 3.
Where £ >0, and & # 1. The Rényi entropy of a 3-CMPD
is
1 0 -(A+1)In y -(A+1)In y -(A+1)In y ¢
Ix(y) =(1—£)log {wl)tle ! +w,h,e V2 +(1-w; —wy)hse V2 } dy|. (13)

1

p—Entropy: the f—entropy (Ullah, [37]) is written as

{1 - L f¢(y;/11,/\2,l3,w1,w2)dy},

1
Iﬁ()’)—m

(14)

Which can be evaluated by the numerical integration.

Where ¢ >0, and ¢ # 1. The f—entropy of a TCMPD is

1 © ?
Iy (y) = w-1 [1 - Jl {wl)tle_(A‘Jrl)ln Y wyhye iy (1-w, - wz)/\3e_(l3+1)ln y} dy],

(15)
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5
5. Inequality Measures The Gini index: this index (Gini, [38]) for a TCMPD is
The most common income inequality indices are Bonferroni
curve, Gini index, and Lorenz curve.
1 (o]
G=—— J F(y; 1A A5, wi, wy){1 = F(y; A, Ay, A5, wy, w,) Hdy,
E(Y) )
G _[To{wle_A‘ Iy, wze_}Lzln Y+(1-w, - wz)e_A3 In y}dy - ﬁo {wle_’11 Iy, wze_A2 Iy (I-w, - wz)e_’13 In y}zdy
B wid (A - 1)_1 +wyhy (A, — 1)_1 +(1-w; —wy)As (A - 1)_1 ,
_ w -1 rw (-1 +(1-w —w) (- 1)
wid (A - 1)71 +wydy (A, - 1)71 +(1-w; —wy)A5 (A5 - 1)71
w2l -1+l 2L - 1) (1 —w —w,) (24 - 1)
+2ww, (A +4,) - 1)71 +2w, (1 - w; —w,) ((A, +43) = 1)71
B 2w, (1-w, —wy) (h +45) - 1)
wid (A - 1)_1 +wyd,y (A, - 1)_1 +(1—w; —wy)A5 (A; - 1)_1
(16)
The Lorenz curve: this curve (Lorenz, [39]) for a TCMPD is
1 y
L(p) = m ,[1 yf(YQAl)/\z,A3>w1,w2)d)’>
(17)
Lp)=1 wid (A, - 1)_167(1171)1“' +w,, (A, - 1)_167(/1271”“ P+ (1-w; —wy)A5 (A3 - 1) e (=D y
P why (Al - 1)71 +wyh, (Az - 1)71 + (1 —wy — wz)/\3 (’13 - 1)71
Bonferroni curve: the Bonferroni [40] curve for a TCMPD is
L _ _
BC(p) = L) _ (1 —w A (4 1) e Ry 1 (L — 1) e (e Dy
F(y)
+(1-w; —wy)As (A - 1)713_“3_1)1" Yo Ay (A~ 1)71 +wyhy (A, — 1)71 +(1-w; —wy)As (A - 1)71)/
. ({1 —we MY —we Y (1 —w - w,)e B y})
(18)
6. Order Statistics variance of 1°* and n™ order statistics are obtained in this
section.
In this section, we derive g (¥y. ,; A1, Ay, A3, w1, w,) which is Probability density function of k™ order statistic: the pdf

pdf of k™ order statistic Yk » assuming a sample of size n of k™ order statistic is
from the TCMPD. The 7" raw moment along with mean and

n! _
Ik A A Az, wy, wy) = mf(%}tv%Jywpwz){F()’§)‘1)/\2>A3>w1>w2)}k 1

(19)
{1 - F()@)‘l’/\z’%’wpwz)}nik’
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where f (y3A1,45,4 3w, w,) = w, f,
(i) +w, fr(yidy) + (1 —wy —w,) f5(yids),

w,w,20,w; +w, <1,
F(y;dp Ay dswpw,) = w Fy (y54) + w,Fy (y34,) + (1 - wy —w,)Fs (5 45),

{F(y;/\l,lz,)g,wl,wz)}k_l :{1 —we M —we Y (1w, —wz)e_%lny}kJ,

k-1 a
-1 a b -A(a-b)ny - - c)ln
{F(yihiohp ds wy,w,) ZZZ( 1)* ( )(b)(c)e hi(a=bln y o (b=l y

a=0 b=0 c=0
- _ 20
Ay (c)lny u -b b (1 —w, - wz)c, ( )
_ _ _ _ -k
{1-F(y;A, 45,45, wy, w,)}" k :{w e ’Uny +wye Ly (1-w, - w,)e A ln y}n ,
n-k u
{L=F(y; M A0 A5 wy,w,) )™ ¢ Z Z( )( )e_ll iyl iy
u=0v=0 v
e -A; ()In yw:l k— uwg V(l —w, - wz)v.
After little simplification, the pdf (19) of k" order sta-
tistic can be written as
I (Ve A A Ay, wp,w,) = Z ZZ (-1)° ( -1 )(a)(b>e)n(ab)ln}’ke/\z(bc)lnyk
K nd A Ay Az Wy, W
! 1)‘(” 9 e Yo o a b/\c
PN b b "Zki U\ ) - k-wl
Le by, a C(l—wl wz) ( )( )e—]n— —u)ln yy
u=0v=0 v
e A, (u=v)ln yke— Az (V)In ykwn—k—uwu—v (1 —w, - wz)v
{wl e M)y y w,),e ~(ar)in i (1-w; —wy)A 36_(A3+1)ln yk}, (21)
Sh —L\(a\(b\ .. By—1_ Cy-1
“Aylny - _
9 UienihoAarhorwro02) = 1>' (=P szoz( v ( a )( b)( ¢ )e s e
n-k u
(1w, - w,) Dm 1 Z z( )( )erzln ykwfoz—lwglm—l (1-w, - wz)poz,l
u=0v=0
. {wllle—(lrﬂ)ln Yk 4 wzlze—(lzﬁ-l)lﬂ Yk 4 (1 —w, — wz)A3e—(A3+l)ln yk},
where Ay =4, (a-b)+A,(b-¢)+A;(c), Byy=a-b+1, Probability density function of 1% order statistic:
Cyy=b-c+1,Dy =c+1, substituting k = 1 in (21) and simplifying it, the pdf of 1

A =M (n—k—u) + A, (u—v) + A5 (v), order statistic is

By, =n-k-u+1l,
02 (22)
Cp=u-v+1,

Dy, =v+1

n-1 u n-1
91w A A wi,wy) =n ZA Z Z( )( V)e_(A‘”’H)l" NPty ST (1 —w) — w7 (23)

u=0v=0
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where A;, =A, (n—u) + A, (u—v)+A;(v), B, =n—-u+1, Probability density function of »” order statistic:
Ch=u-v+1,D,=v+1, substituting k =7 in (21) and after little algebraic simpli-
A=A (=1 =)+ Ay (= v+ 1)+ Ay () fication, the pdf of n™ order statistic is
B,=n-u,

Ch=u-v+2,

Dy, =v+1,

(24)
As=An-1-uw)+Au-v)+A;(v+1),
B;=n-u,

Ci=u-v+1,
Dy;=v+2.

L n-la k—=1\/a\/b
g(yn nv’ll’/\Z’A?)’wl’wZ - Z Ay Z Z Z _1)a< )( ) )( )e(A2w+l)1n ynwfm—lwgm—l (1 —w, - wz)Dzw—l’

B
|

w=1  a=0b=0c=0 a ¢
(25)
where Ay =A@-b+1)+1,(b-c)+2;(0), " moments, mean, and variance of 1° order statistic: the
B,y=a-b+2,Cyy=b-c+1, D,y =c+1, " moment about the origin, mean, and variance of 1** order
Ay =h(@=b)+ Ay (b—c+1)+1(c), statistic are
B,=a-b+1,
Cp=b-c+2,
D,,=c+1,
22 (26)
Ay =Mh@-b+Ab-c)+A;(c+1),
By=a-b+1,
Cy=b-c+1,
D,;=c+2.
S N & A VA W o D1 1
7 w™ w™ w™ -
CUARED 2930 (| () P S SRS LR PR
w=1 u=0v=0 u v
S S N AR AV AW wf Dy 1 -1
UARED 2930 ) G | () e (A L P
w=1 u=0v=0\ U v
(27)
I & A VA A W o Dpy-1 -1
Var(Y;) =n Z)Lw Z( )< )wllw w, T (1-w, —wy) ™ (A, —2)
w=1 u=0v=0 u v

e

2 Twn-1 UN g 1 Cyp-l D,,—1 -1 ’
n 2 Aw E( ) >w11w wy (L—wy —w,) ™ (A, — 1) ]’ .
w=1 u=0v=0 u v

th . th ..
r"" moments, mean, and variance of n"' order statistic:

the " moment about the origin, mean, and variance of 1™
order statistic are
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7. Parametric Estimation

Here, we discuss the parameter estimation methods. In
particular, we use the ML and Bayesian methods of esti-
mation to estimate unknown parameters under type I
censored data. Before discussing the parameter estimation,
we construct the likelihood function.

Assume 7 units, with fixed ¢ as test termination time,
from the TCMPD are used in a real-life experiment. Let
Y1>Y2>---» ye be the ordered values that can only be ob-
served. The n — £ remaining largest values are censored from
the study, i.e., their exact failure time cannot be recorded due
to time constraint. So, yp,..., Y1, Yapr---» Vor, and
V31> - - > Yat, are failed observations relating to subpopula-
tions I, II, and III, respectively. The observation Y is

Mathematical Problems in Engineering

b
)w?zwlw?“ (1= wy = w,)P (A — 1),
C

)wfzw_lw%w_l (1-w, - wz)Dzw_l (Ayy — 1)_1>

(28)

)wfm—lwgzw‘l (1 -w), — wz)Dzwil (A2w - 2)71

2
b
(0 ot - - - |

assumed to be censored from each component, whereas the
numbers &, &,, and &; of failed values are obtained from the
subpopulations. The n, — &, n, — &,, and n; — &; observa-
tions are assumed to be censored values from subpopula-
tions, whereas r, +r, + r; = r. So, the likelihood function
using type I censored sample, y ={(y; = yi15---» i),
(Y2 = Ya1>-- > ¥2g,)> and (y3 = y315- - - ¥3g,), for a TCMPD

e 0wy {8,
w0 {2 (- w —w)fs ) 1= oy

After substitution and simplification, the likelihood function
of TCMPD becomes

is L(AI’AZ’ /137 wy, w2|Y) &

n-& m & & &
(A'l)AQ)A:’,) w,, w2|y Z Z < )( )e—)tl ((n— &- ml)ln t+zk:11n ylk)e—/\z ((ml—mz)ln t+zk:11n yzk)e—)l3 ((mz)ln t+zk:11n )’3k)
my =0 m,= m,
x AflAgzlistl—f—mﬁ'flwgnl_mz*'fz (1 —w, - wz)mz‘*E}.

7.1. ML Estimators and Variances. The ML estimators of
TCMPD for parameter ® = (1,,1,,1;,w;, w,) are derived
from the solution of nonlinear equations (30)-(34). The

(29)

equations have been derived by partially differentiating the
natural logarithm of the likelihood function as

a ln L(q)ly) (n _ g)twle—ll Int
In =0, (30)
—a Z AT w,e oMt wze—/lzln ty (1 —w, - wz)eﬁlglnt
a ln L((I)ly (n _ &—)thef)tzlnt
dIn L(®@Jy) In =0, (31)
a, 1, Z Yok — wre gt wze‘AZ It (1-w, - wz)e‘% In ¢
0ln L(®Dly) Zl (n-t(1-w, - '4“2)‘37)LS e -0 (32)
78 —)Ll In t L In t o “Alne T
A +w,e +(1-w, —w,)e
-1 In —A;1n
oln L(®ly) & &5 (n-lem " - P -0 (33)
ow, w, (1 —w, - wz) wle—)ll nt wze—/lz nt (1 —w, - wz)e—/\g In ¢
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It is very tough to find out an explicit solution from the
nonlinear equations (30)-(34); therefore, to obtain ML es-
timators, any mathematical or statistical software such as
Mathematica (Wolfram, [41]) can be used to solve them by

dln L(®ly) & 2

(1’1 _ E){e—)tzlnt _ e—/\3lnt}

ow,

an iterative procedure.

where

_wz_ (1-w —w,) w,e

Nt At

+we ™ 4 (1-w, - w,)e

expectation of the negative Hessian as

0*In L(®ly) °In L(®ly) 0*In L(®ly) 8°In L(®ly) 0°In L(®Dly)]
or? 0A,0A, 0A,0A, oA 0w, oA, 0w,

0’ In L(®ly) 0°In L(®ly) 8°In L(®ly) 0*In L(®ly) 9°In L(Dly)
01,01, or2 01,01, oA,0w, oA, 0w,

0*In L(®ly) 0°In L(®ly) 0*In L(®ly) d°In L(®ly) 0°In L(®ly)

0. (34)

Let ® = (A;,4,,A5,w;, w,), and by using multivariate
central limit theorem, that is, ® ~ N (®, I~ ! (®)), one can get
asymptotic variances, where the variance is given on diag-
onal of the inverted Fisher information matrix which is

I(®)=-E 8 (35)
oL,00, 5o, o oA,0w, o\,0w,
o*In L(®ly) 0°In L(®ly) 0*In L(®ly) d°In L(®ly) 0°In L(®ly)
ow, 0\, ow,0A, 0w, 0\, ow’ ow, 0w,
n L(® n L(® n L(® n L(® n L(®
O’ In L(®@ly) 9’In L(®ly) 9’In L(®ly) 0’In L(Dly) 0"In L(®ly)
dw,00, dw,o0, dw,00, dw, ph, wl
0’ In L(®ly) & {wze_)Lz (1 —w, —wy)e B! t} (n-&rtwe Mt
oA A {wle_)l‘ Ity we ity (1-w, - wz)e_)LS In t}z
aZ ln L((I)Iy) - &—2 N {wle—h Int + (1 _ wl _ w2)e_/\3 In t} (n _ f)tleZe_AZlnt
on; % {wle_Al P we™ M (11— w, - w,)e " t}z
aZ In L(d)|y) 53 N {wle—)tl Int + wze—/lz In t} (7’1 _ f)tz (1 —w, - wz)e—)13 Int
52 T2 36
12 22 {wle’Al e (1=, wz)e—ASInt}z (36)
Alnt  —tlne?
FInL(@ly) & & ) (n-§fehint— iy
aw% w% (1-w - wz)z {wle_ll Iy ety (1-w, - wz)e_A3 In t}Z)
“An CIn 2
azlnL(d)|y)__é_ & B (n_g){e hint _ =l t}
ow; wy (1= w, - w,)’ ~{wlef)Ll e ™ L (1- w, - w,)e ™" t}z
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Next, we discuss the Bayesian estimation for the esti-
mation of unknown parameters.

7.2. The Joint Prior and Posterior Distributions. Now, we
discuss the Bayesian estimation of the unknown parameters.
This method allows us to obtain an updated form of the
knowledge which is calculated by combining the current and
the prior knowledge. In particular, we use uniform and
Jeffreys as noninformative priors, which are used when little
or no formal prior knowledge on the parameters of concern
is available. Box and Taio [42] stated a noninformative prior
which gives slight information relative to the testing ex-
periment. Bernardo and Smith [43] defined a non-
informative prior has the least influence relative to the data.
Jeffreys prior suggested by Jeffreys [44] is obtained by
evaluating the Fisher information.

& (A1’12>)‘3’w1>w2|}’) =
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7.2.1. The Joint Prior and Posterior Distributions Assuming
the UP. We take the improper UP for component param-
eters, i.e., A; ~ U (0,00),d = 1,2, 3. Also, we take the UP for
the unknown proportion parameters, i.e., w, ~U(0, 1),
s=1,2. Under the assumption of independence of pa-
rameters 1,,1,, A5, w,, and w,, the joint prior distribution is

v (A A0 A5, wy, w,) o< 1. (37)

By combining the likelihood function and the joint UP
prior, i.e., y; (A1, 45, A5, w;, w,), we obtain the joint posterior
distribution of parameters A, A, A5, w;, and w, given datay
as

L (A A Ay, wy woly)yy (A, Ay, A, wy, wyly)

w, wy A3 A, A

_[ J‘ J _[ IL(/\lJz’)‘ywpwz'Y)V/l (’11>A2’A3’wl)w2|Y)dA1dA2dA3dw1dw2,

Nt " (38)
_ Ly - . Ag=1 Byy-1 Coi—1
ZZFOZQZO e Pt Pute B31A3w1 w1 w —wy)
_ my m,
& (A Ay A, wi, wyly) = EIA}_AIIAE_A21A;7A31 ’
where Aj; =& +1, Ay =6 +1, Ay, =&+ 1,
3
By=(n-¢-m))nt+ Zln Ve
k=1
3
B, =(my—my)ln t + Z In y,,
k=1
&
By =(my)lnt+ ) In y;y,
51 = (m,) I; Y3k (39)
Ay =n-¢-m +§& +1,

By =m; —m, +&, + 1,

Cop=m,+&+1,

A =8\ (m AL
E, = z Z F(An)r(A21)r(Aal)BnA“leAZIB;“B(Am’BopCm)-
m

m;=0m,=0 my 2

7.2.2. The Joint Prior and Posterior Distributions Assuming
the JP. The JP for component parameters A4, d = 1,2,3, is
p(Ay) o< /I (A,)], where I (1) is the Fisher information and
is I(Ay) = —E{E)Z In L()td;yd)/a)ts}. The prior distributions

of w, and w, are assumed as the UP, ie, w, ~U(0,1),
s =1,2. So, the joint prior distribution is
1

[2) (AI,AZ,A3,w1,w2|y)Ocm. (40)
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Using the JP, the joint posterior distribution of
Ay Ay A3, wy, and w, that give data y is

LA, A5, A3 wi, wyly) s (A1, 4 A3, wy, wyly)

A’ ,A’ )A‘ b b = ’
& (A Ay, wy,wily) _[ f J _[ IL(/\l,Az,/ls,LUhLUzW)V/z (41542 A3, wy, woly)dAy dA,dAsdw, dw,
3 AZ A

1

n=&\ [ m 1 A A Ag—1 Bgy-1 Cop—1
7312 1 7322 2 7B32 3 027 027 _ _ 027
> _ozmz_o e e e W Wy (1 -wy —w,)

m, m,

& (AI’A2>A3’w1’w2|Y) =

where A}, =&}, Ay, =&, Ay = &5,

&
B,=Mm-&-m))nt+ Zln Vie

k=1
3
By, =(my —my)Int + Z In y,,
k=1
&
By, = (my)In t + Z In yy,
k=1

Ap=n-&-m +§& +1,
By =my—my+ & +1,

Cpp=my, +&+1,

1-A;, 1 1-Ay y1-As,
B\l Ayl

SRS n _E m —Ap Ay p=Asy
E, = Z Z F(Alz)r(Azz)r(An)Blz By " B3, B(Aoz’Boz’Coz)'

m;=0m,=0 my m,

7.3. Bayes Estimators and Posterior Variances. The Bayes
estimators of the component and mixing proportion, i.e.,
A Ay A3, wy, and w, using the UP are obtained as

A, ) (A01>C01)B(Bo1>A01+C01)

R nbom =&\ (M \T(A, +1)I(A
e B () et
1 m,;=0 m,=0 my m,

where «, 8, and y are defined as (i) a = 1,5 =2,y =3 (ii)
a=2,f=1y=3,and (iii) a =3,=1,y=2.

(AMH)Bgle y1

B(Y1,Co1)B(Agy + LY, + Cm)

n-& m f
ay=1 % Z( ) ( )F(A”)F(A”)r(A“)BAUBAZIBAH
m my

E, m, =0 m,=0

where 6, Y, and A are defined as (i) § = 1,Y = B,A = A and

(i) § =2,Y = A, A = B.
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(41)

(42)

(43)

(44)

To measure the accuracy and efficiency of the Bayes
estimators, we normally calculate the PVs of the parameters.
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For the PVs of A}, A,, A5, w;, and w,, using the UP are
derived as

w15 37

>< ™ )r(Aal + Z)F(A/Sl) (A ) (Ao1> Co1)B(Bo1> Agy + Coy )

B (Aaﬁz)BAﬁ‘B 71

m, m, B1
2
RS ri g" nod " T(Ag + 1)F(Aﬁ1) ( )B (Ag1>Co1)B(By1> Agy +Coy)
E1 m;=0 m,=0 m, m, (AalJrl)B;:‘le y1
(45)
nt m [n—E& m
Var (@yly) = — f Z PAT(A)T (AZI)F(AH)BA(E(OXHCO}AZB (Agy +2, Y +Cy)
Ey m=0m=0\_ pm, m, By By B3
n-& m n-— f my ?
Jr Z Z T (Ay)T (Ay)T (As1)B(Yo1, Cor)B(Agy + 1, Yoy +Coy)
All A 1 A 1 ’
E, m; =0 m,=0 m, m, Bll BZIZ B313
The Bayes estimators of A, A,, A5, w,, and w, using the
JP are obtained as
Tiy= oo (= T (A, + l)r(Aﬂz)r(Ayz)B (Ag2 Co2)B(Bps Agy + Ca)
aly = E— z z (Aa2+1) Ap A ?
2 m=0m,=0\ m, my By, B/32 B,
(46)
Wsly = L ST A T (Ap)T (Ay)T (A35)B(Yop: Coo)B(Agy + 1, Y + Coz)
wsly = E Z Z BAIZ A A32
2 m;=0m,=0 m; m, 12’ By B
Also, the PVs of the parameters A;,A,,A;, p;, and
p,using the JP are derived as
Var(X |Y) _ 1 ’f % n=t ™ [(Agp + 2)F(Aﬁ2)F(Ay2)B(A02, Co2)B (B, Agz + Cy)
o 2 0 m, m, BOE;MH)B;‘;zB;‘{z
2
b rf % n-¢ T (A, + 1)F(Aﬁ2)r(Ay2)B (A2 Co2)B(Byas Agy + Cop)
522\, N PR
(47)

Alz AZZ A32
E, m, =0 m,=0 BIZ Bzz B

nt om (n=§ my + +
Var(w6|y)—— Z Z( )( )r(Alz)r(Azz)r(Asz)B(Yoz’Coz)B(Aoz 2, Y, +Cpy)

m

{ "ZE % ( n-¢ ) ( " > ( 12)1"(A22)1" (Asz)B (Yoz’coz)B (Aoz +1, Yo, + COZ) }2

A]z Azz A32
2 m;=0 m,=0 m, B B B
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7.4. The Bayesian Prediction. One of the main objectives of
statistical modeling is the prediction of the future values. The
Bayesian methodology allows us to obtain this in a natural
way. In particular, the posterior predictive distribution
(PPD) comprises the knowledge about future value X = Y, ,,
given data y. Al-Hussaini et al. [45], Bolstad [46], and Bansal
[47] have discussed the usefulness of the prediction and

13

predictive distribution comprehensively in the Bayesian
framework.

7.4.1. The Posterior Predictive Distribution. For the future
value X =Y,,,, the PPD using the UP and the JP is

fxly) = J J J J J'f(prAz’/ls’wpwz)Q (4152, A3, wy, wyly)dA; dAydA s dw, dw,, (48)
wywy A3 4, 4
(SR h-= E F(A + l)r (AZV)F (A3V)B (AOV +1 COV)B (BOW AOv + COV + 1)
fem-cp ¥ 3 (")) et LoDl
Ey piZom=o m, (B, +1n x) By By
+ 1 & % ( n- E >< nmy ) F(AIV)F(AZV + l)r (A3V)B (AOV’ COV)B (BOV + I’AOV + COV + 1) (49)
XEy i Zomzo\ M m B 2 (B,, +In x) (A2”+1)BA3‘

v m,=0 m,=0 m

In equation, we consider v = 1 for UP and v = 2 for JP,
respectively.

7.4.2. Bayesian Predictive Intervals. To obtain the Bayesian
predictive intervals (BPIs), let L and U are the two lower and

m,

+ ! S % n= f F(Alv)r(AZV)r(ASV + l)B (AOV’ COV + l)B (BOV’ AOV + COV + 1)
xE m,

B BJ (By, +In x) ()

upper endpoints of the BPI, which are obtained from (49). A
100(1 — @)% BPI (L, U) using UP and JP can be obtained by
simplifying the given expression:

T(A}, +1)I(A,,)T(A;,)B(Ay, +1,Cy,)B(By,, Ay, + Cp, + 1)

f ml n-— f
EV m; = Om2

m,

3

(B, +1In x) (A1) g gl

Bl (B,, +1n x) (g

+ Ly f M1 (71 E)( ' )F(Alv [ (A, + 1)T(A;,)B(Ay,, Co,)B(By, + 1, Ag, + Cy, +1)
xE, ml—O o m,
)( )
)

+ 1 < E ml " 5 ™ T(A T(AZV r(A3v + I)B (AOV’COV + I)B (BOV’AOV + COV + 1) ﬁ
xE, ml_o mz_o m, BB (B, +1In x) () 7
(50)
J HZE g " E r (A + l)r (sz)r (A3V)B (AOV +1, COV)B (BOV’ AOv + COv + 1)
v |xE, &=, By, +In x) (4D gl phs
) "\ L (AT (Ay, + DT (A3)B(Agys Co)B (B + 1, A, + Coy + 1)
xE, &, mz_o m, B (B,, +In x) (4ot gty
+ 1 ”z:f S ™ \r(Alv r(AZV r(A3V + I)B (AOV’COV + I)B (BOV’AOV + COV + 1) @
xE, =, mz m, } BB (B,, +1In x)(A3v“) b
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8. Monte Carlo Simulation

Here, we tabulate a comprehensive simulation to check the
performance of different estimation methods. As an ana-
Iytical comparison of the Bayes and ML estimators is not
possible, a Monte Carlo simulation is performed to measure
the performance of the Bayes and ML estimators under
different aspects. Through the following steps, we obtained
the maximum likelihood estimates (MLEs), MLVs, Bayes
estimates (BEs), and PVs as

(1) A sample of size n from mixtures may be taken as

(i) Generate a sample of w,n values randomly from

filyiA)

(ii) Generate a sample of w,n values randomly from
f2(ridy)

(iii) Generate a sample of (1 —-w; —w,)n values
randomly from f5(y;A;)

(2) Select the values that are larger than fixed t as
censored values

(3) For alarge number of times, say 1000, repeat steps 1
and 2 for the fixed t, n, and parametric values

(4) Evaluate the MLEs and MLVs of A, A,, A5, p;, and
p, using nonlinear equations based on the samples
obtained in step 3

(5) Calculate the BEs and PVs based on 1000 repetitions

The above procedure is adopted for 50, 100, and 200 as
sample sizes n, parametric values (1,,1,,;, w;, w,) = {(3,4,
5,0.5,0.3), (5,6,7,0.5,0.3)}, and t = 1.5, 2. The choice of ¢
=1.5,2 was done to have 8-20% censored rate in the
resulting sample. Moreover, to have a perceptible indication
about the behavior of the MLEs, BEs, MLVs, and PVs, we
depicted some graphs in Figures 1-4 and Tables 2 and 3.

From Figures 1-4, it is observed that parameters
A Ay As, and w, are overestimated, but w, is under-
estimated at different values of t and # in both estimation
methods, i.e., ML and Bayesian. Also, the degree of un-
derestimation of A,, A,, 5, w;, and w, is higher for a small n
at various values of t, and an opposite behavior was observed
for a large t at a given n. Furthermore, the parameters
A Ay As, wy, and w, were observed overestimated to a
larger extent when the true values of A, A,, and A; were
smaller at different values of ¢ for a fixed n. In addition, the
similar pattern has been observed at different values of n for
a fixed t. The difference of the MLEs and BEs of parameters
A Ay A3, wy, and w, from the nominal values becomes the
minimum with the increase of t and n.

It can be seen from Tables 2 and 3 that at different values
of t, the difference between the MLVs and the PV's (assuming
the UP and the JP) diminishes by increasing sample size. The
same remarKk is true for a large t at different values of n. Also,
noticed that the MLVs and PVs of w, and w, are larger for
smaller values of A, A,, and A, at different values of t and n.
Also, it is pointed out that the performance of the Bayes
estimators using JP is best than Bayes estimators using UP
and ML estimators based on lesser associated PVs.
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To the extent that the selection of an appropriate prior,
Tables 2 and 3 revealed that the JP outperforms as compared
to the UP because the variance of JP is smaller than the UP.

Table 4 and Figure 5 showcase the 90% BPI using the UP
and the JP. It is pointed out that the width of 90% BPI
increases with a decrease in n. The same conclusion was
observed with a smaller ¢ for varying values of n. The 90%
BPIs, for larger values of A, A,, and A;, were observed
narrow at various values of ¢ and n. Moreover, the BPIs using
the JP were observed wider than the BPIs obtained by as-
suming the UP in the simulation study.

9. Real Data Application

To illustrate the proposed methodology, the mixture lifetime
data,

2= (21132105 - 3 Z1rp 221> %005 - - 5 Z2rp 31> B30 - - > Z3p,) NN
thousand hours, was taken from Davis [48] on three factors,
i.e., V805 Transmitter, Transmitter, and V600 Indicator
Tube used in aircraft sets. For exponential distributed
mixture data (z), the suitable transformation y = exp(z)
gives the Pareto distributed mixture data (y). So, the
mention transformation permits to utilize the given mixture
data z for using the suggested ML and Bayesian estimation
techniques. Thus, the proposed mixture of the Pareto dis-
tributions can be a fair choice to model the abovementioned
data. Moreover, it is unidentified that which factor fails until
a failure arises at or before 0.6 hours. To calculate the MLEs,
MLVs, BEs, and PVs, the data summary is

n = 1340,

T Ty
YIn(yy) = ) 2y = 134.080,
k=1 k=1

r, = 866,
7 sy
Y In(yy) = ) 2y = 50.375,
- i (51)
rz = 337,
3 r3
Y In(ys) = ) 23 = 16250,
k=1 k=1
T3 = 83,
r = 1286,
n—r=>54.

The MLEs, MLVs, BEs, and PVs assuming the UP and
the JP are presented in Table 5.

From Table 5, it is clear that the performance of the BEs
using JP is the best as compared to the MLEs, as the variance
of BEs is smaller than the counterpart. Moreover, the BEs
using the UP have smaller variances for estimating the
unknown parameters. Also, the JP was observed superior to
the UP due to smaller associated PV for estimating the
unknown parameters.
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FIGURE 4: The graphs of the BE and MLE of parameter w, = 0.3.
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TaBLE 2: MLVs and PVs with A, = 3,1, =4,1; = 5,w; = 0.5,w, = 0.3, and t = 1.5, 2.
Variances t n Xl 7\2 X3 w, w,
50 2.320214 4.715420 8.914210 0.007794 0.006861
1.5 100 1.070912 2.394020 4.312200 0.004701 0.003987
MLV 200 0.504841 1.220180 2.175420 0.002699 0.002267
50 0.877500 2.312550 4.832860 0.005245 0.004459
2 100 0.402951 1.069200 2.242510 0.002806 0.002371
200 0.182921 0.540710 1.085260 0.001448 0.001219
50 2.516370 5.525710 10.38160 0.008028 0.006968
1.5 100 1.110690 2.500540 4.549870 0.004774 0.004055
PV (UP) 200 0.504418 1.260720 2.263810 0.002761 0.002303
50 0.930862 2.429000 5.280310 0.005255 0.004462
2 100 0.418080 1.109120 2.276240 0.002809 0.002375
200 0.183232 0.562381 1.114090 0.001450 0.001219
50 2.248490 4.678600 8.667130 0.007740 0.006805
1.5 100 1.052080 2.354530 4.287430 0.004681 0.003981
PV (JP) 200 0.503192 1.214890 2.149440 0.002698 0.002259
50 0.859103 2.257300 4.765290 0.005241 0.004456
2 100 0.400117 1.067430 2.225230 0.002805 0.002369
200 0.182605 0.543210 1.074960 0.001448 0.001218
TaBLE 3: MLVs and PVs with A, =5, 4, =6, A; = 7w, = 0.5, w, = 0.3, and ¢ = 1.5, 2.
Variances t n 11 Xz X3 w, w,
50 2.672150 5.994210 11.45520 0.005459 0.004672
1.5 100 1.221460 2.898720 5.197530 0.002947 0.002483
MLV 200 0.572900 1.419940 2.621400 0.001546 0.001293
50 1.484210 3.532100 7.425120 0.004728 0.003996
2 100 0.679930 1.635540 3.394550 0.002462 0.002075
200 0.323310 0.806990 1.557430 0.001256 0.001057
50 2.815860 6.274300 12.69820 0.005485 0.004675
1.5 100 1.243740 2.991410 5.479060 0.002965 0.002492
PV (UP) 200 0.597448 1.450400 2.658400 0.001556 0.001306
50 1.514350 3.867450 8.387800 0.004731 0.004000
2 100 0.696689 1.700300 3.472690 0.002463 0.002076
200 0.329232 0.816373 1.593910 0.001257 0.001057
50 2.625140 5.725880 11.20090 0.005451 0.004670
1.5 100 1.217280 2.814820 5.102490 0.002941 0.002480
PV (JP) 200 0.571080 1.410380 2.592280 0.001542 0.001289
50 1.462580 3.461830 7.182980 0.004727 0.003995
2 100 0.677330 1.607840 3.346260 0.002461 0.002075
200 0.323280 0.806709 1.547360 0.001256 0.001056
TasLE 4: The BPI (L, U) with A, =3,4, =4,1; =5,, w, =0.5,w, = 0.3, and t = 1.5,2.
t n
L U L U
50 1.0124 2.7082 1.0134 3.0004
1.5 100 1.0108 2.4246 1.0112 2.7094
200 1.0129 2.3866 1.0133 2.5610
50 1.0130 2.5227 1.0139 2.6982
2 100 1.0116 2.3975 1.0121 2.4609
200 1.0132 2.3405 1.0134 2.3687
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TaBLE 5: MLEs, MLVs, BEs, and PVs assuming the UP and the JP with real-life data.

Estimates and variances )ALI Xz 13 w, w,
MLE 5.6702 5.9699 3.5854 0.6689 0.2594
MLV 0.0514 0.1649 0.3810 0.00018146 0.00015131
BE (UP) 5.6673 5.9813 3.6470 0.6691 0.2594
PV (UP) 0.0519 0.1653 0.3939 0.00018126 0.00015134
BE (JP) 5.6721 5.9664 3.5539 0.6687 0.2594
PV (JP) 0.0512 0.1645 0.3799 0.00018151 0.00015129

BPI (JP)

200

FIGURE 5: The graph of widths (d=L - U) of the BPIs with A, =5, 1,=6, A3=7, w; = 0.05,w, and t=1.5, 2.

10. Conclusion

In this study, we proposed TCMPD to model lifetime data.
Parameter estimation assuming the type I censoring have
been considered using the ML and Bayesian estimation
methods. For Bayesian estimation, we assumed the non-
informative priors and expressions of the Bayes estimators
for the mixing proportion (w; and w,) and component
parameters (A;,A,, and 1;) and PVs were derived. To ex-
amine the relative presentation of the Bayes and ML esti-
mators under different scenario, a Monte Carlo simulation
has been done. To illustrate a practical presentation of
proposed mixture distribution, an example has also been
analyzed.

From simulated results and depicted graphs, it has been
noticed that an increase in t under a fixed n yields very
efficient Bayes and ML estimators. It is also pointed that
parameters A;,A,,A5,w;, and w, are overestimated
(underestimated) to a small (larger) extent with relatively
larger (smaller) value of n (value of t). More specifically, the
amount of overestimation (underestimation) of parameters
is smaller for a relatively large parameter value. As the value
of n (value of t) increases (decreases), the PVs decrease
(increase) for a fixed t (fixed n). To address the problem of
selection of a suitable prior, one can observe that the JP has
smaller PVs than the UP. The results depend on real-life
mixture data that also support the Monte Carlo simulation
study. Finally, it is concluded that the Bayes estimators using
the JP performed better as compared to the ML estimators
because of smaller variances.
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