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Prostate Cancer (PCa) is one of the common cancers amongmen in the world. About 16.67% ofmenwill be affected by PCa in their life.
Due to the integration of magnetic resonance imaging in the current clinical procedure for detecting prostate cancer and the apparent
success of imaging techniques in the estimation of PCa volume in the gland, we provide amore detailed review ofmethodologies that use
specific parameters for prostate tissue representation. After collecting over 200 researches on image-based systems for diagnosing
prostate cancer, in this paper, we provide a detailed review of existing computer-aided diagnosis (CAD) methods and approaches to
identify prostate cancer from images generated using Near-Infrared (NIR), Mid-Infrared (MIR), and Magnetic Resonance Imaging
(MRI) techniques. Furthermore, we introduce two research methodologies to build intelligent CAD systems. &e first methodology
applies a fuzzy integral method to maintain the diversity and capacity of different classifiers aggregation to detect PCa tumor from NIR
andMIR images.&e secondmethodology investigates a typical workflow for developing an automated prostate cancer diagnosis using
MRI images. Essentially, CAD development remains a helpful tool of radiology for diagnosing prostate cancer disease. Nonetheless, a
complete implementation of effective and intelligent methods is still required for the PCa-diagnostic system. While some CAD
applications work well, some limitations need to be solved for automated clinical PCa diagnostic. It is anticipated that more advances
should be made in computational image analysis and computer-assisted approaches to satisfy clinical needs shortly in the coming years.

1. Introduction

Cancer is one of the most critical health issues globally, in terms
of morbidity, mortality, and its social, economic, or quality of
life, affecting one in three people throughout their lives [1]. For
all age groups, cancer became the leading cause of death
worldwide for men and women after cardiovascular diseases
[2]. Prostate cancer is the most frequent tumor location in men
(excluding nonmelanoma skin tumors) and the third leading
cause of death from cancer, in both cases behind cancer of the
lung and colorectal. It is estimated that one in six men will
develop prostate cancer in their lifetime [3]. &e probability of
developing prostate cancer increases with age so that nine out of
ten cases appear in people over 65 years of age [4].

Diagnostic practices and therapeutic options have
continued to evolve for detecting prostate cancer. Precisely,

recent advances in prostate imaging make it possible to
detect tiny tumors and guide treatment [5]. Computer-
Aided Diagnosis (CAD) software and tools are designed to
aid physicians in diagnosing suspicious areas of the image.
&e principle is to extract from one or more types of medical
images (such as MRI, CT, US, and PET) discriminating
characteristics of the pathology than to develop a prediction
model from a database learning. &is empirical model then
makes it possible to quantify the probability that an area of
interest or a voxel of a test image is pathological [6].

&is work’s main contributions and goals are to conduct
a detailed review of existing CAD methods and approaches
for identifying prostate cancer from images. Additionally,
we proposed two research methodologies of CAD systems
based on Near-Infrared (NIR), Mid-Infrared (MIR), and
Magnetic Resonance Imaging (MRI) techniques.
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&e rest of the paper is organized as follows. Section 2
provides detailed background on prostate cancer. Section 3
describes the near-infrared (NIR) and mid-infrared (MIR)
images. Section 4 describes the two research methodologies
of a CAD system on NIR, MIR, and MRI images. Section 5
gives a detailed explanation of the clinical application. In
Section 6, we discuss our observations and list the future
directions. Finally, we conclude our work in Section 7.

2. Background

&e prostate is one of the essential glands in humans that is
known as a walnut-sized gland [1]. &e anatomical structure
of the prostate gland is divided into three standard zones.
&e peripheral zone (PZ) is the most significant part of the
gland that accounts for 70% of a gland volume and extends
from the base to the apex of the prostate gland. &e second
part is the central zone (CZ), representing 25% of the gland,
and the transition zone (TZ) represents the 5% rest of the
prostate. &e cancer of the prostate is commonly diagnosed
at the PZ, where around 70% arises. On the other hand, 10%
to 20% of prostate cancer cases are affected by a tumor in the
TZ. About 5–10% prostate cancer is located in CZ [2].

Since the late 1980s and 1990s, there is a revolutionary
shift in the health care agenda and diagnosis techniques of
the developed world. Cancer starts taking place in the
leading causes of death in humans. In the report [3], cancer
named to be the second cause of death after heart diseases.
Within different forms of cancer, the most prevalent source
of male cancer and the second leading cause of cancer death
after lung cancer is Prostate Cancer (PCa). Among men,
prostate cancer is a globally common cancer. It grows
rapidly [4]. &erefore, prostate cancer and its diagnosis
techniques make a priority to prostate cancer research.
According to the American Cancer Society Report of 2019,
prostate cancer cases in the US up to 174,650 patients will be
diagnosed, and the estimated number of deaths will reach
31,620 cases. Current studies have predicted that the risks of
cancerous disease in Asia will be rising in the future, es-
pecially in the growth countries [5]. &e paper [6] antici-
pated that cancer would significantly increase on the
continent of Asia, where 60% of the global citizens live.
&erefore, macro safety strategies in the future are a sig-
nificant need for dealing with cancer. Early diagnosis of
prostate cancer plays an essential role in survival rate or
chronic conditions.

&e case of a population screening process has been a
topic of continuous discussion since the early 1990s [7].
PCa is one of the leading cancers causing death through the
world [8]. Due to the limitations in the existing clinical
practices, accurate and easy diagnosis and assessment of
PCa still needed improvements. Computer-aided diag-
nostic approaches would probably play an influential role
in addressing this problem in the near future [9]. None-
theless, since the early nineties, the need for community
screening had been the focus of ongoing debate [7]. In
medical tests for prostate cancer, the immunoassay-based
assessment of blood levels of Prostate Specific Antigen
(PSA) is generally accepted as the first phase in clinical

screening for prostate cancer. Virtual (DRE) and trans-
rectal ultrasounds (TRUS) are usually taken for patients
with a higher PSA level.

Many large-scale prostate types of research focused on
specific antigen studies, and they have shown reduced death
risk related to PCa [10–12]. Unfortunately, as these ap-
proaches are simplistic and lack precision, assessing the
occurrence and diagnosis of the disease is now carried out
exclusively through a histopathological review of biopsy
samples collected through TRUS, or MRI guidelines.
However, some major studies have reported contradictory
results, suggesting that PSA screening has no critical impact
on PCa death rates [13, 14]. Due to the less importance of the
PSA in the diagnosis process, it has been issued or marked
with the “D” letter symbol by the United States Preventive
Services Task Force (USPSTF). It culminated in a shift away
from the use in the United States [15]. In detecting clinically
significant tumors, the random biopsy approach is also
vulnerable to low sensitivity [16–19]. Although TRUS is
more reliable and cost-effective than mp-MR, its low sen-
sitivity does not render a broad patient population [20].
&rough this restriction, the imaging of endorectal MR leads
to the PSA, DRE, and biopsy outcomes despite localization
and measurement of cancer scale and extension [21, 22].

For endorectal images, the ROC curve for locating
cancer is higher for apex, center, and base than for DRE.
Additionally, endorectal MR imaging is more reliable in
ingrowth and prostate early diagnosis, especially for the
prostate base against TRUS controlled biopsy in the local-
ization of the tumor [23]. &is paper emphasis the focus of
Magnetic Image Resonance (MR) Images more than
transrectal ultrasound (TRUS) because of the success of MR
in estimating the volume of PCa. &e use of TRUS gives
underestimate calculations. &erefore, the volume is used to
calculate PSA density, and TRUS leads to inaccurate anal-
ysis. MR provides a more accurate estimation of prostate
volume compared to TRUS [24]. Identifying the exact lo-
cation of prostate cancer using transrectal ultrasound is
inaccurate as more as MRI images. &e recent prospective
study presented that the sensitivity of the diagnosis process
of a model that uses transrectal Ultrasound (TRUS) to di-
agnose PCa is only 70.4% [25].

Song et al. [26] used deep convolution neural networks
to perform a classification task on 195 patients with localized
PCa collected from a prostate database. &e data were se-
quence of T2W, DWI, and ADC combinations. It was re-
lated to two classes of cancerous data divided to 215 for
training and 23 for validation, and 23 for testing; the second
class was healthy people, and it is divided into 229 training
and 25 for validation, and 32 for testing. After implementing
DCNNs, the outcome accuracy reached 94%. Treviño et al.
[27] examined rapid perceptual processing on T2W images,
and the rapid radiological perception could be observed
using T2W multislice imaging. &e MR has the ability to
extract the perceptual processing quickly and could also
detect and localize lesions even in complex imaging
modalities.

Chirra et al. [28] used about 147 patient T2-weightedMR
datasets downloaded from four different sites containing 406

2 Mathematical Problems in Engineering



three-dimensional voxel-wise radiomic features from five
different families (gray, Haralick, gradient, Laws, andGabor)
and evaluated in a reproducible either tumor or nontumor
and the discrimination process of tumor regions, and they
reached an accuracy of ≈0.8 in the classification phase. A
recent review [29] concluded the independent behavior of
the sensitivity in the diagnosis process of PCa on MR mages
and many factors such as the enrollment of patient (con-
secutive or not consecutive), the strength of MR images (1.5
Tesla or 3 Tesla), the reference standard of bias risk (low risk
of bias and high risk of bias), and whether readers are
blinded or not to the histological findings (blind or not
blinded).

2.1. Near-Infrared (NIR) and Mid-Infrared (MIR) Images.
With the assistance of Maestro in vivo imaging system,
imaging is conducted. &e Near-Infrared (NIR) and Mid-
Infrared (MIR) images are acquired by using the appropriate
filter set (deep red filter set for Prostate Specific Membrane
Antigen (PSMA)-1-IR800 and yellow filter set for PSMA-1-
Cy5.5). During this process, different points are chosen for
imaging. &e temperature of 37°C is tuned for the imaging
bed through imaging operation. A nose cone is adjusted with
an imaging bed for isoflurane inhalation.

Fluorescent molecular tomographic (FMT) images are
obtained by using the FMT2500 device (Perkin-Elmer,
Waltham, MA), and the three-dimensional reconstructions
of fluorescent signals are captured using the accompanying
software, TrueQuant. Quantification of fluorescent signals
is also obtained by calibration of PSMA-1-IR800 and
PSMA-1-Cy5.5 by the 780 nm and 680 nm channels,
separately.

Several similar NIR/MIR images are collected by de-
veloping PSMA-targeted NIR/MIR optical imaging probes.
&ese are used for analyzing and visualization of prostate
cancer intraoperatively. A high affinity PSMA ligand
(PSMA-1) is synthesized with low molecular weight and
further labeled using commercially available NIR/MIR dyes:
Cy5.5.4 and IRDy800 demonstrated the utility of such
probes to selectively bind of the prostate tumor in targeting
both orthotropic and heterotopic prostate tumors.

2.1.1. NIR and MIR Acquisition. Intuitively, image acqui-
sition is the first stage of any vision system. In the research
methodology of CAD system on NIR and MRI images, the
tissue samples will first be normally evaluated by experi-
enced pathologists to be separated into the following class
labels.

(1) Stroma: STR (normal muscular tissue);

(2) Benign prostatic hyperplasia: BPH (a benign
condition);

(3) Prostatic intraepithelial neoplasia: PIN (a precursor
state for cancer);

(4) Prostatic carcinoma: PCa (abnormal tissue devel-
opment corresponding to cancer).

Figure 1 demonstrates the NIR and MIR multispectral
acquisition system. In this system, a liquid crystal tunable
filter (LCTF) (VariSpec) is plugged in the optical path in the
middle of the chilled charge-coupled device (CCD) camera
and the light source. &e LCTF has a bandwidth accuracy of
0.25 nm to 20 nm. &e wavelength is controllable over
several spectrums. &is allows capturing a different MIR
multispectral images of the tissue samples at diverse spectral
frequencies. Usually, the experiments are carried out on
varying numbers of bands to illustrate the impact of mul-
tispectral imaging.

2.1.2. Challenges of Using NIR and MIR Images. One of the
challenges of using these images is interpreting the imaging
data to reflect cancer margin accurately. It is difficult to
obtain accurate, reproducible, intent, and precise assess-
ments in cancer research.&e dilemmas occurred because of
the biological dissimilarity, variability of personnel, and
natural unpredictability. &e NIR imaging technique
characterizes cancer by adding fluorescent information to
each pixel in the acquired image. For prostate cancer, the
NIR imaging CAD system could be analyzed and classified to
construct several sharp diagnostic rules.

2.2. Magnetic Resonance Imaging (MRI). &e PCa repre-
sentation in the past decade has changed substantially.
Nevertheless, the mp-MR of prostate was mostly confirmed
by the increases in magnet strength between 1 and 3 Tesla.
&e mp-MR is used for anatomic and functional imaging
techniques: the anatomical imaging includes T1 or T2-
weighted stimuli, and the dynamic contrast-enhanced
(DCE) imagery is included in functional imaging. AnMRI of
1.5 Tesla is currently recommended with an endorectal coil
or an MRI of 3 Tesla without using an endorectal coil. &e
MRI scan of multiples parameters is one type that produces
accurate photographs of the prostate rather than a normal
MRI scan, because it combines up to four different image
types. From the mp-MR, the doctor can conclude whether or
not cancer is present in the tested prostate and how rapidly
cancer is expected to develop. &e combination of different
images of the MRI provides vast quantities of data. Sup-
porting techniques or methods like CAD is vital for a fast,
accurate, and reliable clinical decision. &e PCa diagnoses
are necessary to interpret MRI images for prostate radiol-
ogists, and this knowledge is not widely available. Intelligent
CAD implementation will significantly increase the effi-
ciency of less experienced PCa diagnosis observers.

mp-MR Acquisition. In 2012, a discussion was raised up for
the use of a combination of images (T2W, DWI, MRS, and
DCE) and practical methods in the Prostate Imaging
Reporting and Data System (PI-RADS) on prostate MR
guidelines Barentsz et al. [30]. In comparison, each type of
these images has specific points of strength that will help us
in the diagnosis process. For the anatomical structure of
prostate gland, T2W images are the ideal choice; DWI and
MRS add the characterization of lesions, while DCE-MR
imaging has a high sensitivity to cancer detection. In
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PIRADs methodologies, T2W, DWI, and DCE are the el-
ementary components used during the mp-MR test [31].&e
DWI is the central sequence of determination for the PZ. For
the TZ, and the T2W is the primary sequence of judgment. A
combination of anatomical and functional imaging is re-
quired in clinical practice to achieve high and reliable results.
Recent studies have shown an increased interest in CAD
systems development to detect PCa on the mp-MR approach
and its representation [32–35]. In mp-MR CAD devices,
T2W-MR images are commonly used. &e power of mul-
tiparameter MR comes from gathering the strength points of
T2W, DWI, and DCE-MR types. &erefore, this type is the
most widely used currently.

T2WI and T2 Mapping. Taking the anatomical structure of
the prostate with a T2W image is an effective way to obtain
the ideal acquired image. &e first and the most important
step in an mp-MR protocol is the acquisition phase for a
high-resolution T2W prostatic image. In T2W images,
hyperintense signals are present in the peripheral zone PZ of
the prostate, while a low signal exists in the central area and

on TZ, which allows an easy and straightforward recognition
for the defined zonal prostate anatomy. &e Peripheral
Zones of the PCa usually are represented as a low-signal
region in T2W. Nevertheless, the pattern of tumor existence
and growth will affect the appearance of the prostate ana-
tomical structure. In [36, 37], images in T2W-MRI type for
prostate were used as a specific technique for PCa detection
in the transition zone. Due to the reliability of this type, it has
been used for determining the area of interest of the tumor.
At the same time, T2W-MR images contain more dark pixels
than luminous pixels in the tumor area of interest, whereas
the normal tissue ROI has more luminous pixels than dark
pixels. A CAD system can use different characteristics, in-
cluding fractal elements, textural features, and signal
strength. As PCa and PZ usually have different textures in
T2W-MR images [38] and since mp-MR can be challenged
in the detection of TZ cancer [39], a CAD system can help
identify irregular lesions that can examine feature-based
positions of the lesion. &e device can also be used to di-
agnose Transition Zone cancer. &e quantitative T2 values
are given by T2 maps images. Because of the requirements of
traditional T2 mapping methods, such as excessive scanning
times for multiple single eco-acquisitions with a variety of
echo-time settings, the T2 mapping in most clinical appli-
cations is not supported. Several new sequences have re-
cently been used to speed up T2 quantification [39–42]. &e
T2 values of the malignant tumor areas that had been
histologically demonstrated were significantly lower than
suspicious nonmalignant lesions or the standard areas [40].
Quantitative T2 assessment increases PCa detection accu-
racy and/or sensitivity [43], and the evaluation of aggression
can be incorporated into CAD systems [44, 45].

DCE-MR Images. DCE image is an essential oncological tool
for defining prostate tumors. Indicators referring to signal
strength should be used; because the semiquantitative DCE-
MRI results are proportional only to the patient, and the
baseline amplitude depends on the patient and the MRI
imaging guidelines. DCE is so sensitive to the changes of
vascular, blood flows, or extra-cellular space. So, it is
practical to use quantitative or semiquantitative techniques
to analyze and measures the changes of vascular, blood
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Figure 1: NIR and MIR acquisition system.
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Figure 2: Flow chart of CAD system using NIR or MIR images.
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flows, or extra-cellular space. &e clinical application of
DCE-MRI in prostate cancer is differentiating between
malignant lesions and healthy tissues by enhancement and
contrast agent washing out. &e Pharmacokinetic (PK)
compartment model is one of the most commonly used
quantitative analytical approaches of DCE-MRI imaging. PK
allows the generation of the PK parameters, such as K-trans
transferring gadolinium contrast from the vasculature to the
tumor, which reflects forward vascular infusion and per-
meability of the contrast uptake and washout [46] and the
methodology for estimating input functions, which can have
significant effects on the PK model-ling parameters mea-
sured [47]. &e experimental findings from a DCE-MRI
acquisition can be replicated by an analytical approach based
on phenomenological universities [48, 49]. To analyze DCE-
MRI data, several CAD systems were developed. For ex-
ample, Vos et al. [50] have developed a CAD model that can
differentiate PCa tissues and nonmalignant Peripheral Zone
tissues. Moreover, the system has achieved 83% (0.75–0.92)
as an average accuracy. An automated segmentation model
has been developed to improve the accuracy of CAD di-
agnosis [51] to produce five-level scores for checked images
in DCE-MRI and T1 images. &ere were many attempts to
construct and design an automated prostate cancer diag-
nosis system. Puech et al. developed a prostate CAD system
[52, 53]. Typically, DCE-MRI requires enough acquisition
time to produce a good resolution image.

In contrast, DCE-MR has lower spatial resolution than
other sequences, mainly, if DCE-MR is carried out quickly
over a short period. Limitations to DCE-MR interpretation
involve duplication of enhancement features between be-
nign and malignant TZ areas. &ere is also major hyper-
vascularity in benign prostatic hyperplasia and other benign
inflammatory disorders within the TZ [54]. Contrast-en-
hancement diagnostic models have reduced performance
when used in zones, so zone-specific models should improve
mp-MR PCa classification [55].

Diffusion-Weighted MR Images. In general, the DWI is
generated with different b-values to measure the apparent
diffusion coefficient (ADC), and the ADC is shown as ADC
map for each pixel of the image. &e spread of water
molecules in tumor tissue reflects the architecture of tis-
sues, such as cell density and the nucleus-to-cytoplasm
ratio and ADC values. As a predictor of Gleason score in
PCa [56, 57] for these reasons, the ADC values have been
given attention. Data from DWI trials have shown that
tumor aggressiveness can be detected using type DWI
[57–59].

Bi-Parametric MR Images. &e drawbacks of DCE imaging,
which are the expensive contrast agent management, long
scanning period, have led to the use of new types of images.
A biparametric MR (bp-MR) protocol, which requires only
T2W and DWI, is being widely tested for PCa diagnosis due
to the rapid rise in the use of mp-MR for PCa. &e
biparametric MR (bp-MR) protocol is systematically used
for PCa treatment, including T2W andDWI.&e protocol of
bp-MR can be executed of costly contrast medium for 15

minutes while retaining sufficient diagnostic reliability, all of
which may facilitate the use and increase the efficiency
[60, 61]. Currently, many types of research focusing on bp-
MR or comparisons between bp-MR and mp-MR were
published [61, 62]. In an article published in 2017, Greer
et al. [63] suggested that the application of DCEI-MR could
benefit the diagnostic of prostate cancer, because abnormal
DCEI-MR findings improve the cancer detection rate in each
of the PI-RADSv2 categories 2, 3, 4, and 5. However, those
who advocated using bp-MR or opposed the use of DCEI-
MR suggested that compared with mp-MR.

Magnetic Resonance Fingerprinting (MRF). Magnetic Res-
onance Fingerprinting (MRF) is the newly invented map-
method for nuclear magnetic resonance imaging introduced
by Ma et al. [64] that could concurrently multiple ap-
proximate parameters of quantitative tissue properties, such
as T1 and T2 relaxation times by transitory signal evolutions
and data analysis. With this technology, MRF can provide a
solution to this problem in effective and fast scan times by
collecting quantitative measurements. Previous studies have
shown that MR fingerprinting parameter maps have strong
reproductivity in firm tissues in the supratentorial human
brain region [65]. &e support of larger multicenter, ran-
domized control trials is still necessary if reproducibility and
repeatability can be enhanced in PCa detection. Further-
more, 3D-1H-MRSI was also shown to be reproducible by
Lage-maat et al. [66]. However, it was suggested that the
reliability had been constrained by a small sample; further
population-based experiments were also needed for proof of
this in the future.

Challenges with Using MR Images. Despite the enhancement
of the accuracy for PCa detection with mp-MR in the di-
agnostic process, the widespread use of mp-MR for PCa
diagnosis has been embedded by various challenges.

Initial solution
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criteria satisfied?
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satisfied?
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aspiration criteria solution

NoYes

YesNo

No

Yes

Figure 3: Flow chart of a short-term Tabu search [82].
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Standardization. &e features of the used scanner determine
the output quality of Prostate Cancer detection using
mpMRI (vendor, strength of the magnet field, technique,
technology, etc.), patient factors (his movement, preparation
etc.), and most significantly, the radiologists’ interpretation
[67].

Personal Challenges, Inter- and Intra-Reader Variability.
Even with standardization of diagnosis and interpretation,
there are certain drawbacks of perception, such as harmless
circumstances, ERC-related artifacts, or changes in ap-
pearance the following care. High-level prostate mp-MR
expertise is crucial to correct management that is not ac-
cessible in many centers [2, 68]. &e variance of inter-reader
is also a problem for expert readers [69, 70].

2e Cost. Multi-Parametric MR (mp-MR) is a rather costly
analysis, or the costs are high. &e mp-MR’s ability to
prevent biopsies, reduce overtreatment, and contributing to
a higher quality of life can result in overall cost-effectiveness,
but further studies are needed to confirm this [25, 71].
Reducing the mp-MR protocol to bp-MR could reduce the
scanning time from 40 minutes to 15 minutes, avoid using
the contrast medium, and reduce costs [60].

3. Proposed Methodologies of CAD System

We propose two research methodologies of CAD systems
based on NIR, MIR, and MRI images in this work. We
describe both methodologies in the following subsections.

3.1. Research Methodology of CAD System on NIR and MIR
Images. &is section describes the research methodology
used on NIR and MIR images for designing an intelligent
CAD system in detail. Figure 2 illustrates the feature ex-
traction, infrared-bands feature selection, and classification
phases for prostate cancer diagnosis. Mainly, we adopt a
traditional pattern recognition approach, which involves the
following stages:

(1) Inputs: &e methodology supposes that the system
receives the VIR, NIR, andMIRmultispectral images
from stroma samples, BPH, PIN, and PCa as inputs.
&ese images are also used to measure and evaluate
NIR and MIR technology’s performance as
benchmarks.

(2) Feature extraction: &is stage is extremely crucial in
extracting and obtaining relevant features for each
band.

(3) Band selection: A selection method is conducted for
band selection and removing redundant and irrel-
evant bands.

(4) Learning: Selected experts with supervised learning
methods are used to learn NIR and MIR combined
information after solving the curse-of-dimension-
ality issue through the feature selection method.

(5) Testing: in this stage, the new samples are tested and
identified in the developed CAD system.

&e system development will be deployed to create three
main phases: (i) feature extraction phase, (ii) feature se-
lection from useful bands, and (iii) classification phase. After
obtaining multispectral images, important features are
extracted from multispectral bands images. &en, the
extracted features from useful bands are selected. Finally, the
selected features are classified.

3.1.1. Feature Extraction. After multispectral image acqui-
sition, essential features are extracted from NIR and MIR
images. For this, three effective algorithms are used, which
are the traditional first- and second-order Haralick texture
features [72], the histogram-based features such as local
binary pattern (LBP), and local phase quantization (LPQ).
&e following subsections describe these algorithms in
detail.

NIR andMIR Local Binary Patterns (LBPs).&e LBPwas first
introduced by Ojala et al. [73] as a gray-scale invariant
pattern to measure texture feature in the source images. Its
tolerance for any illumination changes characterizes it.
Moreover, it is effective compared to other approaches, so
that the images can be analyzed in real-time. Generally, the
LBP operator is derived from the related information of
texture on the local neighborhood. LBP can be extended to
multispectral images and easy to handle multiscale analysis,
which is quite efficient for prostate cancer classification
applications.

NIR and MIR Local Phase Quantization. Local phase
quantization (LPQ) [74] is another attractive and powerful
texture descriptor for many real-world applications, such as
image retrieval and face recognition. Its higher accuracy and
computational complexity characterize it. LPQ uses the local
phase information, which is computed in a window for every
image position. LPQ is similar to LBP in its support for
multiscale analysis and the ability to extend to multispectral
image analysis.

3.1.2. Infrared-Multispectral Band Selection. In this work,
we proposed the use of a considerable amount of NIR and
MIR bands. For this regard, band selection is crucial as it is
challenging to figure out which bands have the relevant
information, or which two bands are redundant. Selecting
the essential bands helps reduce the cost of feature extraction
in test images. We dealt with band selection as the feature
selection problem from the mathematical point of view.
However, instead of handling the features, we search for the
optimal number of bands, where some of the current al-
gorithms for feature selection can be exploited.

Let n be the number of multispectral bands extracted
acquired from the NIR and MIR spectrum. We used se-
quential forward selection (SFS) [75] as landmine detection
using multispectral images [76]. SFS is known to be a simple
greedy sequential search algorithm. Another algorithm is the
sequential forward floating search (SFFS) and sequential
backward floating search (SBFS). Compared with SFS, the
SFFS and SBFS algorithms are more efficient, especially
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finding optimal solutions for minor and medium-scale
problems [77]. Nevertheless, SFFS and SBFS algorithms
cannot converge to locally optimal solutions for large-scale
issues when n is more significant than 100 [78, 79]. Recently,
TS and genetic algorithms are used profusely to handle the
problems of having an exponential and noisy search space
with numerous local optima [79–82]. In this work, we aim to
introduce the Tabu search for band selection. Tabu search is
described in the following subsection.

Tabu Search: Tabu search was introduced by Glover [83].
Tabu Search (TS) can be described as a meta-heuristic, which
is based on three principles: first, the use of data structure to
memorize the history of the evolution of the search process;
second, the use of a control mechanism to strike a balance
between the acceptance, or not, of a new configuration,
based on the information recorded in the taboo queue re-
garding the desired restrictions and aspirations; third, the
intensification and diversification strategy procedures using
short and long term memories. Accordingly, the TS algo-
rithm is recommended to be used in the research meth-
odology. &e TS algorithm is given in Figure 3.

3.1.3. Classification. Previous works [82, 84–87] have been
proposed for performing the classification task. In this
section, we focus on investigating the methods for im-
proving classification accuracy. &e literature has already
resulted in effective classifiers using a round-robin method,
in which multiclass complex problems have been broken
into many binary-class simple problems. Investigating the
new classification techniques, such as logistic regression,
Dempster-Shafer theory, decision template, and fuzzy in-
tegral method, is highlighted to determine each band’s
contribution of the NIR/MIR to the overall classification
process. &ese new classification techniques are introduced
below.

Logistic Regression. &e logistic regression method trans-
forms the classification problem into a regression problem
[88, 89]. &e process tries different performances of distinct
classifiers. It seems like a Borda count method in terms of
generalization and assigning optimal linear weights to the
rank scores for reflecting the significance of the separate
classifiers in the combined decision.

Fuzzy Integral. For the diversity and capacity of different
classifiers aggregation, the fuzzy integral has been applied to
classifiers combinations [90, 91]. A fuzzy measure is utilized
to reflect the importance of classifiers from a complete set of
learners regarding the class. Choquet fuzzy integral and
Sugeno fuzzy integral are two essential types of fuzzy in-
tegrals. A fuzzy measure of a classifier is computed from
several fuzzy densities to represent the particular importance
of the classifier. &e fuzzy measure can be consistent with
these fuzzy densities. &e classification result of a class c is a
cooperation between the evidence represented by the class c

in the different classifiers and competence defined by the
fuzzy measure. &e fuzzy measure vector might be specific
for the current data sample and new for each class. If the

ordering of the classifier support is the same, the two vectors
of fuzzy measure will be only the same.

Decision Templates. In this type of supervised learning
method, the classification results of distinctive classifiers for
a given data test set can be arranged in a matrix called a
decision profile (DP).&e elements of the DPmatrix (c, l) are
a classifier c for class label l. &e decision templates (DTs)
combine the classifiers [92, 93], in which each decision
template is computed from a test example given a trained
classifier. A decision template of a class is the centroid of this
class in the intermediate of the feature space.&e anticipated
decision profile of this class is related to this decision
template. &e prediction of a class label in a combination of
classifiers can be calculated using a similarity measure (e.g.,
Euclidean distance) between the existing DP (of the test
example to be classified) and the DTs classes.

Dempster-Shafer Combination. &e Dempster–Shafer cal-
culus [94, 95] is a method used for controlling the degrees of
belief. Compared with the Bayesian approach, it is more
general and does not involve adding additive probability. In
[93], the author introduced a method that uses the theory of
the Dempster–Shafer’s evidence to combine the outputs of
multiple classifiers and give a soft production. &e training
process of this approach is equal to the training of the
decision templates approach. However, rather than com-
puting the similarity between the decision profile and the
decision template, the new data points are classified by
calculating the proximities between each classifier output
and decision template. For every classifier and every class,
two basic probability assignments (BPAs) are constructed
based on the proximities. By using the BPAs, the degrees of
belief are computed based on the orthogonal sum rule. From
the degrees of belief, the final degree of predictions is cal-
culated for each class.

3.2. Research Methodology of CAD System on MRI Images.
&e use of MRI technology to diagnose PCa requires ra-
diologists to interpret vast amounts of images and involves
knowledge of experience that is not widely available. Au-
tomatic methods may simplify the radiologists’ job, in-
creasing read time and variance of the reader [62].
Automated approaches have been established to help less
experienced readers reach the same performance level as
professionals. Figure 4 shows a typical workflow of a
computerized prostate cancer diagnosis system using mp-
MR images.

3.2.1. MR Acquisition. &e mp-MR analysis typically con-
sists of an anatomical sequence (T2-weighted (T2W)) im-
ages and multiple functional sequences, generally DWI and
DCE sequences.&e sequence choice is based on the medical
need and time and costs limitations [61]. &ere is currently
growing research into the use of mp-MR as a triage tool. It is
unlikely that patients with negative mp-MR will have any
clinically meaningful PCa and could avoid biopsy. When
using mp-MR as a triage test, 27% of patients are diagnosed
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with a biopsy, and less than (5%) are diagnosed with clin-
ically insignificant PCa [94–96]. &erefore, young patients
with elevated or reduced PSA must retain the normal
TRUS+B until a definitive conclusion is reached on the
negative predictive value of mp-MR [97].

3.2.2. Preprocessing. Preprocessing the images requires
standardization of image intensities, where the T2W image
sequence, in particular, suffers from inter-and intra-patient
variability, even for images collected using the same scanner
and procedure. Other standard methods of preprocessing
include noise filtering and correction of field bias [24]. &e
selection of steps to preprocess depends on the dataset and
the software.

3.2.3. Registration. Registration is known as a method of
aligning two or more images, may be helpful during the
evaluation to compensate for patient movement and changes
in bladder rectum filling. Long-term MR test procedures
(e.g., DCE imaging) increase the likelihood of substantial
patient movement and identify images [3, 15].

3.2.4. Segmentation. &e segmentation process is a critical
stage of the diagnosis process. &e accurate diagnosis de-
pends on the precise prostate segmentation from the ob-
tained image [98–100]. &e lack of clear boundaries and
considerable variability in the prostate shape and appearance
makes manual delineation a challenge. It is well known that
the T2W image sequence offers the best analysis of prostate
anatomy and the ability to delineate margins and distinguish
between the zones of the prostate gland [101]. &e manual
delineation is very time-consuming and requires prostate
MRI experience. In the literature, automated methods in-
clude map-based methods, model-based methods (e.g., ef-
fective form model), and edge-based methods [102]. In
recent years, techniques have focused on the use of deep
learning approaches, especially deep convolution neural
networks (CNNs), that have made significant progress in the
analysis of clinical images, including prostate segmentation
[103]. Recently, more emphasis has been found on the
segmentation techniques for prostate zones. Many PCa is
located at the Peripheral Zone PZ, and since the PCa’s bi-
ological activity varies between zones, this information is
essential for making medical decisions [62, 104–106]. Recent

zonal segmentation studies have used various voxel iden-
tification approaches (3D pixel analog) and active form
models [107–115]. &e Current first place in the MICCAI
Grand Prostate MRI segmentation challenge (PROS-
TATE12) is a CNN solution (reaching a coefficient of 0.8721
Dice score) [109]. One of the main challenges in zonal
segmentation is the absence of gland apex and base char-
acteristics and the gradients [106, 116].

3.2.5. Detection. &e beginning was in 2003 with Chan et al.
[117], the initial work on automated methods in prostate
mp-MR focused on identifying suspect areas for directed
guided biopsies of MR. &e most common approach in the
literature is to identify voxels as either PCa or normal tissue
based on various image characteristics such as texture, signal
strength, and data on gradients. A study conducted by
Rampun et al. examined 215 T2WMR texture features for
classifying PZ voxels as malignant and benign using 11
different classifiers (e.g., support vector machine (SVM),
random woods, näıve Bayes, and k-nearest neighbor) [118].
Combining the T2W sequence with one or more usable
arrangements provides better detection over a single image
mode. Extracted object characteristics from T2W, DCE and
DWI resulted in AUC of 0.95 in a study by Peng et al. with
using a linear discriminatory analysis to classify interest
regions as either cancer or normal [67]. Nevertheless, most
studies use T2WMR in conjunction with DWI, including
ADC and/or DCE scanning. MRS was also investigated.
Probably because of the difficulty and duration of data
acquisition, the MRS has not achieved broad acceptance
[119]. Various studies agree that a zone-aware Classifier
significantly improves PCa [78, 120] identification. Many
reported PCa detection algorithms to record an area between
0.80 and 0.89 under the receiver characteristic curve (AUC)
[15]. One of the research showing the highest performance
in literature is the analysis described by Peng et al. [67].

3.2.6. Classification. &e selection of treatment for patients
with PCa is based on clinical factors such as PSA, GS, age,
and comorbidity. As previously mentioned, the GS is the
most important indicator of disease progression, mortality,
and outcomes. Since the GS of prostate biopsies sometimes
varies from the true GS of RP, there is a medical need to
distinguish slow-growing, indolent PCa better from those of
RP with catastrophic outcomes of clinical significance [119].
&e mp-MRI is usually used to determine PCa aggressive-
ness for noninvasive, pretreatment purposes. GS and ADC
values are substantially associated with lower ADC values
suggesting higher GS. Moreover, other studies found an
association between DCE Parameters, frequency of T2W
signal, and aggressiveness of PCa. Nevertheless, these single
parameters are not enough to predict the GS alone
[121–126]. Many studies have investigated algorithms with
multiple image characteristics, such as shape, T2W, DWI
and ADC frequency, to differentiate malignant from benign
lesions or to classify lesions into clinically insignificant (GS6)
or clinically insignificant. (GSB7) promising results
[127–133]. Holtz et al. studied a small, medium, and high-

Input mp-MR images

Preprocessing

Registration

Segmentation

Lesion detection

Lesion classification

Prediction

Figure 4: A typical workflow of automated prostate cancer di-
agnosis system using mp-MR images.
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grade three-class classifier compared to a two-class system
and showed low performance for the three-class system. One
analysis achieved accuracies of up to 0.93 for two-class
classification of GS range versus GS range 7, and 7 (3 + 4)
versus 7 (4 + 3) using ADC and T2W derived feature [132].
&e sensitivity of 100 percent and specificity of 76.92 percent
has been achieved in a more recent study focused on a
multimodal convolution neural network to distinguish GS6
from GS MUSK7 [129]. Because the prognosis and thera-
peutic options vary for each GS category, it would be of
medical interest to determine lesions more accurately into
more than two or three classes of clinical interest.

4. Clinical Application

4.1. Diagnosis. &ere is a high clinical need for developing
fast and cost-effective computer diagnostic tools. Re-
searchers have focused on this area, and there were plenty of
attempts to build CAD automated systems for diagnosing
prostate cancer using NIR, MIR, and MRS classification and
supportive imaging types such as DCE-MR analysis. To
increase diagnostic precision, the MR anatomic images
(T2W) are combined with functional techniques because the
single method cannot adequately detect and characterize
PCa [119].

Chan et al. have one of the first attempts for imple-
menting an mp-MR CAD system for the diagnosis of PCa
using the approach of T2, T2W, and line scan to detect the
predefined area of PZ of the PCa [117]. In the field of fuzzy
logic techniques, Liu et al. [134] presented PCa detection
using multispectral MR and NIR images. Moreover, Tiwari
et al. [135] used the MRS with T2W-MRI to identify the
presence of PCa by the existence of voxels affected by PCa.

But in the research work [67], Peng et al. combined 10th
percentile ADC, average ADC, and T2W skewness to dif-
ferentiate between normal and abnormal tissues of the
prostate. In their approach, they obtained an AUC value of
0.95.

Litjens et al. [136] developed a fully automated CAD
system to recognize prostate cancer by performing two
phases. &e first is the detection phase that includes seg-
mentation of prostate on T2W MRI, extracting features of
the voxel, finally classification and select a candidate. After
that, the second phase is responsible for performing pro-
cesses on the output of phase one. In phase two, segmen-
tation and feature extraction and classification for the
candidate. Although the use of 347 patients data, the system
reaches an AUC value of 0.889.

4.2.Aggressiveness. It is important to construct an intelligent
system for differentiating between high-grade cancer and
indolent, slow-growing tumors based on initial PSA level,
Gleason score, and patient age [137, 138]. One of the
commonly employed statistical variables of PCa is the
Gleason test, which utilizes a ranking system to determine
the classification in PCa. Tumors of higher grades tend to
grow rapidly and spread faster than tumors of lower grades.

Research by Yamamura et al. [139] found that the ADC
values and the Gleason level were very strongly negatively
correlated, although MRS displayed no significant correla-
tion. PCa aggressively test approaches include noninvasive
DWI, DCE-MRI, and MRS. Oto et al. [140] stated that the
multi-parametric MR such as MR spectroscopy, T2-
weighted imaging, dynamic contrast-enhanced MR (DCE-
MRI), and diffusion-weighted imaging (DWI) is the best
modality of imaging for staging and diagnosis of PCa. In
vivo, MRS imaging showed an improvement in the Gleason
level [141, 142] ratio (choline + creatine)/citrate. &e magic
angle spinning ex vivo (HRMAS) MRS [143] has also shown
this relation. Nevertheless, there was no link between me-
tabolite ratios and aggressiveness [144, 145] observed in
other in vivo MRS imaging studies.

Changes in the signal intensity were associated with its
aggressiveness [146] on the T2W-MRI for PCa detection.
Lee et al. [147] demonstrated the possibility of improving the
prediction of minor PCa in candidates for active monitoring
treatment through simple measurements for the diameter of
suspicious tumor lesions on DWI.

4.3. Biopsy Guidance. &e biopsy may not accurately depict
the whole gland, but examines a small portion of the
prostate. &e Gleason value in a random systemic biopsy,
driven by TRUS, is usually believed to lower the test, since
the biopsy may not have shown a less distinct trend
[148, 149]. Natural routine biopsies of TRUS also require
multiple biopsy procedures combined with pain and pos-
sible disease [150]. Lesions have to be reliably identified,
described, and treated during biopsy for minimizing over-
treatment and amount of biopsies. In order to improve the
detection rate of prostate biopsies, more successful imaging-
led guided biopsy approaches are being studied. In recent
years, many minimally invasive, oriented approaches to
conserve organ were used as additional options in contrast to
the revolutionary use of PCa [150]. &e following table
(Table 1.) illustrates the studies in this field.

5. Discussion, Observation, and
Future Directions

CAD diagnosis approaches to prostate cancer from medical
imagery are based on various widely used NIR, MIR, MRI
and TRUS dissecting methods.&ese are highly invasive and
can assist in picture-orientated operations. &ey aim to
detect prostate cancer early and can be used to enhance the
remediation of patients. Nonetheless, problems remain that
must be overcome to be used in the clinical environment so
that a more efficient diagnostic method can be used. &ese
include the following:

(1) Identifying the best imagery group that can precisely
differentiate between benign and malignant groups,
particularly with NIR, MIR, and multispectral MR
such as 1-MR, T2-MR, DWI-MR, and DCE-MR, to
design robust MR CAD systems (e.g., NIR, MIR, T1
MR, T2 MR, DWI MR, and DCE MR). Due to the
increased diagnostic discrimination characteristics,

Mathematical Problems in Engineering 9



these systems are encouraging. However, because of
the limited resolution of the different image mo-
dalities and the difference between slices between the
acquired pictures, they are difficult. &erefore, they
are relying on (i) develop difficult approaches to
registration to coordinate imaging modalities ef-
fectively before disassembly and (ii) develop a robust
segmentation algorithm applicable to the wide range
of imaging methods.

(2) Develop algorithms for accurate prostate segmen-
tation and tumor detection.&ese algorithms are still
questionable due to (i) the nature of NIR, MIR,
TRUS and MRI data, (ii) the similar intensity and

proximity of adjacent nonprostatic tissue (e.g., the
bladder), (iii) in many cases, DWI plays a major role
in medical imaging. Applications such as this are to
build an effective CAD imaging system for the de-
tection of prostate cancer. &is paper offered a
summary of these systems covering noninvasive
CAD systems from DWI. In this paper, we discussed
current approaches for each step of machine-based
learning CAD systems, with a focus on their
advantages.

(3) Construct a successful and efficient, and intelligent
CAD system that will reduce prostate cancer deaths
by an earlier disease diagnosis. Researchers should

Table 1: Summary of current studies in the literature.

Researcher Images type Classifier Region Dataset size Findings Published
date

Chan et al. [117] T2WI, ADC, T2 SVM, FLD PZ 15 FLD, AUC� 0.839; SVM,
AUC� 0.761 2003

Puech et al. [76] DCE Software called
“ProCAD” PZ, TZ 100 Se/Sp� 100/49% TZ, Se/

Sp� 100/40% 2007

Tiwari et al.
[151] MRS Spectral clustering WP 14 Se� 77.8%, FP� 28.92%,

FN� 0.88% 2007

Vos et al. [73] DCE SVM PZ 34 AUC� 0.83 2008
Viswanath et al.
[152] DCE Clustering WP 6 Se� 60.72%, sp� 83.24% 2008

Viswanath et al.
[153] T2WI, DCE Random forest WP 6 AUC� 0.815 2009

Vos [74] DCE SVM PZ 38 AUC� 0.80 2009
Liu et al. [134] T2W, T2, ADC, DCE Fuzzy MRF model PZ 11 Se� 89.58%, sp� 87.50% 2009
Tiwari et al.
[135] MRS NLDR WP 18 Se� 89.33%, sp� 79.79% 2009

Vos et al. [154] T2WI, DCE SVM PZ 29 AUC� 0.89 2010
Shah et al. [81] T2WI, ADC, DCE SVM PZ 31 F-measure� 0.89 2012
Liu et al. [155] T2WI, ADC, and DCE SVM WP 54 AUC� 0.82 2013
Niaf et al. [59] T2WI, ADC, and DCE 1.5T SVM PZ 30 AUC� 0.89 2012
Moradi et al.
[156] DT, DCE 3T SVM WP 29 AUC� 0.96 2012

Niaf et al. [57] T2WI, ADC, and DCE P-SVM WP 49 AUC� 0.889 2014
Peng et al. [67] T2WI, ADC, and DCE 3T LDA WP 48 AUC� 0.95 2013
Artan et al.
[157] T2WI, ADC, and DCE 1.5T CRF PZ 21 AUC� 0.79 2010

Tiwari et al.
[158] T2WI, MRS 1.5T SeSMiK-GE+ random

forest WP 29 AUC� 0.89 2013

Tiwari et al.
[159] T2WI, MRS 1.5T Random forest WP 36 AUC� 0.89 2012

Litjens et al.
[136]

T2WI, PDWI, DCE, and
DWI 3T Random forest WP 347 AUC� 0.889 2014

Molina et al.
[160] T2WI, ADC, DCE Incremental learning

ensemble SVM PZ 12 Se� 84.4%, sp� 78.0% 2014

Kwak et al.
[161] T2WI, DWI SVM PZ and

TZ 244 AUC of 0.89 2015

Zhao et al. [162] T2WI ANN PZ and
CZ 71 CG, AUC� 0.821; PZ,

AUC� 0.849 2015

Song et al. [26] Multiparametric MRI DCNN PZ 444 + 48+55 AUC of 94% 2018
Wang et al.
[163]

Systematic 12-core TRUS-
guided biopsies CNNs based google net WP 360 AUC of 96% 2018

Sahrin [164] Pelvis CT images Random forest, logistic
regression WP 182 96% accuracy 2019

Xu et al. [165] T2W, ADC map Residual networks PZ, CZ 346 AUC of 97% 2019
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then establish and test approaches to prostate di-
agnosis to enhance their results.

6. Conclusion

Since the 90s, they are constructing CAD systems have been
recognized as one of the hottest fields for researches. Medical
Precise and effective prostate cancer detection systems play a
significant role in managing the mortality rate of serious
malignancy among males. &is paper presented an in-depth
review of current computer-aided methods of a prostate
cancer diagnosis. Mainly, the NIR, MIR, and MRI tech-
niques have been discussed, which are used in the charac-
terization of prostate tissue. In theory, the features of tissues
by the NIR, MIR, and MRI images are essential for giving
promising results of PCa detection, despite modeling in-
teractions between these images and tissues. It is a significant
achievement, though, with the inclusion of automatic ul-
trasound tissue characteristically methods, which are needed
to correct pathological conditions with the acoustic prop-
erties of the tissue. It should be noted that intelligent
computer-aided diagnostic systems are intended primarily
to offer a second opinion and are not intended to replace a
doctor. &e rule also applies to prostate cancer. &e oc-
currence of false-negative results, in this case specifically,
means that a different perspective can be advantageous. If
the biopsy is possible with this helping opinion, the biologist
will select the biopsy sites.
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J. J. Fütterer, J. O. Barentsz, and H. J. Huisman, “Com-
puterized analysis of prostate lesions in the peripheral zone
using dynamic contrast enhanced MRI,” Medical Physics,
vol. 35, no. 3, pp. 888–899, 2008.

[51] P. C. Vos, “Automated calibration for computerized analysis
of prostate lesions using pharmacokinetic magnetic reso-
nance images,” in Proceedings of the International Conference
on Medical Image Computing and Computer-Assisted In-
tervention, Springer, London, UK, September 2009.

[52] P. Puech, N. Betrouni, N. Makni, A.-S. Dewalle, A. Villers,
and L. Lemaitre, “Computer-assisted diagnosis of prostate
cancer using DCE-MRI data: design, implementation and
preliminary results,” International Journal of Computer
Assisted Radiology and Surgery, vol. 4, no. 1, pp. 1–10, 2009.

[53] P. Puech, N. Betrouni, R. Viard, A. Villers, X. Leroy, and
L. Lemaitre, “Prostate cancer computer-assisted diagnosis
software using dynamic contrast-enhanced MRI,” in Pro-
ceedings of the 2007 29th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, IEEE,
Lyon, France, August 2007.

[54] A. R. Padhani, C. J. Gapinski, D. A.Macvicar et al., “Dynamic
contrast enhanced MRI of prostate cancer: correlation with
morphology and tumour stage, histological grade and PSA,”
Clinical Radiology, vol. 55, no. 2, pp. 99–109, 2000.

[55] N. Dikaios, J. Alkalbani, M. Abd-Alazeez et al., “Zone-
specific logistic regression models improve classification of
prostate cancer on multi-parametric MRI,” European Ra-
diology, vol. 25, no. 9, pp. 2727–2737, 2015.

[56] J. Toivonen, H. Merisaari, M. Pesola et al., “Mathematical
models for diffusion-weighted imaging of prostate cancer
using b values up to 2000 s/mm2 : correlation with Gleason
score and repeatability of region of interest analysis,”
Magnetic Resonance in Medicine, vol. 74, no. 4, pp. 1116–
1124, 2015.

[57] L. Boesen, E. Chabanova, V. Løgager, I. Balslev, and
H. S. &omsen, “Apparent diffusion coefficient ratio cor-
relates significantly with prostate cancer gleason score at final
pathology,” Journal of Magnetic Resonance Imaging, vol. 42,
no. 2, pp. 446–453, 2015.

[58] Y. Mazaheri, A. Shukla-Dave, H. Hricak et al., “Prostate
cancer: identification with combined diffusion-weighted MR
imaging and 3D1H MR spectroscopic imaging-correlation
with pathologic Findings1,” Radiology, vol. 246, no. 2,
pp. 480–488, 2008.

[59] L. Boesen, N. Nørgaard, V. Løgager et al., “Assessment of the
diagnostic accuracy of biparametric magnetic resonance
imaging for prostate cancer in biopsy-naive men,” JAMA
Network Open, vol. 1, no. 2, p. e180219, 2018.

[60] I. Jambor, P. J. Boström, P. Taimen et al., “Novel bipara-
metric MRI and targeted biopsy improves risk stratification
in men with a clinical suspicion of prostate cancer (IMPROD
trial),” Journal of Magnetic Resonance Imaging, vol. 46, no. 4,
pp. 1089–1095, 2017.

[61] M. Fascelli, S. Rais-Bahrami, S. Sankineni et al., “Combined
biparametric prostate magnetic resonance imaging and
prostate-specific antigen in the detection of prostate cancer: a
validation study in a biopsy-naive patient population,”
Urology, vol. 88, pp. 125–134, 2016.

[62] M. D. Greer, J. H. Shih, N. Lay et al., “Validation of the
dominant sequence paradigm and role of dynamic contrast-
enhanced imaging in PI-RADS version 2,” Radiology,
vol. 285, no. 3, pp. 859–869, 2017.

[63] D. Ma, V. Gulani, N. Seiberlich et al., “Magnetic resonance
fingerprinting,”Nature, vol. 495, no. 7440, pp. 187–192, 2013.

[64] G. Körzdörfer, R. Kirsch, K. Liu et al., “Reproducibility and
repeatability of MR fingerprinting relaxometry in the human
brain,” Radiology, vol. 292, no. 2, pp. 429–437, 2019.

[65] M. W. Lagemaat, C. M. Zechmann, J. J. Fütterer et al.,
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