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In this study, two machine learning (ML) models named as artificial neural network (ANN) and genetic programming (GP) were
applied to design optimum canals with circular shapes. In this application, the earthwork and lining costs were considered as the
objective function, while Manning’s equation was utilized as the hydraulic constraint. In this design problem, two different
scenarios were considered for Manning’s coefficient: (1) constant Manning’s coefficient and (2) the experimentally proved
variation of Manning’s coefficient with water depth. )e defined design problem was solved for a wide range of different di-
mensionless variables involved to produce a large enough database. )e first part of these data was used to train the ML models,
while the second part was utilized to compare the performances of ANN and GP in optimum design of circular channels with
those of explicit design relations available in the literature. )e comparison obviously indicated that the ML models improved the
accuracy of the circular channel design from 55% to 91% based on two performance evaluation criteria. Finally, application of the
ML models to optimum design of circular channels demonstrates a considerable improvement over the explicit design equations
available in the literature.

1. Introduction

)e need for conveying water using manmade lined canals is
inevitable. Basically, channel design is the determination of
channel properties so that not only can it convey required
amount of water properly but also it is designed based on
some controlling criteria. )e former demands taking into
account hydraulic conditions of flow passing through the
channel under consideration, while the latter delineates how
to define the problem statement. For instance, when the
budget of channel construction is the most important key
factor, a cost-minimization problem is particularly sought.
As a result, the quest for optimum design of channels has
brought about an active field of research in hydraulic en-
gineering [1, 2]. )ese studies can help hydraulic engineers
to design channels with different section shapes including (1)
linear sections [3], (2) curved sections [4], and (3) linear-

curved sections [5, 6]. Since the focus of this study is devoted
to optimum design of circular channels, the literature is
reviewed considering studies conducted exclusively on de-
sign of circular canals.

Among various studies on optimum channel design,
design of circular channels, as one of conventional sections,
was considered among the earliest attempts. Swamee [7]
developed design equations for the best hydraulic circular
section by minimizing flow area. Swamee [8] derived section
variables of an optimal circular channel for viscous flow.
Swamee et al. [8] defined a general construction cost in-
corporating a lining cost and suggested explicit equations for
optimum design of lined circular channels. )ese equations
were derived by minimizing the general construction cost.
Swamee et al. [9] presented explicit relations for the opti-
mum design of canals with circular shapes by minimizing
earthwork cost of channel construction. In two previous
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studies, Swamee’s resistance equation was considered as the
hydraulic constraint. Swamee and Kashyap [10] solved the
differential equation that governs seepage flow using a finite
difference scheme for a large number of independent di-
mensionless variables of a circular section. )e outcome of
this analysis yielded the proposal of an explicit equation for
seepage from circular canals, which was used for developing
explicit equations for optimum design of circular channels
with minimum seepage loss.)ese equations were improved
to take into account the impact of a drainage layer occurred
at a shallow depth [11]. Aksoy and Altan-Sakarya [3] pro-
posed two models for calculating the optimal section vari-
ables of circular channels by minimizing earthwork and
lining costs, while Manning’s equation was the hydraulic
constraint. Niazkar and Afzali [12] utilized the Modified
Honey Bee Mating Optimization algorithm to minimize the
generalized form of the construction cost. )ey developed
new explicit equations for optimum design of lined circular
channels and compared the performance of their equations
with that of Swamee et al.’s [8] equations and Aksoy and
Altan-Sakarya’s [3] equations. )eir comparison indicated
that Niazkar and Afzali’s [12] explicit relations out-
performed the other ones. Swamee and Chahar [13] rec-
ommended explicit equations for the optimum design of
circular sections when they should transport a requisite
sediment discharge. Since the sediment velocity has a direct
relationship with the channel hydraulic radius, the optimum
design problem reduced to the maximization of the hy-
draulic radius. Since no reliable resistance equation is
available for computing flow in rigid boundary channels that
carry sediment, a sediment discharge relation was selected as
the constraint. )is relation was obtained by substituting a
limit deposit velocity into the head loss formula of sediment
transport through pipes in heterogeneous suspension [13].
More recently, Niazkar et al. [1] minimized the earthwork
and lining construction costs by taking into account the
variation of Manning’s coefficient with water depth. )ey
proposed explicit relations for the optimum design of cir-
cular channels. According to the conducted literature re-
view, the optimum design of circular channels was basically
introduced as an optimization problem, while a hydraulic
constraint was imposed based on the design priority. Ad-
ditionally, most of previous studies recommended equations
to design circular channels explicitly.

Despite previous efforts on estimating optimum channel
properties with circular shapes, there is still a need to explore
further in favor of improving the optimum results. In this
regard, this study aims not only to revisit the optimum
design problem of open channels with circular cross sections
but also to possibly improve estimations of channel prop-
erties. In this regard, artificial intelligence (AI) and machine
learning (ML) models, which have been proven to be
powerful estimation tools for different water resources
problems in literatures [14–17], have not been applied for
optimum design of canals with circular sections. Since ML
models have been successfully used in estimation of the
optimum geometric variables of lined channels with trian-
gular, rectangular, and trapezoidal sections [18] and pre-
dicting channel geometries with trapezoidal and rectangular

sections considering water loss [19], applying AI models to
the optimum design of lined circular channels may improve
the accuracy of this design.

Since determining the optimum values of channel
properties in a water-conveyance project can significantly
lower the required budget for excavating and lining, ex-
ploring for estimating the optimum values of channel
properties is of great importance. In this study, the optimum
design of lined canals with circular shapes is tackled by
applying two ML methods (artificial neural network (ANN)
and genetic programming (GP)) for estimating channel
properties in for two scenarios: (1) constant and (2) variable
Manning’s coefficients. To the best of author’s knowledge, it
is the first time that ML methods has been exploited to
estimate channel properties of lined circular channels. )e
performances of theseMLmodels were compared with those
of the explicit design equations present in the literature. In
this regard, the problem statement of the circular channel
design is introduced in the next section. In the same section,
different models used for estimating circular channel
properties are reviewed. Afterwards, the results of applying
ML to the channel design with circular shapes are presented
and discussed for constant and variable roughness scenarios.

2. Methods and Materials

2.1. Problem Statement of Optimum Channel Design.
Channels are one of the most widely used hydraulic
structures to convey water through either short or long
distances. Generally, the construction cost of canals is
counted as one of the main parameters, which plays the key
role in real-life water-conveyance projects. )e quest for a
reality-based definition for channel design problem has been
addressed in the literature by various studies. In this regard,
one of the approaches for channel design is to treat it as an
optimization problem, while the construction cost is as-
sumed as an objective function. Although various factors
may play roles in the cost of constructing a channel, con-
sidering all of them in a problem statement is not possible
mostly because some of them are not predictable [12].
Nevertheless, considering dominant factors is required to
address a close-to-reality solution for canal construction
projects.

)e total construction cost per unit length of a typical
lined channel (C) is one the most generalized form of
construction costs available in literatures [1, 3, 8, 12]. It
assumed three construction components: (1) the earthwork
cost per unit volume (βE), (2) the additional earthwork cost
associated with different earthwork costs in different depths
(βA), and (3) the lining cost per unit area (βL).)erefore, the
objective function consists of three costs [8]:

C � βLP + βEA + βA 
yn

0
adη, (1)

where P is the wetted perimeter, A is the channel cross
section area, yn is the water normal depth, a is the flow area
at height η, and dη is the unit length of earthwork at height η,
where η represents the vertical axis of channel geometry.
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In order to preserve a hydraulically valid condition for
flow throughout the channel, considering a resistance
equation is inevitably required in a channel design problem.
In this regard, Manning’s equation, which is the most
common resistance equation in open channels [20], is uti-
lized as the problem constraint:

Q −
1
n

AR
2/3 �

S
√

� 0, (2)

where Q is the discharge, n is Manning’s coefficient, R is the
hydraulic radius, and S is the channel slope.

Using a length-scale parameter λ � (Qn/
�
S

√
)3/8, the

involved dimensional parameters are converted to new
dimensionless parameters shown in Table 1. In this table, y is
the water depth, r is the channel radius, and ∗ subscript
denotes the dimensionless form of a variable. In the opti-
mum design of channels, S in Manning’s equation is
substituted by the bottom channel slope. )erefore, water
depth resulted fromManning’s equation is the normal water
depth, while the index associated with the normal depth is
omitted from y and r for simplification.

Generally, Manning’s coefficient may be flow-dependent
or flow-independent in open-channel hydraulics [20, 21]. As
a result, λ can either be constant or vary with flow. Although

the former assumption may seem to be more streamlining
for practical purposes, the latter one is based on experiments
conducted in partially filled circular channels. Based on
these experiments [22–25], Manning’s coefficient varies with
water depth angle (θ) [1]:

n

nf

� 1 + 0.18(2π − θ) 0.1 + exp(−0.3θ)sin2(0.38θ) ,

(3)

where n and nf are Manning’s coefficients associated with a
partially and completely full cross section, respectively.

Using the dimensionless parameters shown in Table 1,
the objective function and the constraint of the design
problem of lined circular channels considering variable
Manning’s coefficients are shown in equation (4) and
equation (5), respectively [1]:

minimizeC∗ � βL∗θr∗ + 0.5r∗(θ − sin θ) + 0.5βA∗r∗ y∗ − r∗( θ +
4r

2
∗ + 2 y∗ − r∗( 

2

3r
2
∗

������������

r
2
∗ − y∗ − r∗( 

2


 , (4)

subjected to nf × 1 + 0.18(2π − θ) 0.1 + exp(−0.3θ)sin2(0.38θ)   − 0.5r∗(θ − sin θ) 
5/3 θr∗( 

−2/3
� 0. (5)

For better clarification, Figure 1 presents a schematic
view of geometric variables involved in the design problem
of partially filled circular channels. Particularly, Figure 1
introduces θ for two scenarios: (a) y> r and (b) y< r. Based
on Figure 1, θ/2 is less than 90 degree for the former and
more than 90 degree for the latter, respectively.

When n is assumed to be flow-independent, the objective
function of the problem statement is still equation (4)

because n does not appear in the cost of channel con-
struction. However, the constraint, which plays the role of a
hydraulically feasible condition for flowmoving in channels,
inevitably depends on Manning’s coefficient. Consequently,
the constraint for flow-independent n is presented in the
following equation [3]:

r∗ π − 2 sin−1 1 −
y∗
r∗

   

2/3

− 0.5r
2
∗ π − 2 sin−1 1 −

y∗
r∗

  − 2 1 −
y∗
r∗
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2



r∗

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

5/3

� 0. (6)

)e design problem of lined circular channels for both
constant and variable n has been solved in the literature,
and various explicit formulas have been suggested for
computing the optimum circular channel geometries.
)ese relations are summarized in Table 2. In this table, L

in Swamee et al.’s [8] model is equal to λ1((ε/λ1) +

(8υλ1/Q))0.04, where λ1 � (Q/
���
gS


)0.4 � λ32/30/n0.4g0.2, g is

the gravitational acceleration, ε is the average roughness
height of canal surface, and υ is the kinematic viscosity.
Among the equations reviewed in Table 2, equations

(ix)–(xii) consider variable n, while the rest assume
constant n with respect to flow.

2.2. Optimization Algorithm. In this study, the described
design problem was solved for two scenarios (constant and
variable n) by a well-known optimization algorithm, named
Modified Honey Bee Mating Optimization (MHBMO) algo-
rithm. )is optimization algorithm has been successfully ap-
plied to this specific problem [1, 12]. )e MHBMO algorithm

Table 1: Dimensionless parameters involved in the design problem
statement.

C∗ � C/βEλ
2 βA∗ � βAλ/βE βL∗ � βL/βEλ A∗ � A/λ2

P∗ � P/λ y∗ � y/λ r∗ � r/λ
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can be classified as a zero-order optimization algorithm, which
was originally inspired from the mating process of honey bees.
It has five main controlling parameters, which include the size
of the initial population, the number of workers, the queen’s
speed at the start and end of the mating flight, and the speed
reduction factor.)eMHBMOcontrolling parameters were set
as recommended in previous studies [12]. Finally, the
MHBMO algorithm was merely utilized in this study to
compute the optimum values of channel properties with cir-
cular shapes, while two ML methods were applied to the
optimum properties computed for the circular channels.

2.3.MachineLearningModels. In this study, twoMLmodels
are used for estimating the optimum properties of lined
circular channels: (1) ANN and (2) GP. Although the ap-
plications of ANN and GP have been presented well in the
literature of hydraulic engineering [15, 18], this is the first
time that these AI models have been utilized for the opti-
mum design of lined circular channels. )e feature char-
acteristics of ANN such as training capability, parallel
operation, and distributed memory result in their fault re-
siliency and prediction accuracy. In essence, it compromises
a randommapping between two vectors of input and output
values. )e architecture of ANNs, as shown in Figure 2(a),
commonly consists of three layers of neurons, which are
invariantly called input, hidden, and output layers, while

each layer includes several neurons, and the layers are in-
terrelated by sets of correlation weights. )is structure,
which provides a high degree of freedom, may yield a robust
prediction capability. In this study, a three-layer network
with feed-forward back-propagation characteristic was used
to train ANN, while the controlling parameters of ANNwere
selected as the same as the ones used in literature [18].

)e second ML model used in this study, i.e., GP, is
basically a suitable extension to the genetic algorithm. In
essence, it adopts principles of crossover Figure 2(c), mu-
tation Figure 2(d), and survival of the fittest individuals not
only to find an optimum solution but also to predict an
output vector based on a known input vector. )e tree-like
structure of GP, as shown in Figure 2(b), consists of
functions and terminals, while branches of each tree are
connected to a root point. )e function set can contain
arithmetic operations, Boolean logical operators, and logical
or deductive conditions or mathematical functions or any
other functions. Furthermore, the terminal set is usually
composed of variables, numerical constants, and so on. )is
characteristic inherently makes GP a powerful estimation
tool. )e main advantage of GP over regression-based
equations is that it can seek for both structures and pa-
rameters of the relationship under investigation without the
need to assume a shape limit in advance [15]. For applying
GP, Discipulus [27] software was used to predict the optimal
circular channels, while it has been employed for various

Table 2: Chronological review of explicit equations available for computing circular channel geometries.

Researchers Equation number Proposed relation
(a) For flow-independent Manning’s coefficient

Swamee et al. [8] (i) 2r � 0.78065L + (0.19375βAL3/(βE L + 13.6232βL))

(ii) y � 0.39032L(1 + (0.12631βAL2/(βEL + 12.9379βL)))−1

Aksoy and Altan-Sakarya [3]-first model (iii) r∗ � 1.004 + (0.113βA∗/βL∗)

(iv) y∗ � 1.004(1 + (0.055βA∗/βL∗))
−1

Aksoy and Altan-Sakarya [3]-second model (v) r∗ � 1.004 + (0.58βA∗/(1 + 5.008βL∗))

(vi) y∗ � 1.004(1 + (0.277βA∗/1 + 4.937βL∗))
−1

Niazkar and Afzali [12]
(vii) r∗ � 1.004 + 0.2358β0.9978

A∗ β−0.7749
L∗

(viii) y∗ � 1.004(1.0091 + 3.3182β1.3175
A∗ β−1.0878

L∗ )− 0.0708

(b) For flow-dependent Manning’s coefficient

Niazkar et al. [26]-first model
(ix) r∗ � 0.9493β0.0202

L∗ + 0.3542β1.0351
A∗ β−0.702

L∗

(x) y∗ � 1.1663β−0.01
L∗ − 0.1557β0.9322

A∗ β−0.5489
L∗

Niazkar et al. [26]-second model
(xi) r∗ � 0.9539β0.0175

L∗ + 0.3501β1.0352
A∗ β−0.705

L∗
(xii) y∗ � 1.1598β−0.0114

L∗ − 0.1618β1.0695
A∗ β−0.5676

L∗

r

θ/2θ/2 y
2r

(a)

rθ/2θ/2

y

2r

(b)

Figure 1: Schematic view of geometric variables of a partially filled circular channel: (a) y> r and (b) y< r.
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applications in water-related fields of study [1]. Finally, the
default values of GP parameters presumed in Discipulus
software were considered.

2.4. Application of ML Method to Solve the Design Problem.
)e described design problem of lined circular channels
was treated as optimization problem, which was solved by
the MHBMO algorithm for two constant and variable
roughness scenarios. Each scenario is solved for 210 pairs
of βA∗ and βL∗, while the ratio of βA∗/βL∗ is within (0, 2) for
all pairs of data, similar to previous studies [3, 12]. By
solving this design problem, the optimum channel
properties (r∗ and y∗) were obtained for various values of
βA∗ and βL∗. )e optimum values of channel properties
and dimensionless cost factors build up a dataset, which
was utilized for estimating optimum values of channel
properties using different models including ML methods

(ANN and GP). )e developed data were normalized
within the range of (0.0, 1.0) before being used by the ML
models. )ese 210 data for each scenario are depicted in
Figure 3. As shown, variations of channel roughness have
an inevitable impact on optimum values of r∗ and y∗. )e
data illustrated in Figure 3 are randomly divided into two
parts: (1) train data (150 data for each scenario) and (2)
test data (60 data for each scenario). )e former was
utilized for training the ML models, while the latter was
employed for testing stage. )e detailed description of the
data division is presented in literature [26].

2.5. Performance Evaluation Criteria. In order to compare
performances of explicit equations with those of the ML
models for calculating the optimum water depth and
channel radius of circular channels, five performance
evaluation criteria are used in this study [26]. )ese criteria
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Figure 2: Schematic view of ML models: (a) ANN structure; (b) GP structure; (c) crossover process in GP; (d) mutation process in GP.
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include (1) root mean square error (RMSE), (2) mean ab-
solute error (MAE), (3) mean absolute relative error
(MARE), (4) relative error (RE), and (5) coefficient of de-
termination (R2). Among these criteria, RE can be computed

for each set of y∗ and r∗, whereas other four criteria are
reported for either train or test data. )e five indices are
written in terms of y∗ in the following equations, respec-
tively, while they can be written for r∗, too [26]:
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Figure 3: Variations of r∗ and y∗ for different βA∗ and βL∗: (a) constant roughness; (b) constant roughness; (c) variable roughness;
(d) variable roughness.

6 Mathematical Problems in Engineering



0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(i) (iii) (v) (vii) ANN GP

M
A

RE
 va

lu
es

 fo
r r

∗

RM
SE

 an
d 

M
A

E 
va

lu
es

 fo
r r

∗

RMSE
MAE
MARE

(a)

RMSE
MAE
MARE

0.000

0.004

0.008

0.012

0.016

0.020

0.000

0.005

0.010

0.015

0.020

0.025

(ii) (iv) (vi) (viii) ANN GP

M
A

RE
 va

lu
es

 fo
r y

∗

RM
SE

 an
d 

M
A

E 
va

lu
es

 fo
r y

∗

(b)
M

A
RE

 va
lu

es
 fo

r r
∗

RM
SE

 an
d 

M
A

E 
va

lu
es

 fo
r r

∗

RMSE
MAE
MARE

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(ix) (xi) ANN GP

(c)

M
A

RE
 va

lu
es

 fo
r y

∗

RM
SE

 an
d 

M
A

E 
va

lu
es

 fo
r y

∗

RMSE
MAE
MARE

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(x) (xii) ANN GP

(d)

for calculating r∗
for calculating y∗

0.80

0.85

0.90

0.95

1.00

(i)–(ii) (iii)–(iv) (v)–(vi) (vii)–(viii) ANN GP

R2

(e)

for calculating r∗
for calculating y∗

R2

0.95

0.96

0.97

0.98

0.99

1.00

(ix)–(x) (xi)–(xii) ANN GP

(f)

Figure 4: Comparison of different models for calculating the optimum r∗ and y∗: (a) constant roughness; (b) constant roughness;
(c) variable roughness; (d) variable roughness; (e) constant roughness; (f ) variable roughness.
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where y∗,database and y∗,estimated are the database and esti-
mated dimensionless water depth, respectively.

3. Results and Discussion

)e results obtained by applying ML methods to the design
problems are plotted in Appendix A. Furthermore, the
output equations achieved by ANN for each roughness
scenario (constant or variable n) and each channel property
(r∗ or y∗) are presented in Appendix B. Finally, the results of
different methods are compared separately for each
roughness scenario in the following.

3.1. Results of the Constant Roughness Scenario. As shown in
Table 2, four models are available in the literature for
computing circular channel geometries when n is assumed
constant in respect with flow. )e performances of these
explicit equations are compared with those of theMLmodels
for computing r∗ and y∗ in Figures 4(a) and 4(b) for the test
data, respectively. According to Figure 4, ML models sug-
gested in this study perform much better than all explicit
equations based on all four criteria for flow-independent n.
Among explicit equations for calculating optimum r∗ for
constant n, equation (vii) (Table 2) achieved the best RMSE,
MAE, and MARE, while equation (v) (Table 2) yielded the
best R2, as shown in Figure 4(e). Also, Figure 4 shows that
equation (viii) (Table 2) reaches the best values for the four
criteria considered for calculating optimum y∗ for constant
n. Additionally, Figure 4 demonstrates that ANN calculates
closer r∗ to the optimum solutions for constant n, while
ANN and GP have quite the same performances for cal-
culating optimum y∗ for constant n. Based on RMSE values
shown in Figure 4, the improvement made for predicting r∗
and y∗ varies between 61% and 88%, while the ML models
improved the MARE values of r∗ and y∗ estimated by the
available explicit equations between 54% and 91%. Conse-
quently, Figure 4 obviously indicates that the ML models

result in much closer values of r∗ and y∗ to the optimum
solutions for design of lined circular channels in comparison
with other models available in the literature for constant
roughness.

Figures 5(a) and 5(b) depict relative errors of r∗ and y∗
predicted by the ML models for the test data by assuming
flow-independent n. As shown, RE values computed by
ANN for predicting r∗ and y∗ are placed within [−0.0179,
0.0293] and [−0.0106, 0.0040], respectively. Moreover, the
corresponding bounds of RE values for calculating r∗ and y∗
by GP are [−0.0455, 0.0198] and [−0.0151, 0.0067], re-
spectively. Comparing these four ranges of RE values shows
that the AI models achieved a lower bound of RE values for
calculating r∗ when n is assumed to be invariant of flow.
Furthermore, the average of absolute RE achieved by ANN is
0.037 and 0.0018 for computing r∗ and y∗, while the cor-
responding values obtained by GP are 0.0044 and 0.0013,
respectively. )ese values also indicate that the ML models
reached a lower average of absolute RE when they calculated
y∗ rather than r∗. Among these two ML models, GP yielded
a lower average of absolute RE for predicting y∗, while ANN
resulted a lower average of absolute RE for calculating r∗.

)e confidence limits of r∗ and y∗ estimated by different
models are compared with the benchmark solutions for
constant roughness in Figures 6(a) and 6(b), respectively.
According to Figure 6(a) (equation (vii) in (Table 2)), ANN
and GP achieved much closer confidence limits to that of the
benchmark solutions in comparison to other models. Fur-
thermore, Figure 6(b) depicts that equation (viii) (Table 2)
and GP obtained close confidence limits to the benchmark
confidence limit of y∗. However, Figure 6(b) shows that
ANN failed to predict y∗ close to the benchmark solutions
under the constant roughness scenario. )us, investigating
the confidence limits of r∗ and y∗ for constant roughness
reveals that GP performed very well, whereas ANN merely
provided accurate estimations for r∗.

Bland–Altman plots for r∗ and y∗ estimated by ANN
and GP are presented in Figures 7 and 8, respectively. As
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Figure 5: Relative error for the optimum r∗ and y∗ predicted by ANN and GP for the test data: (a) constant roughness; (b) constant
roughness; (c) variable roughness; (d) variable roughness.
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shown, the horizontal axis of a Bland–Altman plot is average
of measured and estimated values for each data point, while
the difference of measured and estimated values is illustrated
on the vertical axis. In addition, the mean difference of all
data points is a horizontal solid line, while two dashed lines
denote ±1.96 standard deviation from the mean difference.
In this regard, when 95% of data points of the Bland–Altman
plot are placed between the two mentioned dashed lines, the
estimated values are in agreement with the benchmark
solutions. In other words, this scatter plot can help deter-
mine whether r∗ and y∗ predicted by the ML methods are
consistent with the benchmark solutions. According to
Figure 7(a), the r∗ values estimated by ANN are in

agreement with the benchmark solutions as most of points
on the corresponding Bland–Altman plot fall between
dashed lines associated with ±1.96 standard deviation from
the mean difference. However, Figure 7(b) shows that there
is a difference between the ANN estimations of y∗ and the
benchmark solutions for the constant roughness scenario.
Furthermore, Figures 8(a) and 8(b) imply that r∗ and y∗
predicted by GP are in good agreement with the benchmark
solutions, respectively. )erefore, GP performed acceptably
consistent with benchmark solutions for predicting channel
properties under the constant roughness scenario, while
ANN only estimated consistent r∗ values in comparison
with the benchmark solutions.
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3.2. Results of the Variable Roughness Scenario. Two models
presented in Table 2 have been proposed to design circular lined
canals for flow-dependent n. Figure 4(c) compares the per-
formances of the ML models with those of equations (ix) and
(xi) (Table 2) for computing r∗ for the test data. As shown, the
MLmodels outperformed the explicit equations available in the
literature for predicting optimum r∗ values based on all four
criteria considered. Additionally, ANN and GP have quite
similar performances in calculating r∗ for the variable

roughness scenario. )e performances of the ML models are
compared with those of explicit equations in Figure 4(d) for
estimatingy∗ for the test data.)e results indicate that bothML
models achieved much closer values to the optimum solutions,
while GP obtained slightly better results than ANN for cal-
culating optimum y∗ for variable n. According to Figure 4, the
ML models suggested in this study improved the calculation of
r∗ up to 55% and 62% based on RMSE andMARE, respectively,
while more than 61% and 68% improvements were made to
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Figure 7: Bland–Altman plots for the optimum r∗ and y∗ predicted by ANN for the test data: (a) r∗ for constant roughness; (b) y∗ for
constant roughness; (c) r∗ for variable roughness; (d) y∗ for variable roughness.
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Figure 8: Bland–Altman plots for the optimum r∗ and y∗ predicted by GP for the test data: (a) r∗ for constant roughness; (b) y∗ for constant
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RMSE and MARE by the ML models in estimating y∗ in
comparison with the explicit equations. )erefore, Figure 4
clearly demonstrates that the ML models reached much closer
results to the optimum solutions in design of a lined circular
channel for flow-dependent n.

For flow-independent n, the relative errors of r∗ and y∗
calculated by the ML models are presented in Figures 5(c)
and 5(d), respectively. As shown, the horizontal axis denotes
the number of the test data, while the vertical axis is RE.
According to Figure 5(c), the ranges of RE for r∗ predicted
by ANN andGP are [−0.0324, 0.0444] and [−0.0252, 0.0617],
respectively. )ese bounds demonstrate that the minimum
RE of r∗ was achieved by ANN, while the maximum RE of r∗
was obtained by GP. Moreover, the average values of ab-
solute RE of r∗ estimated by ANN and GP are 0.0055 and
0.0042, respectively. )ese results indicate that ANN

performed slightly better than GP for computing r∗ in terms
of the average of absolute RE for variable roughness sce-
nario. Based on Figure 5(d), RE values calculated by ANN
and GP for predicting y∗ vary within [−0.0190, 0.0118] and
[−0.0166, 0.0105], respectively. )us, both maximum and
minimum RE values were achieved by ANN, which implies
that GP has a lower bound of RE values. Furthermore, the
average values of absolute RE obtained by ANN and GP for
predicting y∗ are 0.0048 and 0.0025, respectively. )is also
indicates that GP performs marginally better than ANN
based on the average of absolute RE. In summary, GP yielded
a lower average of absolute RE values for predicting y∗, while
ANN reached a lower average of absolute RE values for
calculating r∗. Regarding each scenario and metrics con-
sidered, GP and ANN had slightly different performances,
while they both outperformed the explicit equations
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Figure 9: Comparison of the benchmark values of r∗with the estimations made by ANN and GP for the constant n scenario for the test data.
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available in the literature for predicting r∗ and y∗ for both
constant and variable roughness scenarios.

Figures 6(c) and 6(d) depict the confidence limits of dif-
ferent models under the variable roughness scenario. As shown,
both ANN and GP estimated r∗ and y∗ within the benchmark
solutions. )erefore, the ML methods predicted channel
properties with high accuracy when a variable n is assumed.
Moreover, Figure 6(c) indicates that equations (ix) and (xi)
(Table 2) underestimated the maximum r∗ in comparison with
the benchmark solutions, whereas the ML methods performed
adequately for estimating both minimum and maximum r∗.
Additionally, Figure 6(d) shows that the maximum and min-
imum y∗ of the benchmark solutions were not estimated ac-
ceptably by equations (x) and (xii) (Table 2), respectively,
whereas the ML methods, GP in particular, predicted the
maximum and minimum y∗ close to those of benchmark
solutions.)us, the comparison of confidence limits of channel
properties under the variable roughness scenario demonstrates

high performance of theMLmethods over the existingmethods
in the literature.

Investigating the Bland–Altman plots for the optimum
r∗ under the variable roughness scenario Figures 7(c) and
8(c) reveals that the ML estimations are placed with the 95%
confidence limit of the corresponding plots. Consequently,
GP and ANN provided r∗ estimations consistent with the
benchmark solution. Likewise, Figure 8(d) obviously indi-
cates the agreement between the y∗ values estimated by GP
and the benchmarks solutions under the variable roughness
scenario. On the contrary, Figure 7(d) shows that most of
ANN estimations for y∗ fall out of the accepted range, which
indicates a difference between ANN predictions and the
benchmark solutions. In summary, Figures 7 and 8 dem-
onstrate that GP predicted channel properties are consistent
with the benchmark solutions under constant and variable
roughness scenarios. )ese figures also indicate that only the
r∗ values predicted by ANN are in agreement with the
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benchmark solutions. In conclusion, the accuracy achieved
by applying the ML models over the explicit equations
implies that these models can be considered as a suitable
alternative for design of open channels with circular
sections.

3.3.Advantages, Limitations, andRecommendation forFuture
Works. Since variables involved in the design problem were
normalized, the solutions can embrace a variety combina-
tion of values of variables with dimensions, which shows the
generality of the solutions presented in this study. According
to the results of the comparative analysis, the ML methods
perform better than equations available in the literature for
estimating the optimum values of circular channel prop-
erties. )is is an advantage of ML methods over the existing
models for the same purpose. Furthermore, the MLmethods

(ANN and GP) have more flexibility to capture the varia-
tions of r∗ and y∗ for different βA∗ and βL∗ values in
comparison to available formulas. )is makes the ML
methods more suitable for predicting optimum values of r∗
and y∗. Additionally, estimating using the ML methods
considered in this study require running the learned ma-
chine for any set of βA∗ and βL∗ values. )is characteristic
indicates that the ML methods performed as a black box
method and did not present an ML-based simple equation.
)is feature is likely to be interpreted as a disadvantage for
an engineer who prefers to work with mathematical equa-
tions when it comes to design optimum circular channels. In
a bid to overcome this shortcoming, it is suggested to employ
improved version of the ML methods, e.g., Multi-Gene GP,
which provide mathematical equations. Finally, the uncer-
tainty in βA∗ and βL∗ values is suggested to be investigated in
future studies.
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4. Conclusions

Conveying water from natural and artificial sources is
substantially inevitable because of the distance between
where water is in need and where water is available. In this
study, the application of two ML models has been assessed
for the optimum design of lined circular channels for the
first time. )e performances of these models were com-
pared with those of explicit equations available in the
literature for two scenarios: (1) flow-independent Man-
ning’s coefficient and (2) flow-dependent Manning’s co-
efficient. Although the former may seem to be more
suitable and streamlined to be used in practice, the latter
has been approved by experimental studies. Since the
variables involved in the design problem were normalized
using a length-scale parameter, the solutions are not
limited to a specific case study, whereas they embrace a
variety combination of values for variables involved.
According to the comparison, the ML models improved
the prediction of geometries of circular channels esti-
mated by the explicit equations between 55% and 88%

based on RMSE, while the corresponding improvement
range was between 62% and 91% based on MARE for both
scenarios. Furthermore, the investigation of relative er-
rors achieved by the ML models indicates that ANN and
GP had quite similar performances. However, they had
slightly different performances based on the scenario and
channel geometry. To be more specific, for the constant
roughness scenario, ANN performed slightly better than
GP for calculating optimum values of dimensionless
channel radius, while GP gave better results for optimum
values of dimensionless water depth. On the other hand,
GP results were a bit closer to the optimum solutions for
calculating optimum values of circular geometries for the
variable roughness scenario. Finally, the obtained results
obviously demonstrate that not only applying AI models
to the optimum design of circular channels yields closer
results to the optimum solutions than using the available
explicit equation but also considering a flow-dependent
channel roughness in optimum design of lined circular
channels may lead to solutions different from when a
constant bed roughness is assumed.
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Appendix

A. Comparison of the Benchmark Solutions
with the ML Estimations

)e benchmark solutions and outputs estimated by ANN
and GP versus input variables are plotted for different
scenarios. )ese plots are depicted in Figures 9–12. )ese
figures provide the opportunity to investigate the effect of
boundaries on the performance of the ML models. As
shown, GP and ANN did perform acceptably in estimating
the minimum and maximum values of output variables in
most cases, while the former schematically performs even
better than the latter in this regard. Since these figures do not
provide qualitative information about the performances of
the ML methods, they are presented here in Appendix A.

B. The ANN Output Equations

)e output equation obtained by ANN is presented in the
following equation [14]:

output � linear tanh input × IW + b1(   × LW + b2 ,

(B.1)

where output is the channel property (r∗ or y∗),
linear(x) � x, tanh(x) � (2/1 + e−2x) − 1, input �

βA∗ βL∗ is the input matrix, and IW, LW, b1, and b2 are
constant matrices (input weights, output weights, and bia-
ses). )e constant matrices appeared in equation (B.1) de-
pend on the roughness scenario (constant or variable n) and
the channel property (r∗ or y∗):

(a) Normalized radius (r∗) for constant roughness is as
follows:

IW �

−1.2747 4.7714

3.8194 −1.9625

−3.5514 −1.5797

2.2211 −3.1057

−4.3712 −1.3558

−2.6416 1.9691

4.4975 −0.7146

4.4073 2.2163

−6.3307 1.4429

7.9585 −1.7410

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

LW � 0.1089 0.0313 0.0138 −0.1659 0.0145 0.2045 0.1898 2.1255 2.7497 2.0036 ,

b1 �

3.8295

−3.0611

3.0218

−0.1294

0.3099

−1.5848

2.3836

7.7226

−4.5416

5.6053

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b2 � [−2.1230].

(B.2)
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(b) Normalized water depth (y∗) for constant rough-
ness is as follows:

IW �

1.8972 −6.8594
4.5393 −2.4272

−4.1690 −3.1827
−3.0383 −2.7364
−1.3725 1.5407
8.3576 −4.3048

−4.4968 0.6641
10.8951 −2.4065
6.4566 −3.2644

−4.0052 −5.8913

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

LW � 0.0908 −0.0453 0.2740 −0.3087 −0.3872 −1.4087 0.1038 0.3004 1.7986 2.0548 ,

b1 �

−5.9635
−2.2562
2.6413
2.0764
0.1281
4.8110

−1.4938
9.2226
3.7423

−10.6689

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b2 � [2.0829].

(B.3)

(c) Normalized radius (r∗) for variable roughness is as
follows:

IW �

2.1051 −3.4872

4.4230 −0.4737

−4.6699 −1.4348

0.6999 −2.8961

−0.8608 1.9382

7.1420 −1.1776

−4.1166 −1.1951

5.3566 1.3649

6.1985 −1.1128

−5.2261 −1.5273

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

LW � −0.0366 0.0226 0.0043 0.2108 0.3665 2.6476 −0.0298 −2.0896 −3.4226 −2.1832 ,
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b1 �

−2.7516
−2.6639
0.9685
1.6542

−1.0562
6.2280

−1.9247
5.5766
5.5902

−5.6061

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b2 � [0.1331].

(B.4)

(d) Normalized water depth (y∗) for variable roughness
is as follows:

IW �

1.4323 −5.3379

2.6917 2.9538

−1.3738 5.4332

1.2035 0.4187

2.6227 3.3157

−1.0381 −3.5604

−3.3328 0.2628

0.1158 4.9020

7.5539 −1.3193

3.5985 1.9346

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

LW � −0.1947 −0.1309 0.1458 0.3537 −0.1333 0.3330 −0.1289 −0.1725 0.4865 −1.6517 ,

b1 �

−4.5318

−3.8305

0.9470

−0.7408

−1.4023

−2.7596

−1.4157

0.6905

7.1377

6.2423

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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b2 � [1.4027],

C∗ �
C

βEλ
2,

βA∗ �
βAλ
βE

,

βL∗ �
βL

βEλ
,

A∗ �
A

λ2
,

P∗ �
P

λ
,

y∗ �
y

λ
,

r∗ �
r

λ
.

(B.5)
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