
Research Article
A Distributed Online Newton Step Algorithm for
Multi-Agent Systems

Xiaofei Chu

School of Business, Henan University of Science and Technology, Luoyang 471023, China

Correspondence should be addressed to Xiaofei Chu; chuxf701015@sina.com

Received 12 July 2022; Accepted 11 October 2022; Published 28 October 2022

Academic Editor: Binchang Wang

Copyright © 2022 Xiaofei Chu.�is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Most of the current algorithms for solving distributed online optimization problems are based on the �rst-order method, which
are simple in computation but slow in convergence. Newton’s algorithm with fast convergence speed needs to calculate the
Hessian matrix and its inverse, leading to computationally complex. A distributed online optimization algorithm based on
Newton’s step is proposed in this paper, which constructs a positive de�nite matrix by using the �rst-order information of the
objective function to replace the inverse of the Hessian matrix in Newton’s method. �e convergence of the algorithm is proved
theoretically and the regret bound of the algorithm is obtained. Finally, numerical experiments are used to verify the feasibility and
e�ciency of the proposed algorithm. �e experimental results show that the proposed algorithm has an e�cient performance on
practical problems, compared to several existing gradient descent algorithms.

1. Introduction

In recent years, with the development of computer network
technology, distributed optimization algorithms [1–3] have
been successfully applied to solve large-scale optimization
problems, which are considered to be an e�ective method.
Distributed optimization decomposes a large-scale optimi-
zation problem into multiple subproblems according to
di�erent agents in a multi-agent network. Di�erent agents
calculate their associated subproblems simultaneously and
communicate information with their immediate neighbor
agents. And, all the agents �nally obtain a common optimal
solution that can minimize the sum of their objective
functions through the exchange of information along with
their respective optimization iteration. Many problems in
science and engineering can be modeled as problems, such
as machine learning [4], signal tracking and location [5],
sensor networks [6, 7], and smart grids [8].

Distributed optimization assumes that the local objective
function is known and invariant. However, many practical
problems in diverse �elds are a�ected by their environment
and the corresponding objective function is changing all the
time, which requires the optimization process of these

problems in the online setting. In the distributed online
optimization problem, each agent has a limited amount of
information. Only when one agent makes a decision with the
current information can it know the relevant information of
its corresponding objective function, which leads to the
inevitable outcome: the decision it makes is not the optimal
and the di�erence, so-called regret, exists between make-
decisions of all agents, respectively. Regret is one of the most
straightforward measures of the performance of an online
algorithm. Obviously, the smaller the regret, the better the
performance of the algorithm. Since the implementation of
the algorithm is completed after multiple iterations, we
theoretically require that the regret generated by multiple
iterations should gradually approach to zero along with the
increasing of iterative number. �at is, if the corresponding
cumulative regret bound of the algorithm can be got, the
regret bound should be sublinear convergence with respect
to the number of iteration.

Distributed online optimization and its applications in
multi-agent systems have become a hot research area
nowadays in the systems and control community. Inspired
by the distributed dual average algorithm in [3], the authors
in [9] proposed a distributed online weighted dual average

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 1007032, 14 pages
https://doi.org/10.1155/2022/1007032

mailto:chuxf701015@sina.com
https://orcid.org/0000-0002-4162-5475
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1007032

algorithm for the distributed optimization problem on
dynamic networks and obtained a square-root regret bound.
Yan et al. [10] introduced a distributed online projected
subgradient descent algorithm and achieved a square-root
regret for convex locally cost functions and a logarithmic
regret for strongly convex locally cost function. In [11], a
distributed stochastic subgradient online optimization al-
gorithm is proposed. In the case that the local objective
function is convex and strongly convex, the convergence of
the algorithm is proved, and the corresponding regret
bounds are obtained respectively. For more references on
distributed online algorithms, see [12–21].

)e distributed online optimization algorithm based on
the first-order information is simple in a calculation but
converges slowly in most cases. In the traditional optimi-
zation method, Newton’s method converges faster than the
first-order information when it uses the second-order gra-
dient information of the objective function. Some scholars
have applied it to distributed optimization problems [22–24]
to improve the convergence of distributed online optimi-
zation algorithm. However, these algorithms need to
compute and store the Hessian matrix of the objective along
with its inverse at each iteration, which will inevitably affect
the efficiency. To overcome such inconvenience, inspired by
the algorithm mentioned in reference [25], we propose a
distributed online Newton step algorithm, which can achieve
the effect of the Newton method by using the first infor-
mation of the objective function.

)e major contributions of this article are as follows: (i)
for the distributed online optimization problem, we pro-
pose a distributed online Newton step algorithm which can
not only avoid the deficiencies of calculation and storage in
the process of Newton method implementation but also
achieve the effectiveness of Newton’s method. In the al-
gorithm, the first-order gradient of the object function has
been used to construct a positive definite matrix, which is
similar to the inverse of the Hessian matrix in the Newton
method. Moreover, the convergence of the proposed al-
gorithm is proved theoretically, and the regret bound of the
algorithm is obtained. (ii) We apply the proposed algo-
rithm to a practical problem.)e effectiveness and prac-
ticality of the algorithm is verified by numerical
experiments. Meanwhile, we compare the proposed algo-
rithm with several existing gradient descent algorithms,
and the results show that the convergence rate of this al-
gorithm is obviously faster than the gradient descent
algorithms.

)e rest of this paper is organized as follows: in Section
2, we discuss some closely related works about distributed
Newton method. Some necessary mathematical prelimi-
naries and assumptions which will be used in this paper are
introduced in Section 3. Our algorithm is stated in Section
4, and the concrete proof of the convergence of the al-
gorithm is presented in Section 5.)e performance of the
proposed algorithm is verified in comparison with several
gradient descent algorithms over the practical problem in
Section 6, and then the conclusion of this paper is included
in Section 7.

2. Related Work

Newton and Quasi-Newton methods are recognized as a
class of effective algorithms in solving optimization prob-
lems.)e iterative formula of Newton method is as follows:

x(k + 1) � x(k) − α(k)H(k)
− 1

g(k), (1)

where H(k)− 1 is the inverse of Hessian matrix ∇2f(x(k)).
Newton’s method needs to calculate the second derivative of
the objective function and the Hessian matrix obtained may
not be positive definite. In order to overcome these short-
comings, some scholars put forward the Quasi-Newton
method.)e basic idea of the Quasi-Newton method is to
structure an approximate matrix without the second de-
rivative of the objective function to instead of the inverse of
the Hessian matrix in the Newton method. Different
methods of constructing approximate matrix represent
different Quasi-Newtonian methods.

Although the Quasi-Newton method is recognized as a
more efficient algorithm, it is seldom used in a distributed
environment because the distribution approximation of
Newton steps is difficult to design. Mark Eisen et al. [26]
proposed a decentralized Quasi-Newton Method. In this
method, the idea of determining the Newton direction is to
utilize the inverse of the Hessian matrix to approximate the
curvature of the cost function of the agent and its neighbor
agents.)is method has good convergence but faces storage
and computational deficiencies for large data sets ()e
approach involves the power of matrices of sizes np × np

with n being the total number of nodes and p being the
number of features). Aryan Mokhtari, Qing Ling, and
Alejandro Ribeiro in [27] proposed a Network Newton
method. In this method, a distributed computing matrix is
constructed by equivalent transformation of the original
problem, which can replace the original Hessian matrix, so
as to realize the distributed solution of the problem.)e
authors proved that the algorithm can converge to the
approximate value of the optimal parameter at least at the
linear rate.)ey further demonstrated the convergence rate
of the algorithm and analyzed several practical imple-
mentation matters in the literature [28]. Rasul Tutunov et al.
[29] proposed a distributed Newton optimization algorithm
based on consensus. By using the sparsity of the dual Hessian
matrix, they reconstructed the calculation of Newton steps
into the method of solving diagonally dominant linear
equations and realized the distributed calculation of New-
ton’s method.)ey also theoretically proved that the al-
gorithm has superlinear convergence similar to centralized
Newton’s algorithm in the field of the optimal solution.
Although these algorithms realize the distributed compu-
tation of the Newton method, they need to calculate the
inverse of the Hessian, which is expensive for the algorithm.

Motivated by these observations, for the online setting,
we propose a distributed Newton-step algorithm which can
achieve a convergence rate approximate to Newton’s
method on the basis of distributed computing, and the
inverse of the approximate Hessian matrix can be easily
calculated. Numerical experimental results show that our

2 Mathematical Problems in Engineering

algorithm can run significantly faster than the algorithms in
[9, 10, 19] with a lower computational cost in preiteration.

3. Preliminaries

In this section, some notational conventions and basic
notions are introduced first.)en, we provide a brief de-
scription distributed online optimization problem. At the
same time, some concepts will be used and relevant as-
sumptions are represented in this paper.

3.1. Some Conceptions and Assumptions.)e n-dimension
Euclidean space is denoted by Rn, X is a subset of Rn, and
‖ · ‖ represents the Euclidean norm. Strongly convex func-
tions are defined as follows:

Definition 1. [30] Letf(x) be a differentiable function onRn,
∇f(x) be the gradient of functionf(x) at x, andX ∈ Rn be a
convex subset.)enf(x) is strictly convex onX if and only if

f(x)>f x0(+〈∇f x0(, x − x0〉, (2)

for all (x0, x) ∈ X × X.

Lemma 1 (see [25]). Function f(x): X⟶ R is differ-
entiable on the set X with a diameter D, and α> 0 is a
constant. For ∀x ∈ X, ‖∇f(x)‖≤ L and exp(− αf(x)) is
concave, then when β≤min 1/4LD, α{ }, for any x, y ∈ X, the
following inequation holds:

f(x)≥f(y) + ∇f(y)
T
(x − y) +

β
2
(x − y)

T∇f(y)∇f(y)
T
(x − y).

(3)

Some notations about matrices are given to be used in
our proof of the convergence of the algorithm. Denote the
space of all n × n matrices by Rn×n. For a matrix
A � (aij)n×n ∈ Rn×n, aij represents the entry of A at the ith

row and the jth column. AT � (aji)n×n is the transpose of A.
|A| denotes the determinant of A, and λi is the ith eigenvalue
of the matrix A.)en, the next equations are set up: |A| �

n
i�1 λi, trA �

n
i�1 aii �

n
i�1 λi. In addition, for any vector

x, y, z ∈ Rn, equation xTAz + yTAz � (x + y)TAz is set up.

Definition 2. [31] Matrix A ∈ Rn×n is positive definite, if and
only if for any x ∈ Rn and x≠ 0 (0 denotes an n-dimensional
vector where all the entries are 0), xTAx> 0.

3.2.DistributedOnlineOptimizationProblem. We consider a
multiagent network system with multiple agents, each agent i

is associated with a strictly convex function (with bounded
first and second derivatives) ft,i(x): Rn⟶ R, and the
function ft,i(x) is varying over time. All the agents cooperate
to solve the following general convex consensus problem:

min
n

i�1
ft,i(x),

subject tox ∈ X.

(4)

At each round t � 1, . . . , T, the ith agent is required to
generate a decision point xi(t) ∈ X according to its current
local information as well as the information received from its
immediate neighbors.)en, the adversary responds to each
agent′s decision with a loss function ft,i(x): X⟶ R and
each agent gets the loss ft,i(xi(t)).)e communication
between agents is specified by an undirected graph
G � (V, E), where V � 1, . . . , n{ } is a vertex set, and E ⊂ V ×

V denotes an edge set. Undirected means if (i, j) ∈ E then
(j, i) ∈ E. Each agent i can only communicate directly with
its immediate neighbors N(i) � j ∈ V|(i, j) ∈ E.)e goal of
the agents is to seek a sequence of decision points
xi(t) ∈ X, i ∈ V, so that the regret with respect to each agent
i regarding any fixed decision x∗ ∈ X in hindsight

RT xi(t), x(�
T

t�1

n

i�1
ft,i xi(t)(− ft,i x

∗
(, (5)

is sublinear in T.
)roughout this paper, we make the following

assumptions:

(i) each cost function ft,i(x) is strictly convex and
twice continuous differentiable and L-Lipschitz on
the convex set X

(ii) X is compact and the Euclidean diameter of X is
bounded by D

(iii) exp(− αfti(x)) is concave in the setX for all t and i

By assumption (i), the function fti(x) is convex in the
set X, and with some reasonable assumptions over the
domains of the value of α and x, exp(− αfti(x)) is concave in
the set X. In addition, the Lipschitz condition (i) implies
that for any x ∈ X and any gradient gi, we have the fol-
lowing equation:

gi

����
����≤ L. (6)

4. Distributed Online Newton Step Algorithm

For problem (4), we assume that information can be ex-
changed among each agent in a timely manner, that is, the
network topology graph between n agents is a complete
graph.)e communication between agents in our algorithm
is modeled by a doubly stochastic symmetric P, so that
1>pij > 0 only if (i, j) ∈ E, else pij � 0, and

n
j�1 pij � j∈N(i)pij � 1 for all i ∈ V,

n
i�1 pij � i∈N(j)pij � 1 for all j ∈ V.

4.1. Algorithm.)e distributed online Newton step algo-
rithm is presented in Algorithm 1.

)e projection function used in this algorithm is defined
as follows:

A

X

(y) � argmin
x∈X

(y − x)
T

A(y − x), (7)

where A is a positive definite matrix.

Mathematical Problems in Engineering 3

4.2. Algorithm Analysis. In this algorithm, when a decision
xi(t) is made by the agent i with the current information, the
corresponding cost function ft,i(x) can be obtained. So we
can get the gradient gi(t) � ∇ft,i(xi(t)). Construct a
symmetric positive definite matrix
Hi(t) �

t
r�1 gi(r)gi(r)T + ϵIn, then the direction of itera-

tion is constructed by utilizing Hi(t)− 1 which always exists
to replace the inverse of the Hessian matrix in Newton’s
method. Take the linear combination of the current iteration
point of agent i and the current iteration point of its
neighbor agent as the starting point of the new iteration
along with the size 1/β, and the projection operation is used
to get the next iteration point xi(t + 1).

)e calculation of Hi(t) and its inverse Hi(t)− 1 in the
algorithm can be seen from Step 7,
Hi(t) �

t
r�1 gi(r)gi(r)T + ϵIn �

t− 1
r�1gi(r)gi(r)T + ϵIn +

gi(t)gi(t)T � Hi(t − 1) + gi(t)gi(t)T, which shows that
Hi(t) can be computed via using the previous approxi-
mation matrix Hi(t − 1) as well as the gradient gi(t) at step t

.)erefore, we do not have to store all the gradients from the
previous t-step iteration, at the same time, as shown by the
following equation (32):

A + uv
T

− 1

� A
− 1

−
A

− 1
uv

T
A

− 1

1 + v
T
A

− 1
u

. (8)

Let Hi(t − 1) � A, u � v � gi(t), and Hi(0) � ϵIn, then
Hi(0)− 1 � 1/ϵIn, the inverse of Hi(t) can be got simply. It is
the same thing as solving for Hi(t), we just use the infor-
mation from the current and the previous step.

5. Convergence Analysis

Now, the main result of this paper is stated in the following.

Theorem 1. Give the sequence of xi(t) and zi(t) generated
by Algorithm 1 for all i ∈ V, x∗ � argminx∈X

n
i�1 ft,i(x),

and the regret with respect to agent i′s action is

RT x
∗
, xi(t)(�

T

t�1
fti xi(t)(− fti x

∗
((

≤
ϵD2β
2

+
n

2β
ln

TL
2

ϵ
+ 1 + C + C3ln

TL
2

+ ϵ
L
2

+ ϵ
⎛⎝ ⎞⎠,

(9)

where C � C1 + C2, C1 � βη2n2D2(1 − 2lnη)L2/ (lnη)2−

1/lnη), C2 � n3DL(M + m)2η/Mmϵ(1−)η2, C3 � n4L2

(M + m)4/8βM2m2(1 − η)2L
2, η � max1≤i,j≤n pij , and M,

m, Lare constants, and L≤ 1/tt
r�1 ‖gi(r)‖2.

From)eorem 1, the regret bound of Algorithm 1 is
sublinear convergence with respect to iterative number T,
that is, limT⟶∞RT(x∗, xi(t))/T � 0. Note that, the regret
bound is related to the scale of the network. Specifically,
as the network grows in size, the regret bound value also
increases. In addition, the value of the regret bound is also
influenced by the values of parameter ϵ and the diameter
of the convex set X.)e value of η indirectly reflects
the connectivity of the network implying that the smaller
the value of η , the smaller the regret bound of the
algorithm.

To prove the conclusion of)eorem 1, we first give some
lemmas and their proofs.

Lemma 2. For any fixed i ∈ V, let fti(x) � ft(x), then
∇fti(xi(t)) � ∇ft(xi(t)) � gi(t), and the following bound
holds for any j ∈ V and x ∈ X

T

t�1
ft xi(t)(− ft x

∗
((≤

T

t�1
gi(t)

T
xi(t) − x

∗
(

−
β
2

T

t�1
xi(t) − x

∗
(

T
gi(t)gi(t)

T
xi(t) − x

∗
(,

(10)

where β � 1/2min 1/4LD, α{ }.

Proof. According to the assumption that the function
ft(x) is strictly convex and continuous differentiable in
convex set X, and xi(t) ∈ X, x∗ ∈ X, by Lemma 1 we can
obtain

ft xi(t)(− ft x
∗

(≤gi(t)
T

xi(t) − x
∗

(−
β
2

xi(t) − x
∗

(
T
gi(t)gi(t)

T
xi(t) − x

∗
(. (11)

Summing up over t � 1, 2, . . . , T{ } can get the conclusion
of Lemma 2.

From Lemma 2, if the upper bound of the right side of
the inequality can be obtained, the upper bound of the left
side can be obtained, too.)erefore, we are committed to

solving the upper bound of the right side of the above
equation. □

Lemma 3. Let yi(t) �
n
j�1 pijxj(t) − xi(t), and the fol-

lowing bound holds for any j ∈ V and any x ∈ X,

4 Mathematical Problems in Engineering

T

t�1
gi(t)

T
xi(t) − x

∗
(−

β
2

T

t�1
xi(t) − x

∗

T
gi(t)gi(t)

T
xi(t) − x

∗

≤
β
2
ϵD2

−
T

t�1
gi(t)

T
yi(t) + β

T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(

+
β
2

T

t�1
yi(t)

T
Hi(t)yi(t) +

1
2β

T

t�1
gi(t)

T
Hi(t)

− 1
gi(t).

(12)

Proof. according to Algorithm 1, we have the following
equation:

zi(t + 1) �
n

j�1
pijxj(t) −

1
β

Hi(t)
− 1

gi(t), (13)

so

zi(t + 1) − x
∗

�

n

j�1
pijxj(t) −

1
β

Hi(t)
− 1

gi(t) − x
∗

� xi(t) − x
∗

+
n

j�1
pijxj(t) − xi(t) −

1
β

Hi(t)
− 1

gi(t)

� xi(t) − x
∗

+ yi(t) −
1
β

Hi(t)
− 1

gi(t),

(14)

then we can obtain the following next equation:

zi(t + 1) − x
∗

(
T
Hi(t) zi(t + 1) − x

∗
(,

� xi(t) − x
∗

T
Hi(t) xi(t) − x

∗
 + yi(t) −

1
β

Hi(t)
− 1

gi(t)

T

Hi(t) xi(t) − x
∗

(

+ xi(t) − x
∗

(
T
Hi(t) yi(t) −

1
β

Hi(t)
− 1

gi(t)

+ yi(t) −
1
β

Hi(t)
− 1

gi(t)

T

Hi(t) yi(t) −
1
β

Hi(t)
− 1

gi(t)

� xi(t) − x
∗

T
Hi(t) xi(t) − x

∗
 + 2yi(t)

T
Hi(t) xi(t) − x

∗
(

−
2
β

gi(t)
T

xi(t) − x
∗

(−
2
β

gi(t)
T
yi(t) + yi(t)

T
Hi(t)yi(t) +

1
β2

gi(t)
T
Hi(t)

− 1
gi(t).

(15)

Since xi(t + 1) is the projection of zi(t + 1) in the norm
induced by Hi(t), it is a well known fact that (see [25] section
3.5 Lemma 3.9)

xi(t + 1) − x
∗

T
Hi(t) xi(t + 1) − x

∗
 ≤ zi(t + 1) − x

∗

T
Hi(t) zi(t + 1) − x

∗
 . (16)

Mathematical Problems in Engineering 5

)is fact together with (15) gives

xi(t + 1) − x
∗

T
Hi(t) xi(t + 1) − x

∗

≤ xi(t) − x
∗

T
Hi(t) xi(t) − x

∗
 + 2yi(t)

T
Hi(t) xi(t) − x

∗
(

−
2
β

gi(t)
T

xi(t) − x
∗

(−
2
β

gi(t)
T
yi(t)

+yi(t)
T
Hi(t)yi(t) +

1
β2

gi(t)
T
Hi(t)

− 1
gi(t).

(17)

Summing both sides of (17) from t � 1 to T, we obtain
the following equation:

T

t�1
xi(t + 1) − x

∗

T
Hi(t) xi(t + 1) − x

∗

≤
T

t�1
xi(t) − x

∗

T
Hi(t) xi(t) − x

∗

−
2
β

T

t�1
gi(t)

T
yi(t) −

2
β

T

t�1
gi(t)

T
xi(t) − x

∗
(

+ 2
T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(+

T

t�1
yi(t)

T
Hi(t)yi(t)

+
1
β2

T

t�1
gi(t)

T
Hi(t)

− 1
gi(t),

(18)

that is

−
T

t�1
xi(t) − x

∗

T
Hi(t + 1) − Hi(t)(xi(t) − x

∗

≤ xi(1) − x
∗

T

Hi(1) − gi(1)gi(1)
T

 xi(1) − x
∗

−
2
β

T

t�1
gi(t)

T
yi(t) −

2
β

T

t�1
gi(t)

T
xi(t) − x

∗
(

− xi(T + 1) − x
∗

T
Hi(T) xi(T + 1) − x

∗

+
T

t�1
yi(t)

T
Hi(t)yi(t) + 2

T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(

+
1
β2

T

t�1
gi(t)

T
Hi(t)

− 1
gi(t).

(19)

According to Algorithm 1,
Hi(t + 1) − Hi(t) � gi(t)gi(t)T, then

T

t�1
xi(t) − x

∗

T
Hi(t + 1) − Hi(t)(xi(t) − x

∗

�
T

t�1
xi(t) − x

∗

T
gi(t)gi(t)

T
xi(t) − x

∗
 ,

(20)

thus we obtain

T

t�1
gi(t)

T
xi(t) − x

∗
(−

β
2

T

t�1
xi(t) − x

∗

T
gi(t)gi(t)

T
xi(t) − x

∗

≤
β
2

xi(1) − x
∗

T

Hi(1) − gi(1)gi(1)
T

 xi(1) − x
∗

−

T

t�1
gi(t)

T
yi(t) + β

T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(

−
β
2

xi(T + 1) − x
∗

T
Hi(T) xi(T + 1) − x

∗

+
β
2

T

t�1
yi(t)

T
Hi(t)yi(t) +

1
2β

T

t�1
gi(t)

T
Hi(t)

− 1
gi(t).

(21)

Due to Hi(1) − gi(1)gi(1)T � ϵIn, then

xi(1) − x
∗

T

Hi(1) − gi(1)gi(1)
T

 xi(1) − x
∗

 ,

� ϵ xi(1) − x
∗

T

xi(1) − x
∗

 � ϵ xi(1) − x
∗����
����
2 ≤ ϵD2

.

(22)

And, since Hi(T) is positive definite, and β> 0, so
− β/2[xi(T + 1) − x∗]THi(T)[xi(T + 1) − x∗]≤ 0. Combin-
ing (21) and (22), we can state

T

t�1
gi(t)

T
xi(t) − x

∗
(−

β
2

T

t�1
xi(t) − x

∗

T
gi(t)gi(t)

T
xi(t) − x

∗

≤
β
2
ϵD2

−
T

t�1
yi(t)

T
gi(t) + β

T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(

+
β
2

T

t�1
yi(t)

T
Hi(t)yi(t) +

1
2β

T

t�1
gi(t)

T
Hi(t)

− 1
gi(t).

(23)

)us, the proof of Lemma 3 is completed.
Next, we consider the last term of (23). □

Lemma 4. For any i ∈ V, we can get the following bound
holding:

1
2β

T

t�1
gi(t)

T
Hi(t)

− 1
gi(t)≤

n

2β
log

TL
2

ϵ
+ 1 . (24)

Proof. Note that,

6 Mathematical Problems in Engineering

gi(t)
T
Hi(t)

− 1
gi(t) � Hi(t)

− 1
•gi(t)gi(t)

T
� Hi(t)

− 1
• Hi(t) − Hi(t − 1)(, (25)

where for matrices A, B ∈ Rn×n, we denote by
A•B �

n
i�1

n
j�1 aijbij the inner product of these matrices as

vectors inRn2 . For real numbers a, b ∈ R+ and the logarithm
function y � lnx, the Taylor expansion of y in a is y �

logx � loga + 1/a(x − a) + Rn(x). So logb≤ loga + 1/a(b −

a), implying a− 1(a − b)≤ loga/b. An analogous fact holds for
the positive definite matrices, i.e., A− 1•(A − B)≤ log|A|/|B|,
where |A|, |B| denote the determinant of the matrix A, B (see
the detailed proof in [25]).)is fact gives us (for conve-
nience we denote Hi(0) � ϵIn)

T

t�1
gi(t)

T
Hi(t)

− 1
gi(t) �

T

t�1
Hi(t)

− 1
• Hi(t) − Hi(t − 1)(,

≤
T

t�1
log

Hi(t)

Hi(t − 1)

� log

Hi(T)

Hi(0)

.

(26)

Since Hi(T) �
T
t�1 gi(t)gi(t)T + ϵIn and ‖gi(t)‖≤ L,

from the properties of matrices and determinants, we know
that the largest eigenvalue of Hi(T) is TL2 + ϵ at most.
Hence |Hi(T)|≤ (TL2 + ϵ)n and |Hi(0)| � ϵn, then

T

t�1
gi(t)

T
Hi(t)

− 1
gi(t)≤ log

Hi(T)

Hi(0)

≤ nlog

TL
2

ϵ
+ 1 . (27)

Combining the above factors, we obtain the following
equation:

1
2β

T

t�1
gi(t)

T
Hi(t)

− 1
gi(t)≤

n

2β
log

TL
2

ϵ
+ 1 . (28)

)e proof of Lemma 4 is completed.
According to Algorithm 1,

zi(t + 1) �
n
j�1 pijxj(t) − 1/βHi(t)− 1gi(t), where

− Hi(t)− 1gi(t) is the direction of iteration. Using the
knowledge of matrix analysis, we have the following
conclusions. □

Lemma 5. For any i ∈ V, 1≤ t≤T,

Hi(t)
− 1

gi(t)
����

����≤
(M + m)

2
n
2
L

4Mm
t
r�1 gi(r)

����
����
2

+ ϵ

, (29)

where m � min λ1, λ2, . . . , λn , M � max λ1, λ2, . . . , λn ,
0<m≤M, and λi(i � 1, . . . , n) is the i th eigenvalue of Hi(t).

)is conclusion gives us that when the number of it-
erations increases, ‖Hi(t)− 1gi(t)‖ converges to zero, which
ensures the consistency of the algorithm.)e detailed proof
can be seen in Appendix A.

Now, we consider the norm of vector yi(t), zi(t + 1) −

x∗ and get the following inequation.

Lemma 6. For any 1≤ i≤ n, 1≤ t≤T, let η � max1≤i,j≤npij,
0< η< 1, then

zi(t + 1) − x
∗����
����≤ nDηt

+
(M + m)

2
n
2
L

4βMm
t
r�1 gi(r)

����
����
2

+ ϵ (1 − η)
,

(30)

and

yi(t)
����

����≤ 2 nDηt
+

(M + m)
2
n
2
L

4βMm
t
r�1 gi(r)

����
����
2

+ ϵ (1 − η)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(31)

where n is the size of the network, T is the total number of
iterations. 9e specific proof is represented in Appendix B.

Next, we turn our attention to the bound of the following
term
β

T
t�1 yi(t)THi(t)(xi(t) − x∗) −

T
t�1 yi(t)Tgi(t) +

β/2
T
t�1 yi(t)THi(t)yi(t). By combining the knowledge of

vectors and matrices, we get Lemma 7.

Lemma 7. For any i ∈ V, the following inequality holds

(1) Input: convex set χ, maximum round number T.
(2) β � 1/2min 1/4LD, α{ }.
(3) Initialize: xi(1) ∈ χ, ∀i ∈ V.
(4) fort � 1, · · · · · · , Tdo
(5))e adversary reveals ft,i,∀i ∈ V.
(6) Compute gradients gi(t) ∈ zft,i(xi(t)), ∀i ∈ V.

(7) Compute Hi(t) �
t
r�1 gi(r)gi(r)T + ϵIn, ∀i ∈ V.

(8) for each i ∈ Vdo
(9) zi(t + 1) �

n
j�1 Pijxj(t) − 1/βHi(t)− 1gi(t)

(10) xi(t + 1) �
Hi(t)
χ (zi(t + 1))

(11) end for
(12) end for

ALGORITHM 1:)e Distributed Online Newton Step Algorithm (D-ONS).

Mathematical Problems in Engineering 7

β

T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(−

T

t�1
yi(t)

T
gi(t)

β
2

T

t�1
yi(t)

T
Hi(t)yi(t)

≤ 2β

T

t�1

t

r�1
gi(r)

����
����
2

+ ϵ) nD +
(M + m)2n2L

4βMm
t
r�1 gi(r)

����
����
2

+ ϵ (1 − η)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

, ≤C + C3ln
TL

2
+ ϵ

L
2

+ ϵ
⎛⎝ ⎞⎠,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(32)

where C1 � βη2n2D2((1 − 2lnη)L2/(lnη)2 − 1/lnη),
C2 � n3DL(M + m)2η/Mmϵ(1 − η)2,
C3 � n4L2(M + m)4/8βM2m2(1 − η)2L

2
, andC � C1 + C2.

Proof. According to Algorithm 1, we can state

zi(t + 1) �

n

j�1
pijxj(t) −

1
β

Hi(t)
− 1

gi(t), (33)

where β is a positive constant, and Hi(t)− 1 is the inverse of
matrix Hi(t). We obtain the following equation:

gi(t) � βHi(t)
n

j�1
pijxj(t) − zi(t + 1)⎛⎝ ⎞⎠. (34)

Now, by multiplying both sides of this equation by the
vector yi(t)T, we can obtain the following equation:

yi(t)
T
gi(t) � βyi(t)

T
Hi(t)

n

j�1
pijxj(t) − zi(t + 1)⎛⎝ ⎞⎠,

(35)

then the left of (32) can be written as follows:

T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(+

β
2

T

t�1
yi(t)

T
Hi(t)yi(t) −

T

t�1
yi(t)

T
gi(t)

� β
T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(+

β
2

T

t�1
yi(t)

T
Hi(t)yi(t)

− β
T

t�1
yi(t)

T
Hi(t)

n

j�1
pijxj(t) − zi(t + 1)⎡⎢⎢⎣ ⎤⎥⎥⎦.

(36)

)e matrix Hi(t) is symmetric and positive definite,
which means that yi(t)THi(t)yi(t)≥ 0, therefore we can
obtain the following equation:

β

T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(+

β
2

T

t�1
yi(t)

T
Hi(t)yi(t)

− β
T

t�1

n

j�1
pijxj(t) − zi(t + 1)⎡⎢⎢⎣ ⎤⎥⎥⎦

T

Hi(t)yi(t)

≤ β
T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(+ β

T

t�1
yi(t)

T
Hi(t)yi(t)

− β
T

t�1
yi(t)

T
Hi(t)

n

j�1
pijxj(t) − zi(t + 1)⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ β

T

t�1
yi(t)

T
Hi(t) zi(t + 1) − x

∗
(≤ β

T

t�1
yi(t)

T
Hi(t) zi(t + 1) − x

∗
(

≤ β
T

t�1

�������������������������

yi(t)
����

����
2
Hi(t)

zi(t + 1) − x
∗����
����
2
Hi(t)

.

(37)

8 Mathematical Problems in Engineering

Here, we apply the Cauchy–Schwarz inequation:
|xTAy|2 ≤ ‖x‖2A‖y‖2A, where A is a n × n Hermite matrix and
A is positive semidefinite.

Next, we consider the super bound of ‖yi(t)‖2Hi(t) and
‖zi(t + 1) − x∗‖2Hi(t). According to the Step 7 of Algorithm 1,
Hi(t) �

t
r�1 gi(r)gi(r)T + ϵIn � Hi(t − 1) + gi(t)gi(t)T,

so

yi(t)
����

����
2
Hi(t)

� yi(t)
T
Hi(t)yi(t) � yi(t)

T
Hi(t − 1) + gi(t)gi(t)

T
 yi(t),

� yi(t)
����

����Hi(t− 1)
+ yi(t)

T
gi(t)

����
����
2
≤ yi(t)

����
����Hi(t− 1)

+ yi(t)
����

����
2

gi(t)
����

����
2

,

≤ yi(t)
����

����Hi(0)
+ yi(t)

����
����
2

gi(1)
����

����
2

+ · · · + yi(t)
����

����
2

gi(t)
����

����
2
,

≤ ϵ yi(t)
����

����
2

+
t

r�1
yi(t)

����
����
2

gi(r)
����

����
2 ≤ ϵ +

t

r�1
gi(r)

����
����
2⎛⎝ ⎞⎠ yi(t)

����
����
2
.

(38)

Similarly, we have the following equation:

zi(t + 1) − x
∗����
����
2
Hi(t)
≤ ϵ +

t

r�1
gi(r)

����
����
2⎛⎝ ⎞⎠ zi(t + 1) − x

∗����
����
2
.

(39)

Combining the results of Lemmas 5 and 6, we have the
following equation:

yi(t)
����

����
2
Hi(t)

zi(t + 1) − x
∗����
����
2
Hi(t)
≤ 4 ϵ +

t

r�1
gi(r)

����
����
2⎛⎝ ⎞⎠

2

nDηt
+

(M + m)2n2L

4βMm
t
r�1 gi(r)

����
����
2

+ ϵ (1 − η)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

4

, (40)

then

β
T

t�1
yi(t)

T
Hi(t) xi(t) − x

∗
(+

β
2

T

t�1
yi(t)

T
Hi(t)yi(t)

− β
T

t�1

n

j�1
pijxj(t) − zi(t + 1)⎡⎢⎢⎣ ⎤⎥⎥⎦

T

Hi(t)yi(t)

≤ β
T

t�1
yi(t)(

T
Hi(t) zi(t + 1) − x

∗
(

≤ β
T

t�1

��������������������������

yi(t)
����

����
2
Hi(t)

zi(t + 1) − x
∗����
����
2
Hi(t)

,

≤ 2β
T

t�1
ϵ +

t

r�1
gi(r)

����
����
2⎛⎝ ⎞⎠ nDηt

+
(M + m)2n2L

4βMm
t
r�1 gi(r)

����
����
2

+ ϵ (1 − η)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

.

(41)

Mathematical Problems in Engineering 9

)us, we complete the proof of Lemma 7.
Putting all these together,)eorem 1 can be proved as

follows. □

Proof of 9eorem 1. According to the assumptions, f(x) is
strictly convex, and the function exp(− αf(x)) is concave in
X when the value of α is sufficiently small. Setting β �

min 1/4LD, α{ }, combined with axioms 2–7, we can obtain
the regret bound

RT x
∗
, xi(t)(�

T

t�1
fti xi(t)(fti x

∗
((

≤
ϵD2β
2

+
n

2β
log

TL
2

ϵ
+ 1 + C + C3log

TL
2

+ ϵ
L
2

+ ϵ
⎛⎝ ⎞⎠.

(42)

)e values of the parameters in equation (15) are the
same as)eorem 1. □

6. Numerical Experiment

In order to verify the performance of our proposed algorithm,
we conducted a numerical experiment on an online estimation
over a distributed sensor network which is mentioned in ref-
erence [9]. In a distributed sensor network, there are n sensors
(See Figure 1 in [9]). Each sensor is connected to one or more
sensors. It is assumed that each sensor is connected to a pro-
cessing unit. Finally, the processing units are integrated to obtain
the best evaluation of the environment.)e specific model is as
follows: given a closed convex set X � x ∈ Rn|‖x‖2 ≤xmax ,
the observation vector yt,i: R

n⟶ Rd represents the i th
sensor measurement at time t which is uncertain and time-
varying due to the sensor’s susceptibility to unknown envi-
ronmental factors such as jamming.)e sensor is assumed (not
necessarily accurately) to have a linear model of the form
hi(x) � Hix, where Hi ∈ Rn×d is the observation matrix of
sensor i and ‖Hi‖1≤ hmax for all i.)e objective is to find the
argument x∈ X that minimizes the cost function
f(x) � 1/n

n
i�1 ft,i(x), namely,

min
1
n

n

i�1
ft,i(x),

subject to x ∈ X,

(43)

where the cost function associated with sensor i is ft,i(x) �

1/2‖yt,i(x) − Hix‖22. Since the observed value yt,i changes
with time t, only when we calculate the value of xi(t) can we
get the local error of the i th sensor at time t. In other words,
due to modeling errors and uncertainties in the environ-
ment, the local error functions are allowed to change over
time.

In an offline setting, each sensor i has a noisy observation
yt,i � Hix + vt,i � Hix + v1,i for all t � 1, 2, . . . , T, where vt,i

is generally assumed to be (independent) white noise at time
t. In this case, the centralized optimal estimate for problem
(37) is

x
∗

�
n

i�1
H

T
i Hi

⎛⎝ ⎞⎠

− 1

n

i�1
H

T
i y1,i(x). (44)

While in an online setting, the white noise vt,i varies
with time t (see [9]). We assume vt,i ∼ U(− 1/4, 1/4) ()e
white noise vt,i is uniformly distributed on the interval
(− 1/4, 1/4)). In the proposed distributed online algorithm,
each sensor i calculate xi(t) ∈ X based on the local in-
formation available to it and then an “oracle” reveals the
cost ft,i(x) at time step t.

)e performance of the proposed algorithm is discussed
based on the following aspects:

6.1. 9e Analysis of the Algorithm Performance.)e nu-
merical experiments consist of two parts: the impact of
network size on the performance of the D-ONS and the
effect of network connectivity on the effectiveness of the
algorithm iterations.

We carried out numerical experiments at n � 1, n � 2
and n � 100, respectively. Figure 1 depicts the conver-
gence curves of the algorithm for different network sizes.
According to Figure 1, it is obvious that the average
regret decreases fast and the algorithm can converge on
different scaled networks as the number of the agent in
the network increase. Especially, when n � 1, the problem
is equivalent to a centralized optimization problem, and
our distributed optimization algorithm can reach the
same effect as the centralized algorithm.

According to)eorem1, the effectiveness of the algorithm is
directly affected by the connectivity of the network, so we verify
the algorithm under different network topology. (i) Complete
graph. All the agents are connected to each other. (ii) Cycle
graph. Each agent is only connected to its two immediate
neighbors. (iii) Watts–Strogatz.)e connectivity of random
graphs is related to the average degree and connection proba-
bility. Here, let the average degree of the graph is 3 and the
probability of connection is 0.6. As shown in Figure 2, D-ONS
can lead to a significantly faster convergence on a complete
graph than a cycle graph and has the similar convergence on
Watts–Strogatz.)e experimental result is consistent with the
theoretical analysis results in this paper.

10 Mathematical Problems in Engineering

6.2. Performance Comparison of Algorithms. To verify the
performance of the proposed algorithm, we compared the
proposed algorithm with the class algorithms D-OGD in
[10], D-ODA in [9] and the algorithm in [19].)e pa-
rameters in these algorithms are based on their theoretical
proofs.)e network topology relationship among agents is
complete, and the size of the network is the same (n � 10).
As shown in Figure 3, the presented algorithm D-ONS dis-
plays better performance with faster convergence and higher
accuracy than D-ODA, D-OGD, and the algorithm in [19].

7. Conclusion and Discussion

A distributed online optimization algorithm based on Newton
step is proposed for a multiagent distributed online optimi-
zation problem, where the local objective function is strictly
convex and quadratic continuously differentiable. In each it-
eration, the gradient of the current iteration point is used to
construct a positive definitematrix, and then the direction of the
next iteration is constructed by substituting this positive matrix
for the inverse of the Hessian matrix in Newton’s method.
)rough theoretical analysis, the regret bound of the algorithm
is obtained, and the regret bound converges sublinear with
respect to the number of iterations. Numerical examples also
demonstrate the feasibility and effectiveness of the proposed
algorithm. Simulation results indicate significant convergence
rate improvement of our algorithm relative to the existing
distributed online algorithms based on first-order methods.

Appendix

A. The Proof of Lemma 5

Proof. First, we consider the value of ‖Hi(t)− 1gi(t)‖2. Let
λi(t) be the ith eigenvalue of Hi(t), then 1/λi(t) is the ith

eigenvalue of Hi(t)− 1. Applying the Schweitzer inequation
(See 2.11 in [33]), we can get

tr Hi(t)
− 1

 ≤
(M + m)

2
n
2

4Mmtr Hi(t)(
, (A.1)

where 0<m≤ λi(t)≤M for i � 1, 2, · · · · · · , n. Obviously,
Hi(t) is symmetric positive definite implying that Hi(t)− 1 is
symmetric positive definite, and (Hi(t)− 1)T � Hi(t)− 1. By
the definition of vector’s norm, we have

complete graph
cycle graph
watts-strogatz

Av
er

ag
e r

eg
re

t R
 (T

)/
T

(X
10

5)

20 40 60 80 100 120 140 160 180 2000
Number of iterations

0

1

2

3

4

5

6

7

Figure 2: Comparison under different topology.

Our Algorithm
Algorithm in [10]

Algorithm in [9]

Algorithm in [19]

Av
er

ag
e r

eg
re

t R
 (T

)/
T

(X
10

5)

0 20 40 60
Number of iterations

80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Figure 3:)e convergence curves of compared algorithms.

Av
er

ag
e r

eg
re

t R
 (T

)/
T

(X
10

5)

n=1
n=10
n=100

20 40 60 80 100 120 140 180 2000 160
Number of iterations

0

1

2

3

4

5

6

7

Figure 1: Comparison n� 1, n� 10, n� 100.

Mathematical Problems in Engineering 11

Hi(t)
− 1

gi(t)
����

����
2

� tr Hi(t)
− 1

2

gi(t)gi(t)
T

≤ tr Hi(t)
− 1

2
tr gi(t)gi(t)

T
 ≤

(M + m)2n2

4Mmtr Hi(t)(

2

L
2
.

(A.2)

For any x ∈ Rn,
xT(gi(t)gi(t)T)x � xTgi(t)gi(t)Tx � ‖xTgi(t)‖≥ 0,

gi(t)gi(t)T is positive semidefinite, and tr(gi(t)gi(t)T) �

‖gi(t)‖2 ≤L2. Due to tr(Hi(t)) �
t
r�1 ‖gi(r)‖2 + nϵ, we

have

Hi(t)
− 1

gi(t)
����

����≤
(M + m)

2
n
2
L

4Mm
t
r�1 gi(r)

����
����
2

+ nϵ

≤
(M + m)

2
n
2
L

4Mm
t
r�1 gi(r)

����
����
2

+ ϵ

. (A.3)

)e proof of Lemma 5 is completed. □
B. Proof of Lemma 5

Proof. Consider zi(t + 1) �
n
j�1 pijxj(t) − 1/βHi(t)− 1gi(t)

and
n
j�1 pij � 1, thus

zi(t + 1) − x
∗����
���� �

n

j�1
pijxj(t) −

1
β

Hi(t)
− 1

gi(t) − x
∗

����������

����������
,

�

n

j�1
pij xj(t) − x

∗
 −

1
β

Hi(t)
− 1

gi(t)

����������

����������

≤

n

j�1
pij zj(t) − x

∗
�����

����� +
1
β

Hi(t)
− 1

gi(t)
����

����

�
n

j�1
pij

n

j�1
pijxj(t − 1) −

1
β

Hj(t − 1)
− 1

gj(t − 1) − x
∗

����������

����������
+
1
β

Hi(t)
− 1

gi(t)
����

����

≤
n

j�1
pij

n

j�1
pijxj(t − 1) − x

∗

����������

����������
+
1
β

n

j�1
pij Hj(t − 1)

− 1
gj(t − 1)

�����

�����

+
1
β

Hi(t)
− 1

gi(t)
����

���� ≤ · · · · · · ≤
n

j�1
p

t
ijxj(1) − x

∗

����������

����������
+
1
β

Hi(t)
− 1

gi(t)
����

����

+
1
β

t− 1

k�1

n

j�1
p

t− k
ij Hj(k)

− 1
gj(k)

����������

����������
,

≤

n

j�1
p

t
ij xj(1) − x

∗
�����

����� +
1
β

Hi(t)
− 1

gi(t)
����

���� +
1
β

t− 1

k�1

n

j�1
p

t− k
ij Hj(k)

− 1
gj(k)

�����

����� ,

≤ nDηt
+

(M + m)
2
n
2
L

4Mmβ
t
r�1 gi(r)

����
����
2

+ ϵ (1 − η)
,

(A.4)

12 Mathematical Problems in Engineering

where xj(t) is the projections of zj(t) onto the convex setX.
Similarly, we can get

yi(t)
����

����≤ 2 nDηt
+

(M + m)
2
n
2
L

4Mmβ
t
r�1 gi(r)

����
����
2

+ ϵ (1 − η)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(A.5)

)e proof of Lemma 6 is completed. □

Data Availability

No data were used to support this study.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)e author thanked Guanglei Sun, PhD and Jia Liu, Master
from Henan University of Science and Technology for the
arrangement of the article and the improvement of the
content.)e authors also thanked the referees for their
valuable comments on the original manuscript.)is work
was supported in part by the National Natural Science
Foundation of China under Grant nos. 11471102 and
12071112; in part, by the basic research projects in the
University of Henan Province under Grant no. 20ZX001.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, Prentice-Hall, New Jersey,
USA, 1989.

[2] A. Nedi, A. Ozdaglar, Distributed subgradient methods for
multi-agent optimization,” IEEE Transactions on Automatic
Control, vol. 54, no. 1, pp. 48–61, 2009.

[3] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual av-
eraging for distributed optimization: convergence analysis
and network scaling,” IEEE Transactions on Automatic
Control, vol. 57, no. 3, pp. 592–606, 2012.

[4] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimizationmethods
for large-scale machine learning,” SIAM Review, vol. 60, no. 2,
pp. 223–311, 2018.

[5] V. Lesser and C. Ortiz, “Distributed Sensor Networks: A
Multiagent Perspective,” in Kluwer Academic Publishers,
M. Tambe, Ed., vol. 9, 2003.

[6] M. Rabbat and R. Nowak, “Distributed Optimization in
Sensor Networks,” in Proceedings of the the 3rd International
Symposium On Information Processing In Sensor Networks,
pp. 20–27, Berkeley, CA, USA, April 2004.

[7] D. Li, K. Wong, Y. Hu, and A. Sayeed, “Detection, Classifi-
cation and Tracking of Targets in Distributed Sensor Net-
works,” IEEE Signal Processing Magazine, vol. 19, no. 2,
pp. 17–29, 2002.

[8] D. K. Molzahn, F. Dorfler, H. Sandberg et al., “A survey of
distributed optimization and control algorithms for electric
power systems,” IEEE Transactions on Smart Grid, vol. 8,
no. 6, pp. 2941–2962, 2017.

[9] S. Hosseini, A. Chapman, and M. Mesbahi, “Online dis-
tributed convex optimization on dynamic networks,” IEEE

Transactions on Automatic Control, vol. 61, no. 11,
pp. 3545–3550, 2016.

[10] F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi,
“Distributed autonomous online learning: regrets and in-
trinsic privacy-preserving properties,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 11, pp. 2483–
2493, 2013.

[11] J. Zhu, C. Xu, J. Guan, and D. O. Wu, “Differentially private
distributed online algorithms over time-varying directed
networks,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 4, no. 1, pp. 4–17, 2018.

[12] H. Gokcesu and S. S. Kozat, “Efficient online convex opti-
mization with adaptively minimax optimal dynamic regret,”
Available: arXiv: 1907.00497, 2019.

[13] D. Mateosnunez and J. Cortes, “Distributed online convex
optimization over jointly connected digraphs,” IEEE Trans-
actions on Network Science and Engineering, vol. 1, no. 1,
pp. 23–37, 2014.

[14] M. Raginsky, N. Kiarashi, and R. Willett, “Decentralized
Online Convex Programming with Local Information,” in
Proceedings of the American Control Conference, pp. 5363–
5369, San Francisco, CA, USA, July 2011.

[15] M. Akbari, B. Gharesifard, and T. Linder, “Distributed online
convex optimization on time-varying directed graphs,” IEEE
Transactions on Control of Network Systems, vol. 4, no. 3,
pp. 417–428, 2017.

[16] D. Yuan, D. W. C. Ho, and G. P. Jiang, “An adaptive primal-
dual subgradient algorithm for online distributed constrained
optimization,” IEEE Transactions on Cybernetics, vol. 48,
no. 11, pp. 3045–3055, 2018.

[17] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE,
vol. 102, no. 4, pp. 460–497, 2014.

[18] C. Xu, J. Zhu, and D. O. Wu, “Decentralized online learning
methods based on weight-balancing over time-varying di-
graphs,” IEEE Transactions on Emerging Topics in Compu-
tational Intelligence, vol. 5, no. 3, pp. 394–406, 2021.

[19] X. Yi, X. Li, L. Xie, and H. J. Karl, “Distributed online convex
optimization with time-varying coupled inequality con-
straints,” [Online]. Available: arXiv: 1903.04277, 2019.

[20] X. Yi, X. Li, L. Xie, and K. H. Johansson, “Distributed online
convex optimization with time-varying coupled inequality
Constraints,” IEEE Transactions on Signal Processing, vol. 68,
pp. 731–746, 2020.

[21] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized
second-order method with exact linear convergence rate for
consensus optimization,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 2, no. 4, pp. 507–
522, 2016.

[22] D. Bajovic, D. Jakovetic, N. Krejic, and N. K. Jerinkic,
“Newton-like method with diagonal correction for distributed
optimization,” SIAM Journal on Optimization, vol. 27, no. 2,
pp. 1171–1203, 2017.

[23] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton
method for network utility maximization,” Decision and
Control (CDC),2010 49th IEEE Conference on, vol. 58,
pp. 1816–1821, 2010.

[24] M. Eisen, A. Mokhtari, and A. Ribeiro, “An Asynchronous
Quasi-newton Method for Consensus Optimization,” Signal
And Information Processing (GlobalSIP),” in Proceedings of
the 2016 IEEE Global Conference, pp. 570–574, Washington,
DC, USA, December 2016.

[25] E. Hazan, Efficient Algorithms for Online Convex Optimization
and 9eir Applications, Princeton University, USA, 2006.

Mathematical Problems in Engineering 13

[26] M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized Quasi-
Newton Methods,” IEEE transactions on signal processing,
vol. 65, no. 10, 2016.

[27] A. Mokhtari, Q. Ling, and A. Ribeiro, “Newton Newton Part I:
Algorithm and Convergence,” 2015, https://arxiv.org/abs/
1504.06017.

[28] A. Mokhtari, Q. Ling, and A. Ribeiro, “Newton Newton Part
II: Convergence Rate and Implementation,” 2015, https://
arxiv.org/abs/1504.06020.

[29] R. Tutunov, H. B. Ammar, and A. Jadbabaie, “A Distributed
Newton Method for Large Scale Consensus Optimization,”
2016, https://arxiv.org/abs/1606.06593.

[30] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, Cambridge, UK, 2004.

[31] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge
University Press, Cambridge, USA, 1985.

[32] M. S. Bartlett, “An inverse matrix adjustment arising in
discriminant analysis,” 9e Annals of Mathematical Statistics,
vol. 22, no. 1, pp. 107–111, 1951.

[33] D. S. Mitrinovi, Analytic Inequalities, Springer Berlin Hei-
delberg, Berlin, Germany, 1970.

14 Mathematical Problems in Engineering

