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In seismic exploration, e�ective seismic signals can be seriously distorted by and interfered with noise, and the performance of
traditional seismic denoising approaches can hardly meet the requirements of high-precision seismic exploration. To remarkably
enhance signal-to-noise ratios (SNR) and adapt to high-precision seismic exploration, this work exploits the non-subsampled
contourlet transform (NSCT) and threshold shrink method to design a new approach for suppressing seismic random noise.
NSCT is an excellent multiscale, multidirectional, and shift-invariant image decomposition scheme, which can not only calculate
exact contourlet transform coe�cients through multiresolution analysis but also give an almost optimized approximation. It has
better high-frequency response and stronger ability to describe curves and surfaces. Speci�cally, we propose to utilize the superior
performance NSCT to decomposing the noisy seismic data into various frequency sub-bands and orientation response sub-bands,
obtaining �ne enough transform high frequencies to e�ectively achieve the separation of signals and noises. Besides, we use the
adaptive Bayesian threshold shrink method instead of traditional handcraft threshold scheme for denoising the high-frequency
sub-bands of NSCTcoe�cients, which pays more attention to the internal characteristics of the signals/data itself and improve the
robustness of method, which can work better for preserving richer structure details of e�ective signals. �e proposed method can
achieve seismic random noise attenuation while retaining e�ective signals to the maximum degree. Experimental results reveal
that the proposedmethod is superior to wavelet-based and curvelet-based threshold denoising methods, which increases synthetic
seismic data with lower SNR from − 8.2293 dB to 8.6838 dB, and 11.8084 dB and 9.1072 dB higher than two classic sparse transform
based methods, respectively. Furthermore, we also apply the proposed method to process �eld data, which achieves
satisfactory results.

1. Introduction

In recent years, high-precision seismic exploration has been
a key subject in modern seismic exploration. �is technique
will be hindered if the noise in acquired seismic signals
cannot be removed perfectly. �e traditional seismic data
denoising approaches can hardly meet the requirements of
high-precision seismic exploration because the level and
complexity of the accompanying noise in seismic signals
have signi�cantly increased due to the increasingly complex

exploration environment and the increase in exploration
depth with the extension of �eld of seismic exploration. So, it
is crucial to design new e�ective techniques to remarkably
enhance the signal-to-noise ratio (SNR).

At present, many seismic denoising approaches have
been proposed including the initial seismic data denoising
method [1], traditional transform domain based denoising
methods [2–4], sparse transform based methods [5–8] for
solving multitasks, learning-based methods [9, 10], and
other methods [11–14]. Actually, as the most common
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seismic noise, random noise can penetrate the whole time
domain and severely distort and interfere with effective
seismic data. *us, since Canales [1] first developed a
random noise reduction approach, a lot of random noise
attenuation methods have been presented on this basis, such
as the sparse transform based approaches, the empirical
mode decomposition (EMD) based approaches, and fast
dictionary learning-based approaches [10]. Chen andMa [4]
removed random noise with predictive filtering of f-x em-
pirical mode decomposition. Chen and Fomel [6] developed
an EMD-Seislet transform based method to remove the
seismic random noise. Liu et al. [7] presented variational
mode decomposition for suppressing the random noise of
seismic data. In reality, one type of the intensively used and
most efficient seismic random noise attenuation approaches
are based on the sparse transform of multiscale geometric
analysis. Zhang and Lu [2] removed noise and improved the
resolution of seismic data by using the applied wavelet
transform. Neelamani et al. [3] attenuated random noise
with the curvelet transform, and subsequently, several
variants [8, 12] with good results have been reported. Lin
[14] proposed a three-dimensional (3-D) steerable pyramid
decomposition-based suppression method of seismic ran-
dom noise. Sang et al. [15] presented an unconventional
technique on the basis of a proximal classifier with con-
sistency (PCC) in transform domain for attenuating seismic
random noise, and they also proposed another seismic
denoising approach [16] via the deep neural network and
simultaneously suppressed seismic coherent and incoherent
noises [17] based on the deep neural network.

High SNR data are the important guarantee of high-
precision seismic exploration. But, the existing transform
domain based methods are difficult to obtain higher SNR
data due to not fine enough transform high frequencies such
as wavelet transform or curvelet transform. Compared with
the existing sparse transform based methods, that is,
wavelet-based transform and curvelet-based transform
methods, the NSCT presents multiscale, multidirectional,
and shift-invariant decomposition scheme, which has better
high-frequency response and stronger ability to describe
curves and surfaces. Besides, they often conduct rough
threshold operation by using manual threshold processing
methods such as hard thresholding or soft thresholding.
*ere is often a loss of effective signals. *erefore, to re-
markably enhance SNRs and adapt to high precision seismic
exploration, we exploit an effective seismic data denoising
method in this paper. *e contributions are as follows:

(i) We propose to utilize the new sparse transform
technique, non-subsampled contourlet transform
(NSCT), to decomposing the noisy seismic data into
various frequency sub-bands and orientation re-
sponse sub-bands, obtaining fine enough transform
high frequencies to effectively achieve the separa-
tion of signals and noises.

(ii) We use the adaptive Bayesian threshold shrink
method instead of the traditional handcraft
threshold scheme for denoising the high-frequency
sub-bands of NSCT coefficients, which pays more

attention to the internal characteristics of the sig-
nals/data itself and improve the robustness of
method, which can work better for preserving richer
structure details of effective signals.

(iii) We conduct the experiments on synthetic and field
data, which reveals that our approach is superior to
the wavelet and the curvelet transform based clas-
sical ones, achieving higher signal-to-noise ratio
(SNR) values.

*e remainder of this paper is organized as follows. We
present our method in Section 2. Experiments and perfor-
mance evaluation are presented in Sections 3. Conclusion is
drawn in Section 4.

2. Method

In this paper, we focus on transform domain based
thresholding methods due to their good performance. *e
wavelet-based thresholding scheme is the most classic
method for seismic data denoising. Wavelets can sparsely
represent one-dimensional (1-D) digital data with smoothed
point discontinuities and have been successfully used for
representing digital signals [18]. However, wavelets cannot
efficiently handle higher dimensional data because of the
usual presence of other kinds of singularities. As a matter of
fact, curvelets [19], contourlets [20], bandelets [21], and
some other image/signal representations can take the ad-
vantages of the anisotropic regularity of a surface along
edges, but these representations all have their own disad-
vantages, such as lack of a multiresolution geometry rep-
resentation for curvelets, extremely limited clear directional
features for contourlets, and computationally expensive
geometry optimization for bandelets. *e non-subsampled
contourlet transform (NSCT) [22] is an excellent multiscale,
multidirectional, and shift-invariant image decomposition
scheme, which can not only calculate exact contourlet co-
efficients through multiresolution analysis but also give an
almost optimized approximation. It has better high-fre-
quency response and stronger ability to describe curves and
surfaces. *erefore, we attempt to utilize NSCT to denoise
seismic data in this paper.

2.1. NSCT for Seismic Data. *e NSCT [22] primarily
consists of a cascade of non-subsampled pyramid filter bank
(NSPFB) and non-subsampled direction filter bank
(NSDFB). First, the NSPFB is utilized to decompose an
image and the sub-bands obtained are used as inputs of the
NSDFB to generate decomposition results of the initial
image in multiple directions and dimensions. *e NSCT
conducts K-level decomposition on an image to produce one
low-frequency (LF) and several high-frequency (HF) sub-
bands, and the size of all these sub-bands is identical with
that of the original image. So, the full reconstruction of
NSCT is possible since NSPFB and NSDFB can both be
completely rebuilt.

*e shift-invariant filtering structure of the NSCTresults
in its multiscale feature. By using a bank of non-subsampled
2-D two-channel filters, we have sub-band decomposition
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like the Laplacian pyramid. Figure 1 shows a 3-stage non-
subsampled pyramid (NSP) decomposition, whose expan-
sion has an alike concept with the 1-D non-subsampled
wavelet transform (NSWT) using the àtrous algorithm [22].
For a J-stage decomposition, the redundancy will be J+ 1.
*e region [− (π/2j), (π/2j)]2 and its complement are the
ideal passband support of the low- and high-pass filter at the
j-th stage, respectively. Upsampling the filter for the first
stage can yield the filters for subsequent stages; thus, no
additional filter is needed to give the multiscale property.
Our structure differs from that of the separable NSWT.
Particularly, our structure produces one bandpass image in
each stage leading to J+ 1 redundancy. However, the NSWT
generates three directional sub-bands in each stage, leading
to 3J+ 1 redundancy. *e advantage of NSP lies in its ability
to generate better filters due to its generality.

*e NSCT has following steps. First, the NSPFB is used
to multidimensionally decompose an image into an HF and
an LF sub-band. In multilevel decomposition, an image is
finally decomposed to an LF sub-band and a set of HF sub-
bands if only its LF sub-band is further iteratively filtered.
*e redundancy of an X-level NSPFB decomposition will be
X+ 1. With regard to the X-level low-pass and the bandpass
filter, the ranges of the ideal support of frequency domain are
[− π/2x− 1, π/2x− 1]2 and [− π/2x− 1, π/2x− 1]2 ∪ [− π/2x, π/2x]2,
respectively. *e decomposition does not extra filter during
acquiring multidimension properties. So, the generated
redundancy of X+ 1 will be generated in each stage with a
bandpass image, and the structure is significantly superior to
that of the wavelet transform. *en, these sub-bands can be
decomposed along singular points andmultiple directions in
various dimensions, and the directions are integrated. *e
NSDFB also belongs to a two-channel filter bank which
comprises decomposition filters Ui(z), (i � 0, 1) and syn-
thesis filters Vi(z), (i � 0, 1) satisfying Bézout’s identity:

U0(z) + V0(z) � U1(z) + V1(z). (1)

To adopt ideal support of the frequency domain, two
channels are decomposed by U0(z) and U1(z). *en, U1(z)

and U0(z) are upsampled instead of subsampled by all
sampling matrices in each level to get direction filters in the
subsequent levels. *is completes the image decomposition
and an NSCT transform is schematically presented in Fig-
ures 2 and 3. Figure 2 displays an overview of NSCT which
has a filter bank for dividing the 2-D frequency plane into
sub-bands plotted in the bottom left quarter of Figure 1. By
using NSCT, we decompose the 2-D seismic signal data into
two shift-invariant components: an NSP structure to ensure
multiscale properties (Part 1 of Figure 2) and an NSDFB
structure to give directionality (Part 2 of Figure 2). *e
obtained idealized frequency partitioning diagram is pre-
sented in Figure 3. *e structure consists in a bank of filters
that splits the 2-D frequency plane into several sub-bands. In
this paper, we use this mode of non-downsampling to reduce
the sampling distortion in the filters and obtain translation
invariance, in which the size of the directional sub-band at
each scale is the same as that of the original 2-D seismic
signal matrix. *e NSCT has more details to be preserved,

and the decomposition can better maintain the edge in-
formation and contour structure of the seismic signals.

Figure 4 shows processing results of implementing the
two-level NSCT on the synthesized seismic signal data with
noise (Figure 4(a)) to yield a low-pass sub-band (Figure 4(b))
and a set of high-pass sub-bands (Figures 4(c) and 4(d)).
Here, two and four shearing directions are used for the
coarser and the finer scale, respectively. We can see from
Figure 4 that the LF record (Figure 4(b)) decomposed by the
NSCT basically contains the effective synthesized seismic
signals. For HF records (Figure 4(d)) of scale 1, all they
contain is noise, while HF records (Figure 4(c)) of scale 2
contain partially effective signals and noise, which needs to
be further processed via signal-noise separation.

2.2. Denoising Seismic Data Using the3reshold Shrink in the
NSCT Domain. To remarkably suppress seismic random
noise while not damaging the effective signal in the process of
denoising, this paper proposes a novel NSCT-based scheme
with an adaptive threshold value setting for suppressing
seismic random noise. *e NSCT with the properties of
multiscale, multidirection, and relative optimized sparsity can
not only calculate the exact contourlet coefficients through
multiresolution analysis but also give an almost optimized
approximation. As the NSCT is multidirectional, large co-
efficients can be obtained when the direction of the NSCT
basic function is approximately the same as the direction of
the seismic signals, while small coefficients can be obtained
when they have large difference. *us, the random noises are
distributed on small coefficients, so we can remove smaller
coefficients to achieve random noise attenuate using an ap-
propriate thresholding operator.

We first analyze the sparsity of NSCT before giving the
steps of denoising. It is known that the degree of approx-
imation of the decomposed effective data determines the
effect of noise suppression [23]. *at is to say, the denoising
effect depends on the sparsity of the approach. Figure 5
presents the reconstruction error on synthesized data
(Figure 6(a)) in the wavelet transform domain, curvelet
transform domain, and NSCT domain. Clearly, the con-
struction error of NSCT is the smallest at the same per-
centage of coefficients, and it is approximate to zero at 6%
coefficient, showing its optimal sparsity. In Figure 6, we
compare the high-frequency coefficients of NSCT, curvelet
transform, and wavelet transform, where we can clearly see
that the NSCT represents the curvature more accurately.

Generally, one threshold is used for the whole image/
signals (or sub-bands) in signal denoising techniques based
on the threshold shrink. Obviously, the threshold value
should be smaller if the signals contain more effective in-
formation, and it should be larger if the signals have more
smooth regions. For the two cases, a larger threshold value
should be correspondingly used for a higher noise level.
Evidently, detailed information with an optimal threshold
value does not function adequately for smooth regions and
vice versa. *erefore, setting for threshold value can be
further optimized by introducing adaptive threshold for
different regions in seismic signals to exploit the fact that
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Figure 4: Example of NSCTprocessing. (a) Synthesized seismic signal data with noise. (b) Approximate NSCTcoefficients. Seismic signals
of the detailed NSCT coefficients at scale 2, 2 directions (c) and scale 1, 4 directions (d).
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most signals consist of smooth regions and e�ective seismic
signal information.

Speci�cally, the two-dimensional noisy seismic data can
be calculated by

f(t, g) � x(t, g) + n(t, g), (2)

where t denotes time, g represents the trace number, and
x(t, g), n(t, g), and f(t, g) represent the e�ective seismic
data, the additive random noise, and the noisy observed
seismic signals, respectively. Signal x(t, g) will be recovered
from f(t, g).

In NSCT-based denoising approaches, a threshold is
properly set for the NSCTcoe�cients so that seismic signals can
be retrieved from the acquired noisy seismic data.�e proposed
seismic random noise attenuation has the following main steps.

Step 1. Decomposing noisy seismic data with a K-level
NSCT to yield one low-pass sub-band and one set of high-
pass sub-bands Dk,j(k � 1, 2, . . . , K; j � 1, 2, . . . , J), with
the current scale k, the decomposition orientation j, and the
total number J of decomposition directions.

Step 2. Calculating denoising threshold values of all sub-
bands Dk,j. �e level adaptive Bayesian threshold [24] is
used and calculated as below:

(i) Using the robust median estimator to calculate
noise variance δ from sub-bands:

δ �
Median(|C(x, y)|)

0.6745
, C(x, y) ∈ DK,J. (3)

(ii) Using the maximum likelihood estimator (MLE)
[24] to estimate signal variance δk,j for the noisy
coe�cients of each detail sub-band Dk,j:

δk,j � max 0,
1
mn

∑
m

x�1
∑
n

y�1
Ck,j(x, y)[ ]

2 − δ2 , (4)

where Ck,j(x, y) ∈ Dk,j, andm and n denote the size
of seismic signals

(iii) Calculating discriminating threshold δth with the
near exponential prior of NSCT coe�cients across
scales:

δth �
δ · ∑kδk,j · 2

− k

∑kk
2 · 2− k

, (5)

where k denotes the current scale
(iv) Calculating denoising threshold T(k, δk,j) of each

sub-band for δk,j < δth:

T k, δk,j( )� 2(k− (J/2)/J) ·
δ2

δk,j
, (6)

where δk,j denotes the standard deviation of sub-
band Dk,j.

Step 3. Processing the noise-related NSCT coe�cients in
high-frequency sub-bands Dk,j with the well-known soft-
thresholding method [25]:

Noisy synthetic data

Lowpass sub-band

Denoised data by the threshod shrink
in NSCT domain

Highpass sub-bands at scale 2, 2 directions

Highpass sub-bands at scale 1, 4 directions

Highpass sub-bands at scale 2,2 directions after
applying adaptive Bayesian threshold
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applying adaptive Bayesian threshold
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Figure 7: Demonstration for the analysis framework of seismic random denoising in the NSCTdomain. (a) Before attack. (b) After attack.
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Figure 8: Processed results on synthesized data with noise for various approaches. (a) Noise-free. (b) Synthesized data with noise. Denoised
data and removed noise by the wavelet-based method (c, f ), the curvelet-based threshold denoising method (d, g), and our approach (e, h),
respectively.
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Table 1: Comparison of various SNRs before denoising and after denoising (dB).

Noisy data Wavelet-based denoising Curvelet-based denoising Our method
− 8.2293 − 3.1246 − 0.4234 8.6838
− 2.2063 5.8541 8.2496 13.2078
1.3116 7.7566 10.5394 15.9510
7.3169 11.9148 13.8784 19.4674

Table 2: Comparison of various SNRs before denoising and after denoising in the NSCT domain (dB).

Noisy data Hard thresholding Soft thresholding Shrink thresholding
− 6.4468 6.4325 6.8746 7.2314
0.4326 14.2376 14.3628 15.3071
5.6183 16.9283 17.1426 17.9552
8.6341 21.6875 22.4328 22.9457
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Figure 9: (a) Real migration pro�le. (b) Processed result by our approach.
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Figure 10: (a) Real stacked pro�le. (b) Processed result by the proposed approach. (c) Noise removed by our approach.
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􏽢Ck,j(x, y) �

0, otherwise,

sgn Ck,j(x, y)􏼐 􏼑 · Ck,j(x, y)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − T k, δk,j􏼐 􏼑􏼒 􏼓, Ck,j(x, y)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥T k, δk,j􏼐 􏼑,

⎧⎪⎨

⎪⎩
(7)

where 􏽢Ck,j(x, y) and Ck,j(x, y) are the matrices of the co-
efficients after and before denoising in the NSCT domain,
respectively.T(k, δk,j) denotes the adaptive Bayesian threshold

Step 4. Reconstructing the denoised seismic data by con-
ducting an inverse NSCT on these denoised NSCT sub-
bands.

*e workflow of our method is figuratively presented in
Figure 7, where a two-level NSCT is performed on synthetic
data to yield a low-pass sub-band and a set of high-pass sub-
bands, and two and four shearing directions are used for
coarser and finer scale, respectively.

3. Experiments

In this section, we evaluate our proposed method with two
classic sparse transform based methods (wavelet- and the
curvelet-based thresholding schemes) on synthetic seismic
data and field data. *e hardware used in this experiment is
Intel 6226R CPU @2.90GHz processor, 93GB memory and
NVIDIA RTX 3090 24G graphics card. *e software used is
Matlab R2016b.

3.1. Synthetic Seismic Example. To demonstrate the perfor-
mance, an example of hyperbolic-events synthetic data is used.
Figure 8(a) presents the synthesized signals of 150 traces with
1ms time sampling interval.*e Ricker wavelet is expressed by

x(t) � 1 − 2π2f2
t
2

􏼐 􏼑 · e
− π2f2t2

. (8)

Figure 8(b) is the corresponding noisy synthetic data,
which is denoised by using two existing methods, namely,
the wavelet- and the curvelet-based threshold denoising
approach and the proposed approach. *ese three methods
use the same threshold method. We set up K� 2 and J� 2 for
the proposed approach. So, we can acquire the denoising
threshold T(k, δk,j) by computing formulas (3-6) step by
step; thus, we can further obtain the denoised high-fre-
quency results by the soft-thresholding method.
Figures 8(c)–8(e) show the obtained results by three
methods, respectively. Obviously, the result of our approach
is much superior to the ones by other two approaches.
Concretely, the results are evaluated by using SNRs [26]:

SNR � 20 · log10
x0

����
����2

x1 − x0
����

����2
, (9)

where x0 and x1 represent the noise-free data and the noisy or
denoised data, respectively. *e resulted SNR values for
Figures 8(b)–8(e)) are − 2.2063 dB, 5.8541 dB, 8.2496 dB, and
13.2078 dB, respectively. Obviously, wavelet- and the curve-
let-based approaches implement insufficient noise removal,
while our approach conducts good performance in attenu-
ating most random noise and the SNR value has been

significantly improved. Figures 8(f)–8(h) show the removed
noise sections by these three approaches, respectively. *e
wavelet- and the curvelet-based approaches lose part of useful
signals (red arrow). Obviously, the proposed approach does
not harm any useful signals. Besides, Tables 1 and 2 present
the summary of the results with various SNRs before and after
denoising. Our approach shows the better denoising per-
formance, especially for the low SNR seismic data.

In addition, to validate the processing result of our method,
real noisy seismic data are measured with same excitation and
reception in the identical data area. Figure 9 presents the ac-
quired noisy signals (Figure 9(a)) and the denoising result with
the proposed approach (Figure 9(b)). We can see that several
highlighted effective signals, clearer interlayer structure, and
improved event continuity can be observed from the patterns of
the denoised data, which significantly improves the SNR value.
Figure 10(a) shows the real stacked profile. Similarly, after
processing using our proposed approach, effective signals are
highlighted; information between layers is richer and noises are
effectively suppressed, significantly improving the SNR
(Figure 10(b)); it can be seen from the removed noise that there
is basically no effective signal loss.

4. Conclusion

*is article presents a novel NSCT-based seismic random
noise denoising method. *e superior performance NSCT
with an appropriate thresholding operator brings excellent
denoising results for seismic signals. *e proposed method
can achieve seismic random noise attenuation while
retaining effective signals to the maximum degree. *e
experiments are performed with both synthesized and real
seismic signals and the results demonstrate effectiveness of
our approach compared with existing ones. In the future, we
will consider deep learning based techniques to denoise
seismic data with low SNR in view of the powerful learning
ability and feature recognition ability, which aim to highlight
effective signals and suppress false signals.
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