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�is study constructs a multimodal graph convolutional network model, conducts an in-depth study on image super-resolution
relationship extraction and reconstructionmethods, and constructs a model of image super-resolution relationship extraction and
reconstructionmethods based onmultimodal graph convolutional networks. In this study, we study the domain adaptationmodel
algorithm based on chart convolutional networks, which constructs a global relevance graph based on all samples using pre-
extracted features and performs distribution approximation of sample features in two domains using a diagram convolutional
neural network with maximum mean di�erence loss; with this approach, the model e�ectively preserves the structural infor-
mation among the samples. In this study, several comparison experiments are designed based on the COCO and VG datasets; the
image space information-based and knowledge graph-based target detection and recognition models substantially improve
recognition performance over the baseline model. �e super-pixel-based target detection and recognition model can also ef-
fectively reduce the number of �oating-point operations and the complexity of the model. In this study, we propose a multiscale
GAN-based image super-resolution reconstruction algorithm. Aiming at the problems of detail loss or blurring in the re-
construction of detail-rich images by SRGAN, it integrates the idea of the Laplace pyramid to complete the task of multiscale
reconstruction of images through staged reconstruction. It incorporates the concept of a discriminative network with patch GAN
to e�ectively improve the recovery e�ect of graph details and improve the reconstruction quality of images. Using Set5, Set14,
BSD100, and Urban100 datasets as test sets, experimental analysis is conducted from objective and subjective evaluationmetrics to
e�ectively validate the performance of the improved algorithm proposed in this study.

1. Introduction

With the continuous development of information tech-
nology and the popularity of intelligent terminal devices,
people’s demand for information is also rising: from images
in the 2G era to pictures in the 3G era, then to images in the
4G era, and then to holographic images such as AR and VR
in the 5G era, the amount of information is rising, while the
occupied storage is also exploding [1]. �is considerably
impacts the daily dissemination of information—the net-
work speed cannot keep up, and the hard disk cannot store
it.�erefore, there is an urgent need for an e�cient means of
information compression to help compress information to

improve transmission e�ciency and reduce the storage
footprint [2]. With the development of high-performance
processors, high-de�nition screens are becoming more and
more popular with the emergence of intelligent devices.
However, most media information on the Internet is still
dominated by low-de�nition images, resulting in data
quality not keeping up with display quality, thus reducing
the user experience [3]. In addition, due to the limitations of
image storage hardware, the resolution of images is limited,
and the size of the smallest pixel determines the details that
can be displayed. But the real world is often in�nite, so
people also want to much detail as possible in the image they
can get. �e solutions to the above pain points can be
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summarized as the compression and decompression of in-
formation. )e most immediate and effective solution to
reduce the image size is to store and disseminate multimedia
information, especially the most informative image infor-
mation, and reduce the image’s resolution.

Super-resolution reconstruction (SR) technique is to
reconstruct a single or multiframe low-resolution (LR)
image into a high-resolution (HR) photo by applying specific
image processing and other methods to achieve high-quality
images. Usually, CNN-based target detection and recogni-
tion models use sliding windows or anchors to extract
possible foregrounds and hardgrounds [4]. )en, the final
localization frame is generated by identifying and regressing
all possible foregrounds. By relying on the graph convolu-
tion network, we can obtain more abundant information
about the location of the object picture. For example, by
relying on the inference of the spatial map, we can roughly
determine the object’s position and then fine-tune it
according to work. )erefore, we can design more flexible
and efficient positioning methods to generate positioning
frames [5]. )is study develops several graph convolutional
network detection models acting in spatial, beyond-pixel,
and knowledge graphs. We extract features beyond pixels to
assist pixel information for accurate target detection and
recognition. Finally, the experimental and comparative
analyses of the model on the COCO dataset and VG dataset
prove that the target detection and recognition model based
on a graph convolutional network can break the bottleneck
of image pixel recognition to a certain extent and help the
target image to achieve better object recognition and lo-
calization [6].

Image super resolution is used to solve the problem of
recovering low-resolution images to high-resolution images.
Image super resolution aims to up-sample a series of low-
resolution photos output by a deterministic or uncertain
degradation model to high resolution while providing more
detail than low resolution [7]. Traditional upsampling al-
gorithms have a solid prior relationship, considering that
there is a specific mathematical relationship between
neighboring pixel values so that the original pixels can be
recovered by interpolating adjacent pixels. In the forward
propagation process, each sample feature is transformed
independently, which may lead to the separation of target
domain features that are initially in the same class under the
influence of the distribution difference function and even-
tually classified into different categories [8]. It enables
problems with unstructured relationships, such as citation
networks, to be well trained by importing correlation graphs
between samples [9]. )is feature also helps to compensate
for the shortcomings of existing domain adaptation algo-
rithms. Graph convolutional networks can be considered as
a particular case of graph networks. In this study, we intend
to study the scheme and practice of introducing chart
convolutional networks into domain adaptation problems to
improve the learning performance of domain adaptation
problems, make a new direction to explore migration
learning tasks, and provide a feasible solution for learning
scenarios where labeled information is challenging to obtain

[10]. )e study of domain adaptation algorithms can ef-
fectively reduce the need for data annotation and enable
various algorithmic models to have fast learning perfor-
mance for similar tasks and improve their generalization and
robustness, which is of great significance in various real-
world tasks, where annotation information is not readily
available.

2. Related Works

)e graph convolution layer is a simple extension of the fully
connected layer that integrates valuable information from
the knowledge graph into the feature vector, and the in-
tuitive understanding of the graph convolution layer is
simple. By importing a relevance graph (knowledge graph)
into the neural network, the graph convolution layer can
change the distribution of the feature vectors through the
relevance variable of the relevance graph so that the relevant
samples are closer to each other [11]. )is feature facilitates
the data to obtain and maintain useful structural informa-
tion during the distribution approximation process, thus
avoiding the loss of similar structures in the source domain
caused by migration learning and improving the network
performance. Some scholars have already researched mi-
gration learning using relevance graphs and convolution
layers. When using local relevance graphs obtained by
random sampling, neighboring samples may not be sampled
simultaneously, making the graph convolution performance
degrade. Altinkaya et al. first identified a few pieces by
random sampling, they then added both the first-order and
second-order neighbors of these samples to the set to be
selected before selection, and the sampled set was guaran-
teed to correlate with the models [12]. Chadha et al. interpret
graph convolution as an integral transformation of the
embedding function under probability measures and use
Monte Carlo methods to estimate the critical values [13].
)ey propose an important sampling method, in which the
sum of the relevance weight values of each sample to other
samples is used as the sampling weight. )e above sampling
is performed once in each graph convolutional layer; good
results are obtained in the referenced network dataset.

Among the reconstruction-based methods, projection
onto convex sets (POCS) is proposed by Hong et al. )is
algorithm is based on the set projection theory of mathe-
matical sets and can converge relatively quickly [14]. )e
iterative back-projection (IBP) method proposed by Kocsis
et al. projects the error value between the input low-reso-
lution image and the low-resolution image obtained from
the degradation model backward onto the corresponding
high-resolution large print, and the error converges con-
tinuously to reconstruct the sizeable high-resolution image
[15]. Yanshan et al. proposed the maximum a posteriori
probability (MAP) algorithm, which solves the image super-
resolution reconstruction by probabilistic estimation in
mathematics, the prerequisite is the low-resolution image
sequence, and the goal of the algorithm is to obtain the
maximum a posteriori probability to reconstruct the sizeable
high-resolution image [16]. Chen et al. proposed the
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neighborhood embedding method, which first maps the
local geometric information of the low-resolution image
block to the corresponding high-resolution photo and then
uses the linear combination to map the neighborhood to
produce the high-resolution image block [17]. Many sub-
sequent researchers have made optimization improvements
to the neighborhood embedding-based method. )e super-
resolution algorithms have been explored around how to
recover more OK texture information and edge details based
on higher super-resolution magnification. Although tradi-
tional methods have low complexity, it is not easy to make a
significant breakthrough in super-resolution reconstruction
quality and visual effect [18]. Deep learning methods require
a large amount of training data compared with traditional
learning-based methods. Still, they can recover more full
image details and texture information by using neural
networks’ powerful feature representation capability to learn
the complex mapping relationships between low- and high-
resolution images [19]. In recent years, many results have
emerged in the field of deep learning and achieved better
performance and performance compared with traditional
algorithms, especially the introduction of a new and more
challenging generative model: generative adversarial net-
works, which opens a new world in the field of image super-
resolution-based research.

)e multi-image super-resolution task is also known as
the image super-resolution task. )e significant difference
between a multi-image super-resolution task and a single-
image super-resolution task is that the single-image super-
resolution task mainly models the image scene and the
mapping between pixel distributions by learning a priori
knowledge from the training data and inferring the pixel
distribution of the image after super resolution by the pixel
distribution of the target image [20]. )e information that
the model can ingest is the pixel mapping learned from the
training data; when the pixel distribution of the test image
does not appear in the training image, it will lead to sig-
nificant degradation of the image’s super-resolution quality
[21]. In the case of multi-image image super-resolution
tasks, or image super-resolution tasks, additional informa-
tion about the before and after frames of the image is in-
troduced. From common sense, the data between photos in
consecutive image frames are continuous and gradual, and it
is entirely possible to use such an incremental information
mechanism to extract the information that was discarded
during the downsampling of the target image in the adjacent
frames of the image to recover the target image after
downsampling [22]. )e convolutional graph networks are
highly vulnerable to adversarial attacks, which makes their
prospects for industrial applications challenging. Combin-
ing graph convolutional networks with target detection and
recognition is difficult, as graph convolutional networks can
obtain certain features based on the graph structure.
However, there is still no fixed solution for using these
features to complement or identify localized targets. Finally,
as more and more graph convolutional networks are
designed, selecting a suitable network based on the graph
structure characteristics is also a significant issue.

3. Model Design of Super-Resolution
Relationship Extraction and Reconstruction
Method for Images Based on Multimodal
Graph Convolutional Networks

3.1. Multimodal Graph Convolutional Network Model
Construction. Convolutional operations can extract struc-
tural features of structured data by using convolutional
kernels with shared parameters. Single-modality image
alignment refers to the floating of two images acquired with
the same imaging device. It is mainly applied to the
alignment between different MRI-weighted images and the
alignment of image sequences, etc. Multimodal image
alignment refers to the floating of two images from other
imaging devices. Increasing the number of convolutional
kernels can obtain multidimensional structural features to
characterize the data. For unstructured data such as mo-
lecular structure and recommendation system, the infor-
mation cannot be extracted directly by fixed convolutional
kernels because they do not have uniformity. )erefore, the
graph neural network (GNN), which simulates convolu-
tional operations to remove features efficiently on un-
structured data, emerged and continues to evolve. Like
convolution on images, the information of each node is
extracted by picking the perceptual field [23]. )e most
direct way is to aggregate the node whose features are to be
removed with its neighbor nodes within a fixed number of
hops, based on the idea of message passing to extract parts of
the graph for subsequent scenarios such as node classifi-
cation, graph classification, and edge prediction. GCN has
been mathematically rigorous in reasoning and proof.
Combining spectral convolution and Chebyshev polyno-
mials and simplifying the operation by constraining k � 1 to
obtain a first-order linear approximation to the graph
spectral convolution, an expression for the graph convo-
lution neural network is derived as follows:

h(l+1) � 
σ + h

l−1
+

������

h
l
− w

l



���������
σ − d + ad

√ , (1)

where Hl denotes the graph convolution network at layer
l(H0 � x); D is the degree matrix ( Dii �  Aijj); A � A + I

denotes the adjacency matrix introducing its information;
Wl is the training parameter, and σ is the activation
function. )erefore, the output of the two-layer graph
convolutional network is as follows:

z �  softmax
d − ad − xw

o
( w

�����������
d − 1/2ad − σ

√ . (2)

)e graph convolution neural network defines the graph
convolution operation. It can achieve convolution-like
feature extraction on unstructured data, and subsequent
research on it is done based on graph convolution.

During node updates, weights are determined based on
the interrelationship between neighboring nodes and the
current node, thus enhancing the ability to extract mean-
ingful information and attenuating the weight of irrelevant
knowledge. Like the graph convolutional neural network,
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the graph attention network introduces the calculation of
attention. It adds it to the update operation, while the node
weight value is determined by its interrelationship with the
controller node.)e node weights are calculated as shown in
the following equation:

αij � 
exp σ − a

t
whi + a

t
whj 

σ a
t

whi − whk  
. (3)

In the above equation, αij denotes the attention weight of
node j with respect to node i; Ni denotes the set of nodes
adjacent to node i; hi is the feature of node i; the attention
value αij denotes the degree of association between nodes,
which can be obtained either by learning or by a similarity
measure. )e attention weights are introduced into the
graph convolution process to emphasize the importance of
different neighboring nodes to the current node so that the
next layer of feature values can be calculated and updated as
follows:

hi � 

��������
aij + whj



σ −
������
j − ni( 

 + σ, (4)

where hj is the feature of node j in the current layer of the
graph convolution network; hi is the feature of node i in the
next layer of the graph convolution network. )e graph
attention network quantifies and introduces the relationship
between nodes into the graph update process, and this re-
lationship is equivalent to the adjacency matrix in the graph
convolution a. Because of its ability to construct adjacency
matrices based on node relationships can be applied to
graphs without explicit edge concepts, such as graphs de-
scribing sample relationships. In essence, the principles of
GCN and GAT are similar; the former uses Laplacian ma-
trices and emphasizes the role of graph structure infor-
mation in graph convolutional networks. At the same time,
the latter introduces attention coefficients to enhance the
role of correlation information between nodes. )e last is
suitable for a broader range of scenarios, such as inductive
tasks, by calculating each node one by one, free from the
strong constraints of the graph structure.

)e interaction enhancement between local informa-
tion includes the interaction between the internal elements
of local target information and local image information and
the interaction between local target information and local
image information. )e principle of internal element in-
teraction enhancement is that a subset of elements that are
relatively important or create a common theme can be
calculated using the interrelationship between the interior
features [24]. )e principle of interaction enhancement
between local target and image information is that both
information initially corresponds to the same scene theme,
so there is a constraint and guidance between the data.
Local target information can guide local image information
to make the selection and fusion of a subset of crucial image
elements. At the same time, local image information can
also locally target information to make the selection and
fusion of a subgroup of critical target elements. )e graph

convolutional neural network is a prevalent network
model. Many algorithms use it as the basis for modeling
and solving practical problems, whether in recommenda-
tion algorithms, computer vision, or natural language
processing. In this study, we need to enhance the inter-
action and fusion between local information elements, so
we design a practical information fusion module based on a
graph convolutional network.

First, the graph node feature is defined as
r � f1, f2, . . . , fm , fi ∈ rd the feature vector corre-
sponding to the i node and m the number of nodes. )e
graph network constructed with local target information
elements can be represented as the graph network built with
local target information elements, which can be defined as
ro � fo1, fo2, . . . , f0p . )e graph network created with
local text information elements can be described as rt �

ft1, ft2, . . . , ftp  )e graph network made with both parts
together can be represented as rot � f1, f2, . . . , fp+q  )e
graph convolution operation in this study is defined as
follows:

rl �  rl+1 −
wr−t

h
,

h � 

l�1

wh − wt
������
mr − r

√
l

×
wh − wt

������
mr − rl

√ ,

mr� 

l�1

r
l−1

+ w(t−k) + r
l−1

× wt−q .

(5)

)is study’s multimodal local information interaction
module consists of two branches, the independent graph
convolution branch and the joint graph convolution branch.
)e separate graph convolution branch is a graph convo-
lution operation for ro and rt respectively, which enables the
enhancement of information elements of the other modality
through intermodal attention while preserving the infor-
mation differences between the two different modalities. In
contrast, the joint graph convolution branch is a graph
convolution operation rot, enabling the two modal infor-
mation to automatically learn the interaction model in the
same graph network.)e design and computation of the two
graph convolution branches are described in detail, as shown
in Figure 1.

)e independent graph convolution branch consists of a

groups of identical computational modules. )e following
computations are implemented in each computational
module. First, the local target information graph network ro

and the local image information graph network rt each
perform a graph convolution operation to achieve an in-
teractive fusion of information within a single modality.
)en, the two unimodal information graph networks per-
form a crossmodal attention enhancement operation to
accomplish the necessary computation and information
enhancement between different modal nodes. Finally, a new
graph node information is generated after a fully connected
layer FC with the following modular computational flow:
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r(a−o) � fc ha+o − 1(  +  aij + ha−t ,

h(a−o) �  gcn − ra+o + ra+o − 1(  ,

ai−j �  ha−o + wa−1(  × ha−t − wa−2( .

(6)

3.2. Image Super-Resolution Relationship Extraction and
ReconstructionMethodModelConstruction. )e core idea of
the image super-resolution reconstruction algorithm is to
process the low-resolution image using various technical
software. )e detailed information not available in the low-
resolution print is extracted through some algorithms, and a
clear, high-resolution image is reconstructed. )is section
mainly introduces the theoretical basis of image starting
resolution reconstruction, some SFI reconstruction tech-
niques, and the recognized image quality evaluation criteria
for image super-resolution reconstruction. )e evaluation
criteria are the criteria for this study’s subsequent experi-
mental results. Image resolution is expressed in computer
storage as the resolution that digital images displayed and
stored in a computer have, and the resolution refers to the
amount of information stored in a snap [25]. Specifically, it
relates to the number of pixel points stored per unit of the
image, and the resolution team is expressed in PPI (pixels
per inch). In general, the more pixel dots per unit of an
embodiment, the higher the resolution of the image and the

larger the image will be, thus allowing for a richer repre-
sentation of detail. For example, a picture with a resolution
of 160∗120 pixels has a resolution of 19,200 pixels or
200,000 pixels. )e super-resolution image reconstruction
algorithm can be divided into two types: image and static
image, and this study focuses on the super-resolution re-
construction algorithm for static images. )e original high-
resolution image generates a low-resolution image due to
some extraneous culmination of the imaging process, and
the HDR image must be built. )e low-resolution bong
image is processed into a high-resolution image according to
specific super-resolution techniques. In this process, the
image degradation model degrades high-resolution photos
into low resolution images.

)e structure of the domain adaptation model based on
graph convolutional networks proposed in this study is
shown in Figure 2. Overall, we first extract the high-di-
mensional features of the input data using a pretrained deep
convolutional network fine-tuned with the source domain
dataset or some manually designed feature extraction al-
gorithms.)en, to consider the correlation graph of the data,
we obtain the correlation structure between the samples
based on the extracted features by the k-nearest neighbor
(KNN) method, thus introducing the correlation between
the pieces in the source and target domains into the learning
model. After that, we apply a convolutional graph network
to learn similar feature representations based on the samples
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and their neighboring samples. Finally, we reduce the dif-
ference in distribution between the known source and target
words using the maximum mean difference to ensure the
migratable nature of the features.

Because the traditional gcnt network cannot represent the
relationship data such as vertices and edges, graph convo-
lution neural network can solve the problem of such graph
data, which belongs to the application of gcnt in the direction
of graph expansion. In the training process, GNN will notice
the graph structure, and there will be a gating mechanism to
enter the graph structure, and convolution will be introduced
into the graph structure to learn by extracting spatial features.
)e GNN that introduces convolution is the GCN, which
knows by removing spatial features. GCN is a graph con-
volutional neural network, a kind of GNN; the difference is
mainly in using convolutional operators for information
aggregation. )e structure of the SRCNN model is
straightforward; the input image on the left is a low-resolution
image generated by bi-triple interpolation, which is the exact
resolution of the actual high-resolution image. However, the
input image without image enhancement is still a low-res-
olution idea to distinguish between the two. )e size of the
convolution kernels for the three layers of convolution used in
the model are, from left to right, 64, 32, and 1 for the output
channels. )e loss function used in this network is the mean
square error, which is given by the following equation:

mse(x−y−θ) � 

��������
h × w − 1

√

y(i − j) + x(i + j)
, (7)

where X denotes the high-resolution image output from the
web, Y represents the actual high-resolution image and
denotes the network parameters, and w and h denote the
length and width of the output image, respectively. )e
proposed model broadly lays down the structural compo-
sition of the whole super-resolution network, and all con-
volutional networks doing super-resolution tasks after that
largely follow the combination of these three modules.

As important auxiliary information, the higher the ac-
curacy of depth information, the more accurately it can
reflect the geometric relationships between viewpoints,
which helps to solve the artifacts and distortions that appear
in the synthesized views. )e existing view synthesis
methods based on depth information generally have the
following problems: the synthesized view is highly depen-
dent on the quality of the depthmap, but the predicted depth
map suffers from insufficient accuracy due to the inability of
the depth estimation module to capture long-range spatial
correlations [26]. )erefore, it is essential to obtain effective
feature representations to improve the depth map quality for
subsequent operations. )is module can thoroughly learn
effective high-resolution feature representations and always
keep the feature resolution uniform throughout the process.
)e multiscale fusion mechanism is designed to fuse the
relevant features to obtain rich feature representations fully.
)is enables the proposed depth estimation module to fully
capture the long-range spatial correlation. )e predicted
depth map can more accurately reflect the spatial distri-
bution of the scene and provide information support for the
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next operation.)e specific structure of the depth estimation
module is shown in Figure 3.

To address the computational inefficiency of prior
upsampling, some researchers have proposed to perform
most of the mappings in low-dimensional space with last.
Unlike the prior upsampling, this class of models replaces
the traditional upsampling operation in the prior upsam-
pling with a learnable upsampling house at the end of the
network. Since this class of models performs many linear
convolution operations in the low-dimensional space, the
time and space costs are significantly reduced, and training
and testing are much faster. Progressive upsampling models
reduce the learning difficulty of the model by decomposing a
complex task into small, simple tasks. Such models provide
an elegant solution to the multiscale super-resolution
problem without adding time and space costs.

4. Analysis of Results

4.1. Image Super-Resolution Relationship Analysis of Multi-
modal Graph Convolutional Networks. )e image super-
resolution task is based on the single-image super resolution,
in the case of having the most basic original low-resolution
image, to acquire its neighboring low-resolution image
frames, which is used to help the original image more quickly
to obtain more information to help the image recovery. )is
section proposes a deep neural network module for image
reconstruction, enhanced reconstruction block (ERB). )is
module is redesigned for the reconstruction module in the
ultradeep model in image super resolution using a roll-up
group plus a dense connection. It adds jump connections
from shallow to deep features while maintaining the existing
network depth to better-fit feature extraction and image
reconstruction in deep networks. Meanwhile, to improve the
deformable convolution in the feature alignment module
during image super-resolution model training, a weight
normalization layer is wrapped around the convolution op-
eration in the PCD alignment module, and the stability
against noise during network training is greatly improved
after the replacement [27]. )is section uses the classical
image super-resolution model EDVR as the module frame-
work based on the above work. It proposes a new image
super-resolution model—enhanced reconstruction model for
video super resolution (ERM-VSR). In practical experiments,
the ERM-VSR image super-resolution model presented in
this section achieves excellent performance that significantly
exceeds that of the baseline EDVR model.

With the development of deep learning techniques, the
complexity of graph convolutional networks is increasing,
and the number of layers of the network is also growing.
Deepening the number of layers of the network within a
specific range will make the web more expressive and richer
in the features learned. However, in practical applications,
increasing the number of layers of the network does not
necessarily lead to better output results. )e loss rate var-
iation curve of the graph convolutional network versus the
number of pieces of training is shown in Figure 4.

During the algorithm validation training on this dataset,
it was found that EDVR’s feature alignment module, PCD

alignment module, often failed to converge due to excessive
offsets. In the subsequent investigation of the reasons for the
network convergence failure and the in-depth analysis of the
training dataset, it was further found that for processing
videos with too drastic scene switching (usually corre-
sponding to the rapid movement of the filming equipment)
and camera switching such as off-cut and jump-cut in
transitions, PCD alignment module cannot effectively limit
the size of the learned motion vector offset. Once it jumps
out of the effective range and is input to the deformable, the
motion vector is out of the compelling content. It is input to
the deformable convolution, leading to the failure of feature
extraction and loss of the whole feature alignment module.

)e performance of graphical convolutional neural
networks depends on various factors such as network
structure and depth. Studying how parameters affect the
performance of super-resolution reconstruction networks
can effectively guide the model design. It can fully exploit the
performance of the networks. Since the network structure is
crucial to the algorithm’s convergence, this section first
conducts experiments on the effect of residual learning on
the performance of the RLSR algorithm. All three experi-
ments used T1-weighted imaging of the brain web dataset as
the test set and PSNR as the evaluation index to test the
results of the RLSR algorithm when there was super-reso-
lution reconstruction of anisotropic 3D-MRI images with a
resolution of 2mm×2mm×2mm. )e effects of residual
learning, network depth, and width are shown in Figure 5.

)e best method among the interpolation methods is the
B-spline interpolation algorithm. Still, the PSNR and SSIM
of this algorithm are 3.95 dB/0.0059 and 3.36 dB/0.0407
lower than those of the RLSR algorithm for layer thicknesses
of 2mm and 5mm, respectively. Due to the fixed parameters
of the interpolation method, the image is only upsampled
based on the spatial information of the pixels without using
any a priori information. )e NLM and SC methods exploit
the self-similarity and sparsity of the image for super-res-
olution reconstruction, respectively, improving the super-
resolution reconstruction effect [28]. Still, the PSNR and
SSIM of the reconstructed image are not as good as the RLSR
based on the residual learning deep convolutional neural
network. )e SRCNN method is driven by many training
samples and directly learns the intrinsic mapping rela-
tionship between high and low resolutions without relying
on artificially designed feature extractionmethods. Its super-
resolution reconstruction effect is significantly better than
the interpolation method, NLM, and SC algorithms. Since
the RLSR algorithm uses residual learning to alleviate the
problem of difficult training of deep networks faced by
SRCNN and effectively improves the nonlinear fitting ability
of the network, the quality of super-resolution reconstructed
images at a slice thickness of 2mm is better than those
reconstructed by SRCNN and VDSR methods, with PSNR
values 1.28 dB and 0.06 dB higher than those of SRCNN and
VDSR method approaches, respectively. )e quality of the
super-resolution reconstructed 3D-MRI images decreased to
different degrees with the increase of the slice layer thick-
ness. )e SSIM of the 3D-MRI images reconstructed by the
RLSR algorithm was 0.004 higher than that of the SRCNN
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method when the layer thickness was 2mm, but the dif-
ference reached 0.0254 when the layer thickness was in-
creased to 5mm. )e above experimental results indicate
that the RLSR algorithm can achieve good T1-weighted
imaging super-resolution reconstruction results and has
good robustness for reconstructing different slice
thicknesses.

4.2. A Multimodal Graph Convolutional Network-Based
Approach for Super-Resolution Relation Extraction and Re-
construction of Images Implementation. For the overall
performance comparison, the number of SUB modules in
SUGNet is set to 20, and the output channels of the con-
volutional layer are set to 64. Considering the performance
and model parameters, the depth of the backbone branch in
the SUB module is set to 3. During the training period, a
randomly cropped 48× 48 image block is used as the model’s
input. To avoid overfitting the SUGNet algorithm during
training, this section uses data enhancement techniques such
as rotation and horizontal and vertical flipping for all fundus
data sets. )e Adam optimizer is used to train the network
parameters with an initial learning rate of 0.0001, and the
learning rate is reduced by half for every 100 rounds. For the
same reconstruction factor, the generator loss of the algo-
rithm in this study is lower than that of both SRRes Net-V54
and SRGAN. For different reconstruction factors, the gen-
erator losses of SRRes Net-V54 and SRGAN are in the order
from small to large: 4×< 6×< 8×, while the order of the
algorithm in this study is as follows: 4×≈ 6×< 8×. It proves
that the generator network in this study can be used well for
4× and 6× reconstruction. Still, the other two algorithms are
only suitable for 4× reconstruction and have more signifi-
cant errors for 6× and 8×. Using feature matching loss (F-
Loss) and Wasserstein distance loss (W-Loss) can improve
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the reconstruction quality and solve the gradient dispersion
phenomenon that may occur during the training process. In
addition, the multiplex conditional generator structure and
the multiscale discriminator structure make the generator’s
performance in this section almost the same as that of the
reconstruction factor 4 when the reconstruction factor is 6.
)erefore, the algorithm in this section can cope with more
prominent reconstruction factors, while the performance of
other algorithms decreases sharply when the reconstruction
factor increases. )e dynamics of the different network loss
function values are shown in Figure 6.

)is study uses a network structure with only one hidden
layer to simplify and prevent overfitting. )e number of
neurons in the hidden layer is as small as possible.

Meanwhile, the graph convolutional network algorithm uses
each node’s k-nearest neighbors to describe each vertex’s
local information on the image model. 2D is also called two-
dimensional, flat graphics. 2D graphics content X-axis and
Y-axis. 2D three-dimensional sense, light, and shadow are
artificially drawn from the simulation. 3D is also called
three-dimensional graphics content; in addition to the
horizontal X-axis, vertical Y-axis, and the depth of the Z-
axis, three-dimensional graphics can contain 360 degrees of
information.)erefore, like the 2D reconstruction of images
based on graph convolutional networks, determining the
number of neurons in each subneural network and the
number of k-nearest neighbors is also essential for the 3D
reconstruction of faces. )erefore, in this study, from the
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2,800 strictly aligned 3D face models obtained during the
face data generation, 1,000 are randomly selected as the
training set and 500 as the test set. First, we test the pre-
diction results of the network under different k values. In the
network initialization phase, the network weight parameters
for the first forward propagation of the generator network
can be initialized with the DGP-SRGAN network parame-
ters by using the minimized mean square error MSE loss
function, which is obtained by pretraining the network.
Because of this, the following training process is chosen to
“synchronize” the alternate iterative training of the gener-
ator network and the discriminator network; in the general
GAN model, the generator network training learning speed
is often slower than the discriminator network, which will
cause the network parameters to update early end, and it will
not get a robust generator model. In the training phase of the
network, the discriminator network is updated once, fol-
lowed by the generator network to update the parameters
once. )e super-resolution image of the output of each
forward propagation of the generator network is compared
with the original high-resolution image HR to obtain an
error signal. )is error signal is back propagated to produce
a gradient (or derivative) for learning, which is used to
readjust the weight parameters for the subsequent forward
propagation. )e discriminator network then compares the
output probability score of the input super-resolution
generated image with 0 and the original high-resolution
extensive image HR with 1. It updates the discriminator
network parameters by back propagating the error through a
back-propagation mechanism to create the gradient used for
network learning. )e results of the network training for the
image super-resolution relationship extraction and recon-
struction method are shown in Figure 7.

DRCN is equivalent to SRCNN with a deepened net-
work hierarchy.)e DRCN network is more expressive and
can be seen to have more apparent edge details than
SRCNN. )e SRGAN and the optimized and improved
DGP-SRGAN algorithm in this section can reconstruct
more texture details than the general GNN because they use
the perceptual loss function to guide the network training,
and the experimental results of the previous algorithms

have better image visualization and more explicit edge
details compared to each other. )e proposed DGP-
SRGAN has better subjective visual perception quality than
the original SRGAN algorithm. )e essence of graph
convolution is to learn relevant information, so the
learning effect of this network must include the neighbors
of the sampled samples in the same training step; on the
other hand, the distribution difference metric requires that
the models in both domains can be as rich as possible and
cannot be limited to only some categories. Balancing the
needs of both in a limited batch training size is another
critical issue in enhancing the effectiveness of graph
convolution in deep learning frameworks. According to the
scheme proposed in this section, the update relevance
graph with the training trick allows the global relevance
graph to be updated throughout the network training
process and no longer overly dependent on fine-tuning the
features extracted in the network. Class-label and pseudo-
class-label sampling ensure, to some extent, the amount of
data available for each class of samples when the model is
trained in small batches, thus improving the performance
of the overall model. )e proposed two schemes enable the
graph convolution model to be successfully integrated into
the deep learning framework for end-to-end learning and
achieve good results in experiments comparable to cutting-
edge algorithms.

5. Conclusion

With the development of deep learning technology, more
and more tools have been derived from continuously
bringing new products and experiences to the public. Many
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technologies that were previously unlikely to be realized
based on traditional methods are increasingly coming into
the typical home. Image recovery, a classic task in computer
vision, has a critical position in practical applications. As an
essential carrier of information transmission, the quality of
the image directly affects the ability of information ex-
pression. Image super-resolution reconstruction aims to
recover high-quality photos, so it has a wide range of ap-
plications in many fields. We conducted comparison ex-
periments on COCO and visual genome datasets in this
study. By analyzing the experimental data, we can see that
the target detection and recognition models based on graph
convolutional networks significantly improve the correct
average rate of the whole class of objects. In this study, Set5,
Set14, BSD100, and Urban100s datasets are taken for ex-
periments and compared with their algorithms Bicubic,
SRCNN, VDSR, and SRGAN in the cases of reconstruction
scales of 2× and 4× to verify the practical effect more fully.
)is algorithm increases the network’s nonlinear repre-
sentation capability while acquiring multiple features than
single-scale convolutional networks. )e algorithm finally
outputs reconstructed high-resolution images using the
deconvolution layer, which obtains more high-frequency
information during the upsampling process. )e algorithm
is experimentally demonstrated to have an advantage of
super-resolution reconstruction compared with neural
network algorithms of the same level of depth.
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