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In this article, modi�cation of the residual power series method (RPSM) is proposed for higher order boundary value problems (BVPs).
�e proposed algorithm is tested against various linear and nonlinear BVPs of orders nine up to thirteen. For the e�ciency check of
RPSM, obtained series solutions are compared with other available results in the literature. Analysis indicates that RPSM is better in
terms of accuracy as compared to other mentioned schemes. As RPSM is applicable to BVPs without linearization, discretization, and
perturbation, hence practically it is the best suitable solution tool for more complex BVPs in science and engineering.

1. Introduction

Higher order BVPs can be seen in di�erent �elds of engineering.
Mostly they appear in �uid dynamics with rotations and in-
stabilities. When the instability is set as ordinary (normal), it
provides ninth, tenth, and eleventh-order models. On the other
hand, if the instability is set as overstable, it leads to twelfth and
thirteen-order models [1, 2]. Moreover, ninth and tenth-order
BVPs also arise in astrophysics and hydrodynamics [3].

Solution of initial and boundary value problems for
large-scale nonlinear equations is often required in engi-
neering and scienti�c applications. �ese problems can be
seen in elasticity, cosmology, material science, and engi-
neering [4]. For the analysis and predictions of these
problems, obtaining an accurate solution is the major focus
of the scienti�c community [5]. As it is di�cult to compute
analytical solutions of higher order and nonlinear BVPs,
there is a need for approximation techniques.

In the past few decades, various numerical techniques
have been developed by many researchers for higher order

BVPs. In 1992, Liao proposed the homotopy analysis method
for BVPs [6]. After that, the authors proposed a combination
of homotopy with perturbation for the solutions of BVPs in
[7]. Wazwaz proposed a modi�ed decomposition for higher
order BVPs [8, 9]. Qayyum et al. proposed an extension of
homotopy perturbation with Laplace transformation for
BVPs in [10]. Siddiqi and Zul�qar [11] applied the variational
iteration method (VIM) to eleventh-order BVPs in [11]. In
2008, Noor and Mohyud-Din [12] also used VIM with
polynomials to higher order BVPs [12]. Boutayeb and Twizell
used the �nite di�erence method for twelfth-order BVPs in
[13]. Iftikhar et al. used the di�erential transform method
(DTM) for thirteenth-order problems in [14]. Anderson et al.
also attempted thirteenth-order BVPs using VIM in [15]. Ali
et al. solved higher order BVPs using the optimal homotopy
asymptotic method (OHAM) in [16]. Other scholars who
tried di�erent methodologies for the solution of higher order
BVPs can be seen in [17–22].

Numerical methods have di�erent limitations, that may
include linearization, discretization, or perturbation. To
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overcome these restrictions, Abu Arqub et al. proposed the
residual power series method (RPSM) for initial value
problems (IVPs) in 2013 [23]. Since its introduction, RPSM
has been applied by various researchers in different fields of
science and engineering for IVPs [24, 25]. Kumar used
RPSM to fractional Burgers’ equations [26]. Mahmood and
Yousif [27] applied RPSM to Boussinesq–Burgers equations
[27]. Kumar and Yan extended RPSM to fractional diffusion
equations [28]. Arqub applied RPSM to fuzzy differential
equations [29]. Besides the above-mentioned studies, other
scholars have also used RPSM in different scenarios [30–32].
In this discourse, modification of the residual power series
method (RPSM) is proposed for ordinary differential
equations with boundary conditions in the present manu-
script. (e proposed extension is tested extensively against
different linear and nonlinear BVPs of higher order (nine up
to thirteen) without linearization, discretization, and per-
turbation.(is proposed modification is free from round-off
errors and has less computational cost. For the rest of the
manuscript, a basic idea of the proposed methodology is
presented in Section 2, and a numerical illustration of RPSM
is given in Section 3, while Section 4 contains the conclusion.

2. Basic Idea of the Modified Residual Power
Series Method for BVPs

In this section, RPSM is explained for nth order BVPs. (is
method comprises the power series expansion about the
initial point r � r0. In the case of BVPs, dummy initial
conditions need to be taken for initializing the solution
process.

Φ(n)
(r) � f r,Φ(m)

(r) , r0 ≤ r≤ r1, m � 0(1)n − 1, (1)

with,

Φ(i)
r0(  � βi,

Φ(j)
r1(  � βj, i, j � 0(1)n − 1,

i + j � n.

(2)

Now, assuming the following kth truncated power series
as a solution for the given problem, we get

Φ(r) � 

k

i�0
Ai r − r0( 

i
, k � 0, 1, 2, . . . , (3)

where Ai
′s, i � 0(1)n − 1 are computed using (3) along with

initial conditions, and hence, Equation (3) becomes

Φ(r) � Φinitial(r) + 
k

i�n

Ai r − r0( 
i
, (4)

where

Φinitial � 
n− 1

i�0
Ai r − r0( 

i
. (5)

Rewriting (5) in the following form:

Φ(n)
(r) − f r,Φ(m)

(r)  � 0, (6)

and using (4) in (5) gives the following kth residual
function:

Resk
(r) � 

k

i�n

i(i − 1) . . . (i − (n − 1))Ai r − r0( 
i− n⎛⎝ ⎞⎠

− f r, 
k

i�m

i(i − 1) . . . (i − m + 1)Ai r − r0( 
i− m⎛⎝ ⎞⎠,

m � 0(1)n − 1.

(7)

To obtain Ak for k � n, n + 1, . . ., we use (7) in the
following equation [29]:

d
k− n

dr
k− n

Resk
r0(  � 0. (8)

In the case of BVP, the series solution will contain
dummy constants introduced at the start of the solution
process. Optimal values of dummy constants can be ob-
tained using the right boundary conditions. Higher accuracy
can be achieved by increasing the order of the solution.

3. Numerical Illustration of MRPSM

Test Problem 1. Consider the following ninth-order linear
ODE [8]:

Φ(ix)
(r) � − 9e

r
+Φ(r), 0≤ r≤ 1, (9)

with boundary conditions

Φ(0) � 1,

Φ′(0) � 0,

Φ′′(0) � − 1,

Φ′′′(0) � − 2,

Φ(iv)
(0) � − 3,

Φ(1) � 0,

Φ′(1) � − e,

Φ′′(1) � − 2e,

Φ′′′(1) � − 3e.

(10)

(e exact solution is as follows:

Φ(r) � (1 − r)e
r
. (11)

After using RPSM, we obtain

α1 � − 3.99999078,

α2 � − 5.000189174,

α3 � − 5.998459,

α4 � − 7.00491325,

(12)

and hence, the RPS solution becomes
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Φ(r) � 1 −
1
2
r
2

−
1
3
r
3

−
1
8

− 0.0333333r
5

− 0.00694471r
6

− 0.00119017r
7

− 0.000173733r
8

−
1

45360
r
9

−
1

403200
r
10

−
1

3991680
r
11

−
1

43545600
r
12

.

(13)

Results related to Test Problem 1 are shown in Table 1
and Figure 1.

Test Problem 2. Consider the following ninth-order non-
linear ODE [34]:

Φ(ix)
(r) − 1+ e

er

+ e
r

 e
r
+ e
Φ(r)Φ′′′(r) +Φ′(r)Φ(r) � 0,

(14)

with boundary conditions

Φ(0) � 1,

Φ′(0) � 1,

Φ′′(0) � 1,

Φ′′′(0) � 1,

Φ(iv)
(0) � 1

Φ(1) � e,

Φ′(1) � e,

Φ′′(1) � e,

Φ′′′(1) � e.

(15)

(e exact solution to this problem is as follows:

Φ(r) � e
r
. (16)

Using RPSM, optimal values of dummies are as
follows:

α1 � 0.999964,

α2 � 1.0007701,

α3 � 0.9933072,

α4 � 1.0235536,

(17)

and hence, up-to-ten term solution is as follows:

Φ(r) � 1 + r +
1
2!

r
2

+
1
3!

r
3

+
1
4!

r
4

+ 0.00833303r
5

+ 0.00138996r
6

+ 0.000197085r
7

+ 0.0000253858r
8

+
1

362880
r
9

+
1

3628800
r
10

.

(18)

Results related to Test Problem 2 are shown in Table 2
and Figure 2.

Test Problem 3. Consider the following ninth-order non-
linear ODE [34]:

Φ(ix)
(r) � cos3 +Φ′(r)(Φ(r))

2
, (19)

with boundary conditions

Φ(0) � 0,

Φ′(0) � 1,

Φ′′(0) � 0,

Φ′′′(0) � − 1,

Φ(iv)
(0) � 0,

Φ(1) � sin(1),

Φ′(1) � cos(1),

Φ′′(1) � − sin(1),

Φ′′′(1) � − cos(1).

(20)

(e exact solution to the problem is as follows:

Table 1: Comparison of RPSM with HPM [2], MVIM [33], and MDM [8] in Test Problem 1.

r Exact
sol RPSM sol E∗ RPSM E∗ HPM [2] E∗ MVIM [33] E∗ MDM [8]

0.0 1 1 0 0 0 0
0.1 0.994654 0.994654 5.3 × 10− 13 − 2.0 × 10− 10 − 2.0 × 10− 10 − 2.0 × 10− 10

0.2 0.977122 0.977122 1.1 × 10− 11 − 2.0 × 10− 10 − 2.0 × 10− 10 − 2.0 × 10− 10

0.3 0.944901 0.944901 5.3 × 10− 11 − 2.0 × 10− 10 − 2.0 × 10− 10 − 2.0 × 10− 10

0.4 0.895095 0.895095 1.3 × 10− 10 − 2.0 × 10− 10 − 2.0 × 10− 10 − 2.0 × 10− 10

0.5 0.824361 0.824361 2.0 × 10− 10 − 2.0 × 10− 10 − 2.0 × 10− 10 − 2.0 × 10− 10

0.6 0.728848 0.728848 2.2 × 10− 10 − 6.0 × 10− 10 − 6.0 × 10− 10 − 6.0 × 10− 10

0.7 0.604126 0.604126 1.6 × 10− 10 − 1.0 × 10− 9 − 1.0 × 10− 9 − 1.0 × 10− 9

0.8 0.445108 0.445108 6.9 × 10− 11 − 2.0 × 10− 9 − 2.0 × 10− 9 − 2.0 × 10− 9

0.9 0.24596 0.24596 8.4 × 10− 12 − 3.4 × 10− 9 − 3.4 × 10− 9 − 3.4 × 10− 9

1 0 2.7 × 10− 17 7.5 × 10− 17 0 0 0
E∗ � exact − approx.
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Φ(r) � sin(r), (21)

and we obtain

α1 � 1.000029395,

α2 � − 0.0006356287,

α3 � − 0.994430288,

α4 � − 0.01984309509,

(22)

and hence, ten term RPS solution is as follows:

Φ(r) � r −
1
6
r
3

+ 0.00833358r
5

− 8.82818 × 10− 7
r
6

− 0.000197308r
7

− 4.9214 × 10− 7
r
8

−
1

362880
r
9
.

(23)

Results related to Test Problem 3 are shown in Table 3
and Figure 3.

Test Problem 4. Consider the following tenth-order linear
ODE [2]:

Φ(x)
(r) � − 8e

r
+Φ′′(r), (24)

with boundary conditions

Φ(0) � 1,

Φ′(0) � 0,

Φ′′(0) � − 1,

Φ′′′(0) � − 2,

Φ(iv)
(0) � − 3,

Φ(1) � 0,

Φ′(1) � − e,

Φ′′(1) � − 2e,

Φ′′′(1) � − 3e,

Φ(iv)
(1) � − 4e.

(25)

(e exact solution is as follows:

Φ(r) � (1 − r)e
r
, (26)

and we obtain

α1 � − 4.00000952,

α2 � − 4.999739,

α3 � − 6.00318249,

α4 � − 6.979722252,

α5 � − 8.056679,

(27)

and hence, up to twelve term RPS solution is as follows:

Φ(r) � r −
1
2
r
3

−
1
3
r
3

−
1
8
r
4

− 0.0333334r
5

− 0.00694408r
6

− 0.00119111r
7

− 0.000173108r
8

− 0.000022202r
9

−
1

403200
r
10

−
1

3991680
r
11

−
1

43545600
r
12

.

(28)

Table 2: Comparison of exact solution with RPSM and B-spline
solutions [34] in Test Problem 2.

r Exact
sol

RPSM
sol

E∗

RPSM
E∗

B-spline [34]
0.1 1.10517 1.10517 2.0 × 10− 12 1.7 × 10− 6

0.2 1.2214 1.2214 4.2 × 10− 11 5.9 × 10− 6

0.3 1.34986 1.34986 1.9 × 10− 10 1.0 × 10− 5

0.4 1.49182 1.49182 4.7 × 10− 10 1.5 × 10− 5

0.5 1.64872 1.64872 7.2 × 10− 10 9.8 × 10− 6

0.6 1.82212 1.82212 7.6 × 10− 10 3.4 × 10− 6

0.7 2.01375 2.01375 5.5 × 10− 10 1.5 × 10− 5

0.8 2.22554 2.22554 2.2 × 10− 10 1.7 × 10− 5

0.9 2.4596 2.4596 2.6 × 10− 11 1.1 × 10− 5

Exact Solution
RPS Solution

0.0

0.2

0.4

0.6

0.8

1.0

Φ
 (r

)

0.2 0.4 0.6 0.8 1.00.0
r

(a)

Absolute Error

0

5. × 10−11

1. × 10−10

1.5 × 10−10

2. × 10−10

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
r

(b)

Figure 1: Graphical analysis of Test Problem 1. (a) Comparison of exact and RPS solutions. (b) RPSM error.
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Table 3: Comparison of RPSM with B-spline [34] in Test Problem 3.

r Exact
sol

RPSM
sol

E∗

RPSM
E∗

B-spline [34]
0.1 0.0998334 0.0998334 1.6 × 10− 12 1.8 × 10− 7

0.2 0.198669 0.198669 3.4 × 10− 11 7.3 × 10− 7

0.3 0.29552 0.29552 1.6 × 10− 10 9.8 × 10− 7

0.4 0.389418 0.389418 3.8 × 10− 10 1.2 × 10− 6

0.5 0.479426 0.479426 5.8 × 10− 10 8.3 × 10− 7

0.6 0.564642 0.564642 6.2 × 10− 10 3.8 × 10− 6

0.7 0.644218 0.644218 4.4 × 10− 10 5.6 × 10− 6

0.8 0.717356 0.717356 1.7 × 10− 10 4.8 × 10− 6

0.9 0.783327 0.783327 2.0 × 10− 11 2.8 × 10− 6

Exact Solution
RPS Solution

0.0

0.5

1.0

1.5

2.0

2.5
Φ

 (r
)

0.2 0.4 0.6 0.8 1.00.0
r

(a)

Absolute Error

0

2. × 10−10

4. × 10−10

6. × 10−10

8. × 10−10

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
r

(b)

Figure 2: Graphical analysis of Test Problem 2. (a) Comparison of exact and RPS solutions. (b) RPSM error.

Exact Solution
RPS Solution

0.0

0.2

0.4

0.6

0.8

Φ
 (r

)

0.2 0.4 0.6 0.8 1.00.0
r

(a)

Absolute Error

0

1. × 10−10

2. × 10−10

3. × 10−10

4. × 10−10

5. × 10−10

6. × 10−10

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
r

(b)

Figure 3: Graphical analysis of Test Problem 3. (a) Comparison of exact and RPS solutions. (b) RPSM error.

Mathematical Problems in Engineering 5



Results related to Test Problem 4 are shown in Table 4
and Figure 4.

Test Problem 5. Consider the following tenth-order non-
linear ODE [8]:

Φ(x)
(r) � e

− rΦ2(r), (29)

with boundary conditions

Φ(0) � 1,

Φ′(0) � 1,

Φ′′(0) � 1,

Φ′′′(0) � 1,

Φ(iv)
(0) � 1,

Φ(1) � e,

Φ′(1) � e,

Φ′′(1) � e,

Φ′′′(1) � e,

Φ(iv)
(1) � e.

(30)

(e exact solution is as follows:

Φ(r) � e
r
. (31)

Here, we obtain

α1 � 1.00000078,

α2 � 0.999978,

α3 � 1.00026189,

α4 � 0.99833070,

α5 � 1.004668,

(32)

and hence, up to twelve term RPS solution is as follows:

Φ(r) � 1+1.r +
1
2
r
2

+
1
6
r
3

+
1
24

r
4

+0.00833334r
5

+0.00138886r
6

+0.000198465r
7

+0.0000247602r
8

+2.7686×10− 6
r
9

+
1

3628800
r
10

+
1

39916800
r
11

+
1

479001600
r
12

.

(33)

Table 4: Comparison of RPSM with HPM [2] and MVIM [33] for Test Problem 4.

r Exact
sol

RPSM
sol

E∗

RPSM
E∗

HPM [2]
E∗

MVIM [33]
0 1 1 0 0 0
0.1 0.994654 0.994654 4.9 × 10− 13 0 0
0.2 0.977122 0.977122 9.1 × 10− 12 0 0
0.3 0.944901 0.944901 3.7 × 10− 11 5.0 × 10− 10 5.0 × 10− 10

0.4 0.895095 0.895095 7.6 × 10− 11 6.1 × 10− 9 6.1 × 10− 9

0.5 0.824361 0.824361 9.7 × 10− 11 4.4 × 10− 8 4.4 × 10− 8

0.6 0.728848 0.728848 8.3 × 10− 11 2.2 × 10− 7 2.2 × 10− 7

0.7 0.604126 0.604126 4.5 × 10− 11 9.0 × 10− 7 9.0 × 10− 7

0.8 0.445108 0.445108 1.2 × 10− 11 3.0 × 10− 6 3.0 × 10− 6

0.9 0.24596 0.24596 7.2 × 10− 13 8.6 × 10− 6 8.6 × 10− 6

1 0. 2.1 × 10− 17 7.6 × 10− 17 2.2 × 10− 5 2.2 × 10− 5

Exact Solution
RPS Solution

0.2 0.4 0.6 0.8 1.00.0
r

0.0

0.2

0.4

0.6

0.8

1.0

Φ
 (r

)

(a)

0

2. × 10−11

4. × 10−11

6. × 10−11

8. × 10−11

1. × 10−10

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
r

Absolute Error

(b)

Figure 4: Graphical analysis of Test Problem 4. (a) Comparison of exact and RPS solutions. (b) RPSM error.
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Results related to Test Problem 5 are shown in Table 5
and Figure 5.

Test Problem 6. Consider the following eleventh-order
linear ODE [11]:

Φ(xi)
(r) � − 22(5 + r)e

r
+Φ(r), 0≤ r≤ 1. (34)

with boundary conditions

Φ(0) � 1,

Φ′(0) � 1,

Φ′′(0) � − 1,

Φ′′′(0) � − 5,

Φ(iv)
(0) � − 11,

Φ(v)
(0) � − 19

Φ(1) � 0,

Φ′(1) � − 2e,

Φ′′(1) � − 6e,

Φ′′′(1) � − 12e,

Φ(iv)
(1) � − 20e.

(35)

(e exact solution is as follows:

Φ(r) � 1 − r
2

 e
r
. (36)

After applying RPSM and using the right boundary
conditions, optimal values of αi

′s are as follows:

α1 � − 29.000001164,

α2 � − 40.99996384,

α3 � − 55.00048755,

α4 � − 70.996663,

α5 � − 89.00971073,

(37)

and hence the series solution is as follows:

Φ(r) � 1 −
1
2!

r
2

−
5
3!

r
3

−
11
4!

−
19
5!

r
5

− 0.0402778r
6

− 0.00813491r
7

− 0.0013641r
8

− 0.000195648r
9

− 0.0000245287r
10

−
109

39916800
r
11

−
131

479001600
r
12

−
155

6227020800
r
13

−
181

87178291200
r
14

− · · · .

(38)

Results related to Test Problem 6 are shown in Table 6
and Figure 6.

Test Problem 7. Consider the following twelfth-order linear
ODE [35]:

Φ(xii)
(r) + rΦ(r) + 120 + 23r + r

3
 e

r
� 0, (39)

with boundary conditions

Φ(0) � 0,

Φ′(0) � 1,

Φ′′(0) � 0,

Φ′′′(0) � − 3,

Φ(iv)
(0) � − 8,

Φ(v)
(0) � − 15,

Φ(1) � 0,

Φ′(1) � − e,

Φ′′(1) � − 4e,

Φ′′′(1) � − 9e,

Φ(iv)
(1) � − 16e,

Φ(v)
(1) � − 25e.

(40)

(e exact solution is as follows:

Table 5: Comparison of RPSM with HPM [2], MVIM [33], and MDM [8] in Test Problem 5.

r Exact
sol

RPSM
sol

E∗

RPSM
E∗

HPM [2]
E∗

MVIM [33]
E∗

MDM [8]
0 1 1 0 0 0 0
0.1 1.10517 1.10517 4.0 × 10− 14 − 1.4 × 10− 6 − 1.4 × 10− 6 − 1.4 × 10− 6

0.2 1.2214 1.2214 7.4 × 10− 13 − 2.6 × 10− 6 − 2.6 × 10− 6 − 2.6 × 10− 6

0.3 1.34986 1.34986 3.0 × 10− 12 − 3.7 × 10− 6 − 3.7 × 10− 6 − 3.7 × 10− 6

0.4 1.49182 1.49182 6.2 × 10− 12 − 4.3 × 10− 6 − 4.3 × 10− 6 − 4.3 × 10− 6

0.5 1.64872 1.64872 8.0 × 10− 12 − 4.5 × 10− 6 − 4.5 × 10− 6 − 4.5 × 10− 6

0.6 1.82212 1.82212 6.9 × 10− 12 − 4.3 × 10− 6 − 4.3 × 10− 6 − 4.3 × 10− 6

0.7 2.01375 2.01375 3.7 × 10− 12 − 3.7 × 10− 6 − 3.7 × 10− 6 − 3.7 × 10− 6

0.8 2.22554 2.22554 1.0 × 10− 12 − 2.6 × 10− 6 − 2.6 × 10− 6 − 2.6 × 10− 6

0.9 2.4596 2.4596 5.9 × 10− 14 − 2.6 × 10− 6 − 2.6 × 10− 6 − 2.6 × 10− 6

1 2.71828 2.71828 1.4 × 10− 16 2.0 × 10− 9 2.0 × 10− 9 2.0 × 10− 9
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Φ(r) � r(1 − r)e
r
. (41)

Using RPSM, optimal values of αi
′s are as follows:

α1 � − 24.00000000,

α2 � − 34.9999999989,

α3 � − 48.0000000141,

α4 � − 62.99999988556,

α5 � − 80.000000517,

α6 � − 98.99999896,

(42)

and hence, we obtain the following solution:

Φ(r) � r −
1
2
r
3

−
1
3
r
4

−
1
8
r
5

− 0.0333333r
6

− 0.00694444r
7

− 0.00119048r
8

− 0.000173611r
9

− 0.0000220459r
10

− 2.48016 × 10− 6
r
11

−
1

3991680
r
12

−
1

43545600
r
13

− · · · .

(43)

Results related to Test Problem 7 are shown in Table 7
and Figure 7.

Test Problem 8. Consider the following twelfth-order
nonlinear ODE [36]:

Φ(xii)
(r) �

1
2
e

− rΦ2(r), (44)

with

Φ′′(0) � 2,

Φ(0) � 2,

Φ(iv)
(0) � 2,

Φ(vi)
(0) � 2,

Φ(viii)
(0) � 2,

Φ(x)
(0) � 2
Φ(1) � 2e,

Φ′′(1) � 2e,

Φ(iv)
(1) � 2e,

Φ(vi)
(1) � 2e,

Φ(viii)
(1) � 2e,

Φ(x)
(1) � 2e.

(45)

(e exact solution is

Φ(r) � 2e
r
. (46)

After using RPSM, we obtain

α1 � 1.99999999,

α2 � 2.000000001,

α3 � 1.99999998,

α4 � 2.00000011,

α5 � 1.99999903,

α6 � 2.00000611,

(47)

Table 6: Comparison of RPSM and VIM in Test Problem 6.

r Exact
sol

RPSM
sol

E∗

RPSM
E∗

VIM [11]
0.0 1 1 0 0
0.1 1.09412 1.09412 8.8 × 10− 16 6.4 × 10− 15

0.2 1.17255 1.17255 3.8 × 10− 14 2.4 × 10− 13

0.3 1.22837 1.22837 2.3 × 10− 13 1.4 × 10− 12

0.4 1.25313 1.25313 6.5 × 10− 13 3.8 × 10− 12

0.5 1.23654 1.23654 1.0 × 10− 12 6.0 × 10− 12

0.6 1.16616 1.16616 1.1 × 10− 12 6.0 × 10− 12

0.7 1.02701 1.02701 7.3 × 10− 13 3.7 × 10− 12

0.8 0.801195 0.801195 2.3 × 10− 13 1.1 × 10− 12

0.9 0.467325 0.467325 1.6 × 10− 14 9.9 × 10− 14

1 0 − 1.3 × 10− 16 7.9 × 10− 17 6.3 × 10− 14

Exact Solution
RPS Solution

0.0

0.5

1.0

1.5

2.0

2.5
Φ

 (r
)

0.2 0.4 0.6 0.8 1.00.0
r

(a)

Absolute Error

0

2. × 10−12

4. × 10−12

6. × 10−12

8. × 10−12

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
r

(b)

Figure 5: Graphical analysis of Test Problem 5. (a) Comparison of exact and RPS solutions. (b) RPSM error.
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and hence, we obtain the following solution:

Φ(r) � 2 + 2.r + r
2

+ 0.333333r
3

+
1
12

r
4

+ 0.0166667r
5

+
1
360

r
6

+ 0.000396825r
7

+
1

20160
r
8

+ 5.51146 × 10− 6
r
9

+
1

1814400
r
10

+ 5.01044 × 10− 8
r
11

+
1

239500800
r
12

+ 3.21181 × 10− 10
r
13

+ · · · .

(48)

Results related to Test Problem 8 are shown in Table 8
and Figure 8.

Test Problem 9. Consider the following thirteenth-order
linear ODE [15]:

Φ(xiii)
(r) − Cos(r) + Sin(r) � 0, (49)

with boundary conditions

Φ(0) � 1,

Φ′(0) � 1,

Φ′′(0) � − 1,

Φ′′′(0) � − 1,

Φ(iv)
(0) � 1,

Φ(v)
(0) � 1,

Φ(vi)
(0) � − 1,

Φ(1) � Cos(1) + Sin(1),

Φ′(1) � Cos(1) − Sin(1),

Φ′′(1) � − Cos(1) − Sin(1),

Φ′′′(1) � − Cos(1) + Sin(1),

Φ(iv)
(1) � Cos(1) + Sin(1),

Φ(v)
(1) � Cos(r) − Sin(r).

(50)

(e exact solution is

Φ(r) � sin(r) + cos(r). (51)

Using the RPSM procedure, we obtaint

α1 � − 1.0000000005,

α2 � 1.000000019,

α3 � 0.99999968,

α4 � − 0.99999713,

α5 � − 1.00001432,

α6 � 1.0000315,

(52)

and hence, we obtain the following solution:

Table 7: Error comparison of RPSM and VIM in Test Problem 7.

r Exact
sol

RPSM
sol

E∗

RPSM
E∗

VIM [35]
0 0 0 0 0
0.1 0.0994654 0.0994654 1.3 × 10− 17 9.5 × 10− 13

0.2 0.195424 0.195424 1.2 × 10− 17 1.2 × 10− 13

0.3 0.28347 0.28347 2.9 × 10− 18 3.3 × 10− 13

0.4 0.358038 0.358038 2.6 × 10− 17 5.3 × 10− 13

0.5 0.41218 0.41218 5.0 × 10− 17 8.0 × 10− 13

0.6 0.437309 0.437309 4.4 × 10− 18 1.1 × 10− 12

0.7 0.422888 0.422888 3.1 × 10− 20 3.9 × 10− 13

0.8 0.356087 0.356087 1.2 × 10− 16 1.2 × 10− 13

0.9 0.221364 0.221364 6.5 × 10− 17 8.2 × 10− 13

1.0 0 2.7 × 10− 17 6.0 × 10− 17 3.2 × 10− 13

Exact Solution
RPS Solution

0.2 0.4 0.6 0.8 1.00.0
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Φ

 (r
)

(a)

0

2. × 10−13

4. × 10−13

6. × 10−13

8. × 10−13

1. × 10−12

1.2 × 10−12

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
r

Absolute Error

(b)

Figure 6: Graphical analysis of Test Problem 6. (a) Comparison of exact and RPS solutions. (b) RPSM error.
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Exact Solution
RPS Solution

0.0

0.1

0.2

0.3

0.4
Φ

 (r
)

0.2 0.4 0.6 0.8 1.00.0
r

(a)

0

2. × 10−17

4. × 10−17

6. × 10−17

8. × 10−17

1. × 10−16

1.2 × 10−16

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
r

Absolute Error

(b)

Figure 7: Graphical analysis of Test Problem 7. (a) Comparison of exact and RPS solutions. (b) RPSM error.

Table 8: Error comparison of RPSM and VIM in Test Problem 8.

r Exact
sol

RPSM
sol

E∗

RPSM
E∗

VIM [36]
0 2 2 0 0
0.1 2.21034 2.21034 1.1 × 10− 11 2.0 × 10− 4

0.2 2.44281 2.44281 2.2 × 10− 11 3.9 × 10− 4

0.3 2.69972 2.69972 3.0 × 10− 11 5.4 × 10− 4

0.4 2.98365 2.98365 3.6 × 10− 11 6.3 × 10− 4

0.5 3.29744 3.29744 3.8 × 10− 11 6.6 × 10− 4

0.6 3.64424 3.64424 3.6 × 10− 11 6.3 × 10− 4

0.7 4.02751 4.02751 3.0 × 10− 11 5.3 × 10− 4

0.8 4.45108 4.45108 2.2 × 10− 11 3.8 × 10− 4

0.9 4.91921 4.91921 1.1 × 10− 11 2.0 × 10− 4

1 5.43656 5.43656 3.4 × 10− 16 2.0 × 10− 4

Exact Solution
RPS Solution

0.2 0.4 0.6 0.8 1.00.0
r

0

1

2

3

4

5

Φ
 (r

)

(a)

0

1. × 10−11

2. × 10−11

3. × 10−11

4. × 10−11

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
r

Absolute Error

(b)

Figure 8: Graphical analysis of Test Problem 8. (a) Comparison of exact and RPS solutions. (b) RPSM error.
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Φ(r) � 1 + r −
1
2
r
2

−
1
6
r
3

+
1
24

r
4

+
1
120

r
5

−
1
720

r
6

− 0.000198413r
7

+ 0.0000248016r
8

+ 2.75573 × 10− 6
r
9

− 2.75572 × 10− 7
r
10

− 2.50525 × 10− 8
r
11

+ 2.08774 × 10− 9
r
12

+
1

6227020800
r
13

− · · · .

(53)

Results related to Test Problem 9 are shown in Table 9
and Figure 9.

Test Problem 10. Consider the following thirteenth-order
nonlinear ODE [15]:

Φ(xiii)
(r) � (Φ(r))

2
e

− r
, (54)

with boundary conditions

Φ(0) � 1,

Φ′(0) � 1,

Φ′′(0) � 1,

Φ′′′(0) � 1,

Φ(iv)
(0) � 1,

Φ(v)
(0) � 1,

Φ(vi)
(0) � 1,

Φ(1) � e,

Φ′(1) � e,

Φ′′(1) � e,

Φ′′′(1) � e,

Φ(iv)
(1) � e,

Φ(v)
(1) � e.

(55)

Table 9: Comparison of RPSM with DTM and VIM in Test Problem 9.

r Exact
sol

RPSM
sol

E∗

RPSM
E∗

DTM [14]
E∗

VIM [15]
0 1 1 0 0 0
0.1 1.09484 1.09484 0 2.2 × 10− 16 3.8 × 10− 15

0.2 1.17874 1.17874 2.2 × 10− 16 0 1.4 × 10− 13

0.3 1.25086 1.25086 0 2.2 × 10− 15 8.8 × 10− 13

0.4 1.31048 1.31048 2.2 × 10− 16 6.6 × 10− 15 2.3 × 10− 12

0.5 1.35701 1.35701 0 1.1 × 10− 14 3.8 × 10− 12

0.6 1.38998 1.38998 0 1.0 × 10− 14 5.1 × 10− 11

0.7 1.40906 1.40906 0 5.3 × 10− 15 1.5 × 10− 11

0.8 1.41406 1.41406 0 8.8 × 10− 16 8.9 × 10− 11

0.9 1.40494 1.40494 0 0 4.7 × 10− 10

1.0 1.38177 1.38177 4.4 × 10− 16 0 2.0 × 10− 9

Exact Solution
RPS Solution

1.0

1.1

1.2

1.3

1.4

Φ
 (r

)

0.2 0.4 0.6 0.8 1.00.0
r

(a)

Absolute Error

0

1. × 10−16

2. × 10−16

3. × 10−16

4. × 10−16
Er

ro
r

0.2 0.4 0.6 0.8 1.00.0
r

(b)

Figure 9: Graphical analysis of Test Problem 9. (a) Comparison of exact and RPS solutions. (b) RPSM error.
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(e exact solution is

Φ(r) � e
r
. (56)

After using RPSM, we obtain

α1 � 0.999999999,

α2 � 1.00000002,

α3 � 0.9999996,

α4 � 1.00000344,

α5 � 0.9999827,

α6 � 1.000037,

(57)

and hence, we obtain the following solution:

Φ13(r) � 1 + r +
1
2
r
2

+
1
6
r
3

+
1
24

r
4

+
1
120

r
5

+
1
720

r
6

+ 0.000198413r
7

+ 0.0000248016r
8

+ 2.75573 × 10− 6
r
9

− 2.75574 × 10− 7
r
10

+ 2.50517 × 10− 8
r
11

+ 2.08775 × 10− 9
r
12

+
1

6227020800
r
13

+ · · · .

(58)

Results related to Test Problem 10 are shown in Table 10
and Figure 10.

4. Results and Discussion

In this article, modification of the residual power series
method (RPSM) is tested for higher orders BVPs, and ob-
tained series solutions are compared with other available
results in the literature in a tabular form. First, RPSM is
applied to ninth-order linear BVP, and the results are nu-
merically compared with HPM, MVIM, and MDM in Ta-
ble 1. (e analysis of the table shows that RPSM is better
than the rest of the mentioned schemes. A graphical analysis
of Test Problem 1 is presented in Figure 1.(e exact and RPS
solutions are illustrated in Figure 1(a), and this plot shows
the validity of approximate solutions. Besides this, the ab-
solute error in Test Problem 1 using RPSM is given in
Figure 1(b). (e error plot indicates that the error is
bounded between (0, 2.2 × 10− 10).

Results related to ninth-order nonlinear BVPs (Test
Problems 2 and 3) are shown in Table [2, 3] and Figure [2, 3].
A numerical comparison of RPSM with B-spline results is
presented in Tables 2 and 3. (ese tables clearly show the
supremacy of RPSM in terms of accuracy. Error bounds in
Test Problems 2 and 3 are between (2.0 × 10− 12, 7.6 × 10− 10)

Table 10: Comparison of RPSM with DTM and VIM in Test Problem 10.

r Exact
sol

RPSMa
sol

E∗

RPSM
E∗

DTM [14]
E∗

VIM [15]
0 1 1 0 0 0
0.1 1.10517 1.10517 7.7 × 10− 17 4.4 × 10− 16 4.1 × 10− 14

0.2 1.2214 1.2214 7.6 × 10− 18 4.4 × 10− 16 2.6 × 10− 12

0.3 1.34986 1.34986 1.1 × 10− 19 2.4 × 10− 15 2.9 × 10− 11

0.4 1.49182 1.49182 1.7 × 10− 17 7.3 × 10− 15 1.6 × 10− 10

0.5 1.64872 1.64872 1.1 × 10− 16 1.2 × 10− 14 6.3 × 10− 10

0.6 1.82212 1.82212 9.3 × 10− 17 1.1 × 10− 14 1.8 × 10− 9

0.7 2.01375 2.01375 1.9 × 10− 16 5.7 × 10− 15 4.4 × 10− 9

0.8 2.22554 2.22554 3.1 × 10− 16 1.7 × 10− 15 9.2 × 10− 9

0.9 2.4596 2.4596 1.9 × 10− 16 8.8 × 10− 16 1.5 × 10− 8

1.0 2.71828 2.71828 6.4 × 10− 17 0. 2.0 × 10− 8

Exact Solution
RPS Solution

0.2 0.4 0.6 0.8 1.00.0
r

0.0

0.5

1.0

1.5

2.0

2.5

Φ
 (r

)

(a)

Absolute Error

0

5. × 10−17

1. × 10−16

1.5 × 10−16

2. × 10−16

2.5 × 10−16

3. × 10−16

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
r

(b)

Figure 10: Graphical analysis of Test Problem 10. (a) Comparison of exact and RPS solutions. (b) RPSM error.
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and (1.6 × 10− 12, 6.2 × 10− 10), respectively. Figures 2(a) and
3(a) present the comparison of exact and RPS solutions,
while Figures 2(b) and 3(b) show the absolute error in RPSM
solution.

Results related to Test Problem 4 (tenth-order linear
BVP) are shown in Table 4 and Figure 4. A numerical
comparison of RPSM with HPM and MVIM is presented in
Table 4, which clearly indicates that RPSM has better ac-
curacy. Error bounds in this problem are (0, 9.7 × 10− 11).
Figure 4(a) presents the comparison of exact and RPS so-
lutions, while Figure 4(b) shows the absolute error in Test
Problem 4.

(e numerical results of tenth-order nonlinear BVP
(Test Problem 5) are shown in Table 5 and Figure 5. A
numerical comparison of RPSM with HPM, MVIM, and
MDM is in Table 5. Error bounds in this problem are
(0, 8.0 × 10− 12). Figure 5(a) presents the comparison of
exact and RPS solutions, while Figure 5(b) shows the ab-
solute error in Test Problem 5.

A numerical analysis of eleventh-order linear BVP (Test
Problem 6) is shown in Table 6 and Figure 6. Results of
RPSM are compared with VIM numerically in Table 6.
Error bounds in this problem are (0, 1.1 × 10− 12).
Figure 6(a) shows the comparison of exact and RPS so-
lutions, while Figure 6(b) presents the absolute error in Test
Problem 6.

Numerical analysis of twelfth-order linear BVP (Test
Problem 7) is shown in Table 7 and Figure 7. RPSM results
are compared with VIM numerically in Table 7. Error
bounds in this problem are (0, 1.2 × 10− 16). Figure 7(a)
shows the comparison of exact and RPS solutions and
hence confirms the validity of RPS solution. Figure 7(b)
presents the absolute error in Test Problem 7.

Analysis of twelfth-order nonlinear BVP (Test Problem
8) is shown in Table 8 and Figure 8. Here, RPSM and VIM
results are compared numerically in Table 8. Error bounds in
this case are (0, 1.23.8 × 10− 11). Figure 8(a) shows the
comparison of exact and RPS solutions and hence confirms
the validity of the obtained approximate solution.
Figure 8(b) illustrates the absolute error in Test Problem 8.

Results related to Test Problem 9 (thirteenth-order linear
BVP) are shown in Table 9 and Figure 9. A numerical
comparison of RPSM with DTM and VIM is presented in
Table 9. Analysis of the table shows the dominance of RPSM
over the other mentioned schemes. Error bounds in this
problem are (0, 4.4 × 10− 16). Figure 9(a) presents the
comparison of exact and RPS solutions, while Figure 9(b)
shows the absolute error in Test Problem 9.

Analysis of thirteenth-order nonlinear BVP (Test
Problem 10) is shown in Table 10 and Figure 10. Here, RPSM
results are compared with DTM and VIM numerically in
Table 10. Error bounds in this case are (0, 3.1 × 10− 16).
Figure 10(a) shows the comparison of exact and RPS so-
lutions and hence confirms the validity of obtained ap-
proximate solutions. Figure 10(b) illustrates the absolute
error in Test Problem 10.

Numerical and graphical analyses indicate that RPSM is
better in terms of accuracy than other mentioned tech-
niques. Hence, RPSM is applicable to different classes of

BVPs without linearization, discretization, and perturbation
in practical situations.

5. Conclusion

In this article, an extension of RPSM is proposed for BVPs.
(is algorithm is directly applied to different linear and
nonlinear standard problems without linearization, dis-
cretization, and perturbation. Numerical and graphical
analyses reveal that RPSM is an efficient and effective
technique as compared to other mentioned schemes (HPM,
VIM, DTM, MVIM, MDM, and B-spline). Also, RPSM
provides fast convergent series solutions without being af-
fected by round-off errors and hence can be utilized for more
complex problems in different areas of science and
engineering.

Data Availability

All the data are available in the manuscript.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

References

[1] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Sta-
bility, DOVER PUBN INC, New York, NY, USA, February
1981.

[2] Tauseef and Yildirim, “Solution of tenth and ninth-order
boundary value problems by homotopy perturbation
method,” Journal of the Korean Society for Industrial and
Applied Mathematics, vol. 14, 2010.

[3] Al-S. Noor and Mohyud-Din, “A Reliable Algorithm for
Solving Tenth-Order Boundaryvalue Problems,” Applied
Mathematics and Information Sciences, vol. 6, 2012.

[4] T. Abbas, S. Rehman, R. A. Shah, M. Idrees, and M. Qayyum,
“Analysis of MHD carreau fluid flow over a stretching per-
meable sheet with variable viscosity and thermal conductiv-
ity,” Physica A: Statistical Mechanics and Its Applications,
vol. 551, Article ID 124225, aug 2020.

[5] F. Ismail, M. Qayyum, I. Ullah, S. Inayat Ali Shah, M. Mahtab
Alam, and A. Aziz, “Fractional analysis of thin-film flow in the
presence of thermal conductivity and variable viscosity,”
Waves in Random and Complex Media, vol. 2022, Article ID
2063985, 19 pages, 2022.

[6] I. Ullah, M. T. Rahim, H. Khan, and M. Qayyum, “Homotopy
analysis solution for magnetohydrodynamic squeezing flow in
porous medium,” Advances in Mathematical Physics,
vol. 20169 pages, Article ID 3541512, 2016.

[7] Ji-H. He, “Homotopy perturbation method for solving
boundary value problems,” Physics Letters A, vol. 350, no. 1-2,
pp. 87-88, jan 2006.

[8] A.-M. Wazwaz, “Approximate solutions to boundary value
problems of higher order by the modified decomposition
method,” Computers & Mathematics with Applications,
vol. 40, no. 6-7, pp. 679–691, sep 2000.

[9] A. M. Wazwaz, “Adomian decomposition method for a re-
liable treatment of the emden–fowler equation,” Applied
Mathematics and Computation, vol. 161, no. 2, pp. 543–560,
feb 2005.

Mathematical Problems in Engineering 13



[10] M. Qayyum, H. Khan, and O. Khan, “A new and reliable
modification of homotopy perturbation method,” Journal of
Mathematics, vol. 48, no. 2, pp. 81–90, 2016.

[11] A. Siddiqi and I. Zulfiqar, “Solution of Eleventh Order
Boundary Value Problems Using Variational Iteration
Technique,” European Journal of Scientific Research, vol. 30,
2009.

[12] M. A. Noor and S. T. Mohyud-Din, “Variational iteration
method for solving twelfth-order boundary-value problems
using he’s polynomials,” Computational Mathematics and
Modeling, vol. 21, no. 2, pp. 239–251, apr 2010.

[13] A. Boutayeb and E. H. Twizell, “Finite-difference methods for
twelfth-order,” Journal of Computational and Applied
Mathematics, vol. 35, no. 1-3, pp. 133–138, jun 1991.

[14] I. F. T. I. K. H. A. R. Hamood Ur Rehman and
Y. O. U. N. I. S. Muhammad, “Solution of thirteenth order
boundary value problems by differential transformation
method,” Asian Journal Of Mathematics And Applications,
vol. 2014, p. 11, Article ID ama0114, 2014.

[15] T. A. Adeosun, O. J. Fenuga, S. O. Adelana, A. M. John,
O. Olalekan, and K. B. Alao, “Variational iteration method
solutions for certain thirteenth order ordinary differential
equations,” Applied Mathematics, vol. 04, no. 10,
pp. 1405–1411, 2013.

[16] J. Ali, S. Islam, H. Khan, and I. A. S. Syed, “(e optimal
homotopy asymptotic method for the solution of higher-
order boundary value problems in finite domains,” Abstract
and Applied Analysis, vol. 201214 pages, Article ID 401217,
2012.

[17] M. Qayyum and I. Oscar, “Least square homotopy pertur-
bation method for ordinary differential equations,” Journal of
Mathematics, vol. 2021, Article ID 7059194, 16 pages, oct
2021.

[18] Z. Sabir, D. Baleanu, M. Shoaib, and M. A. Z. Raja, “Design of
stochastic numerical solver for the solution of singular three-
point second-order boundary value problems,” Neural
Computing & Applications, vol. 33, no. 7, pp. 2427–2443, jul
2020.

[19] S. U. Arifeen, S. Haq, A. Ghafoor, A. Ullah, P. Kumam, and
P. Chaipanya, “Numerical solutions of higher order boundary
value problems via wavelet approach,” Advances in Difference
Equations, vol. 2021, no. 1, p. 347, Article ID 3472021, 2021.

[20] M. Umar, F. Amin, H. A. Wahab, and D. Baleanu, “Unsu-
pervised constrained neural network modeling of boundary
value corneal model for eye surgery,” Applied Soft Computing,
vol. 85, Article ID 105826, dec 2019.

[21] M. Qayyum, H. Khan, and O. Khan, “Slip analysis at fluid-
solid interface in MHD squeezing flow of casson fluid through
porous medium,” Results in Physics, vol. 7, pp. 732–750, 2017.

[22] S. Haq and M. Hussain, “Selection of shape parameter in
radial basis functions for solution of time-fractional black-
–scholes models,” Applied Mathematics and Computation,
vol. 335, pp. 248–263, oct 2018.

[23] O. Abu Arqub, Z. Abo-Hammour, R. Al-Badarneh, and
S. Momani, “A reliable analytical method for solving higher-
order initial value problems,” Discrete Dynamics in Nature
and Society, vol. 2013, Article ID 673829, 12 pages, 2013.

[24] M. H. Al-Smadi, “Solving Initial Value Problems by Residual
Power Series Method,” Beoretical Mathematics and Appli-
cations, vol. 3, no. 1, pp. 199–210, 2013.

[25] V. P. Dubey, R. Kumar, D. Kumar, I. Khan, and J. Singh, “An
efficient computational scheme for nonlinear time fractional
systems of partial differential equations arising in physical

sciences,” Advances in Difference Equations, vol. 2020, no. 1,
p. 46, Article ID 462020, 2020.

[26] A. Kumar and S. Kumar, “Residual power series method for
fractional burger types equations,” Nonlinear Engineering,
vol. 5, no. 4, jan 2016.

[27] B. A. Mahmood and M. A. Yousif, “A residual power series
technique for solving boussinesq–burgers equations,” Cogent
Mathematics, vol. 4, no. 1, Article ID 1279398, jan 2017.

[28] Dr. Sunil Kumar Kumar and S.-P. Yan, “Residual Power Series
Method for Fractional Diffusion Equations,” Fundamenta
Informaticae, vol. 151, 2017.

[29] O. Abu Arqub, A. El-Ajou, A. S. Bataineh, and I. Hashim, “A
representation of the exact solution of generalized lane-
emden equations using a new analytical method,” Abstract
and Applied Analysis, vol. 201310 pages, Article ID 378593,
2013.

[30] M. Gul, H. Khan, and A. Ali, “(e solution of fifth and sixth
order linear and non linear boundary value problems by the
improved residual power series method,” Journal of Mathe-
matical Analysis and Modeling, vol. 3, no. 1, pp. 1–14, mar
2022.

[31] M. Al Jazazi, “Numerical Method for Solving Second-Order
Fuzzy Boundary Value Problems by Using the Rpsm,” In-
ternational Mathematical Forum, vol. 11, 2016.

[32] S. Hasan, M. Al-Smadi, A. Freihet, and S. Momani, “Two
computational approaches for solving a fractional obstacle
system in hilbert space,” Advances in Difference Equations,
vol. 2019, no. 1, p. 55, Article ID 552019, feb 2019.

[33] Tauseef and Yildirim, “Solutions of tenth and ninth-order
boundary value problems by modified variational iteration
method,” Applications and Applied Mathematics, vol. 5, no. 1,
2010.

[34] K. K. Viswanadham and S. M. Reddy, “Numerical solution of
ninth order boundary value problems by petrov-galerkin
method with quintic b-splines as basis functions and septic
b-splines as weight functions,” Procedia Engineering, vol. 127,
pp. 1227–1234, 2015.

[35] A. S. V. Ravi Kanth and K. Aruna, “Variational iteration
method for twelfth-order boundary-value problems,” Com-
puters & Mathematics with Applications, vol. 58, no. 11-12,
pp. 2360–2364, dec 2009.

[36] M. A. Noor and S. T. Mohyud-Din, “Variational iteration
method for solving higher-order nonlinear boundary value
problems using he’s polynomials,” International Journal of
Nonlinear Sciences and Numerical Stimulation, vol. 9, no. 2,
jan 2008.

14 Mathematical Problems in Engineering


