Research Article

Exact Solutions of Three-Dimensional Max-Type System of Difference Equations

Abdul Khaliq (1), Stephen Sadiq (2), Abdul Qadeer Khan (3), and Tarek F. Ibrahim (4)

1 Department of Mathematics, Riphah International University, Lahore, Pakistan
2 Department of Mathematics, Minhaj University Lahore, Lahore, Pakistan
3 Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
4 Department of Mathematics, Faculty of Science, King Khalid University, Abha, Saudi Arabia

Correspondence should be addressed to Abdul Qadeer Khan; abdulqadeerkhan1@gmail.com

Received 28 January 2022; Revised 24 April 2022; Accepted 12 May 2022; Published 13 June 2022

Academic Editor: Thanin Sitthiwirattham

Copyright © 2022 Abdul Khaliq et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we deal with the form and the periodicity of the solutions of the max-type system of difference equations

\[u_{n+1} = \max\{A_n/v_n - 1, u_n - 1\}, \quad v_{n+1} = \max\{B_n/w_{n-1}, v_n - 1\}, \quad w_{n+1} = \max\{C_n/u_{n-1}, w_{n-1}\} \]

where the initial conditions \(u_0, v_0, w_0 \in (0, \infty) \) and \((A_n)_{n \in \mathbb{N}_0}, (B_n)_{n \in \mathbb{N}_0}, (C_n)_{n \in \mathbb{N}_0} \) are positive two-periodic sequences.

1. Introduction

Difference equations and systems which do not stem from the differential ones have attracted some attention in the last few decades (see, e.g., [1–26]). Some of the systems that are of interest are symmetric or those retrieved from symmetric equations stemming from, for example, certain automatic control theory (see [27]). In 2020, Balibrea et al. [7] obtained in an elegant way the general solution of the following max-type system of difference equations:

\[x_{n+1} = \max\left\{A_n, B_n \right\}, \quad n \in \mathbb{N}_0, \]

where \(A_n \) and \(B_n \) are periodic parameters. In 2020, Balibrea et al. [7] obtained in an elegant way the general solution of the following max-type system of difference equations:

\[x_n = \max\left\{A_{n-s}x_{n-s}^{y_{n-s}}, B_{n-s}y_{n-s}\right\}, y_n = \max\left\{x_{n-t}^{y_{n-t}}, B_ny_{n-t}\right\}, n \in \mathbb{N}_0, \]

where \(A_n, B_n \in (0, +\infty) \) and \(d = \max\{t, s\} \).

In [8], Cunningham et al. evaluated the solution of the following max-type difference equation with period 2:

\[x_n = \max\left\{A_{n-2}x_{n-2}^{y_{n-2}}, B_ny_{n-2}\right\}, n \in \mathbb{N}_0, \]

where \(A_n, B_n \in (0, +\infty) \) and \(d = \max\{t, s\} \).

In [3], Berenhaut et al. explained the boundedness nature of positive solutions of the following max-type difference equation system:

\[x_{n+1} = \max\left\{A_n, B_n \right\}, \quad n \in \mathbb{N}_0, \]

In the beginning, on the study of these equations, experts have been focused on the investigation of the behavior of some particular cases.
In 2015, Grove et al. [13] obtained the solution of the following max-type difference equation system:

\[x_{n+1} = \max \left\{ \frac{1}{x_n}, A_n x_n \right\}, \quad n \in N_0, \]

\[y_{n+1} = \max \left\{ \frac{1}{y_n}, 1, A_n y_n \right\}, \quad n \in N_0, \]

\[z_{n+1} = \max \left\{ \frac{1}{z_n}, B_n z_n \right\}, \quad n \in N_0, \]

where \(N_0 = N \cup \{0\} \). The parameter \(A \) is positive real number.

In [15], Su et al. obtained the solution of the following max-type difference equation system with a period 3 parameter:

\[x_{n+1} = \max \left\{ \frac{1}{x_n}, A_n, B_n \right\}, \quad n \in N_0, \]

where \(A_n \) and \(B_n \) are periodic parameters.

Motivated by the above study, our purpose in this paper is to evaluate the eventual periodicity of the following max-type 3-D system of difference equations:

\[u_{n+1} = \max \left\{ \frac{1}{u_{n-1}}, A_n u_n \right\}, \quad n \in N_0, \]

\[v_{n+1} = \max \left\{ \frac{1}{v_{n-1}}, B_n v_n \right\}, \quad n \in N_0, \]

\[w_{n+1} = \max \left\{ \frac{1}{w_{n-1}}, C_n w_n \right\}, \quad n \in N_0, \]

where \(n \in N_0, N_0 = N \cup \{0\}, (A_n)_n \in N_0, (B_n)_n \in N_0, \) and \((C_n)_n \in N_0 \) are positive periodic sequences and initial conditions \(u_0, u_{-1}, v_0, v_{-1}, w_0, w_{-1} \in (0, +\infty) \).

Theorem 1. Suppose that \((u_n, v_n, w_n)\) is a solution of system (1)–(3) such that \(A_0/v_{-1} > u_{-1}, B_0/w_{-1} > v_{-1}, \) and \(C_0/u_{-1} > w_{-1} \). Then, the following statements hold:

1. If \(A_1/v_0 \geq u_0, B_1/w_0 \geq v_0, \) and \(w_0 \geq C_1/u_0 \), then

\[
\begin{align*}
u_{2n+1} &= \frac{A_0}{v_{-1}} v_{2n+1}, \\
v_{2n+1} &= \frac{B_0}{w_{-1}} w_{2n+1}, \\
w_{2n+1} &= \frac{C_0}{u_{-1}} u_{2n+1},
\end{align*}
\]

2. If \(A_1/v_0 \geq u_0, B_1/w_0 \geq v_0, \) and \(w_0 \geq C_1/u_0 \), then

\[
\begin{align*}
u_{2n+1} &= \frac{A_0}{v_{-1}} v_{2n+1}, \\
v_{2n+1} &= \frac{B_0}{w_{-1}} w_{2n+1}, \\
w_{2n+1} &= \frac{C_0}{u_{-1}} u_{2n+1},
\end{align*}
\]

3. If \(A_1/v_0 \geq u_0, B_1/w_0 \geq v_0, \) and \(w_0 \geq C_1/u_0 \), then

\[
\begin{align*}
u_{2n+1} &= \frac{A_0}{v_{-1}} v_{2n+1}, \\
v_{2n+1} &= \frac{B_0}{w_{-1}} w_{2n+1}, \\
w_{2n+1} &= \frac{C_0}{u_{-1}} u_{2n+1},
\end{align*}
\]

Proof. (1) From the following conditions:

\[
\begin{align*}
A_0/v_{-1} &\geq u_{-1}, \quad B_0/w_{-1} \geq v_{-1}, \quad C_0/u_{-1} \geq w_{-1},
\end{align*}
\]

we have

\[
\begin{align*}
\frac{A_0}{v_{-1}} v_{2n+1} &\geq u_0, \\
\frac{B_0}{w_{-1}} w_{2n+1} &\geq v_0, \\
\frac{C_0}{u_{-1}} u_{2n+1} &\geq w_0.
\end{align*}
\]
\(u_1 = \max \left\{ \frac{A_0}{v_{-1}}, u_{-1} \right\}, \)
\(= \frac{A_0}{v_{-1}}, \)
\(= \frac{A_0}{v_{-1}}, \)
\(v_1 = \max \left\{ \frac{B_0}{w_{-1}}, v_{-1} \right\}, \)
\(= \frac{B_0}{w_{-1}}, \)
\(= \frac{B_0}{w_{-1}}, \)
\(w_1 = \max \left\{ \frac{C_0}{u_{-1}}, w_{-1} \right\}, \)
\(= \frac{C_0}{u_{-1}}, \)
\(= \frac{C_0}{u_{-1}}, \)
\(u_2 = \max \left\{ \frac{A_0}{v_1}, u_{-1} \right\}, \)
\(= \frac{A_0}{v_1}, \)
\(= \frac{A_0}{v_1}, \)
\(v_2 = \max \left\{ \frac{B_0}{w_1}, v_{-1} \right\}, \)
\(= \frac{B_0}{w_1}, \)
\(= \frac{B_0}{w_1}, \)
\(w_2 = \max \left\{ \frac{C_0}{u_1}, w_{-1} \right\}, \)
\(= \frac{C_0}{u_1}, \)
\(= \frac{C_0}{u_1}, \)
\[u_2 = \max \left\{ \frac{A_1}{v_0}, u_0 \right\}, \]
\(= u_0, \)
\(= u_0, \)
\(v_2 = \max \left\{ \frac{B_1}{w_0}, v_0 \right\}, \]
\(= v_0, \)
\(= v_0, \)
\(w_2 = \max \left\{ \frac{C_1}{u_0}, w_0 \right\}, \]
\(= w_0, \)
\(= w_0, \)
\[u_4 = \max \left\{ \frac{A_1}{v_2}, u_2 \right\}, \]
\(= \frac{A_1}{v_2}, \)
\(= \frac{A_1}{v_2}, \)
\(v_4 = \max \left\{ \frac{B_1}{w_2}, v_2 \right\}, \]
\(= v_2, \)
\(= v_2, \)
\(w_4 = \max \left\{ \frac{C_1}{u_2}, w_2 \right\}, \]
\(= w_2, \)
\(= w_2, \)
\(\text{By induction, we obtained formula as follows:} \)
\(u_{2n+1} = \frac{A_0}{v_{2n+1}}, \)
\(= \frac{B_0}{w_{2n+1}}, \)
\(= \frac{C_0}{u_{2n+1}},\)
\[u_n = u_0, v_2, \]
\(= v_0, w_2, \)
\(= w_0, n \in \mathbb{N}_0, \)
\(\text{which are formulas of odd terms in (4)–(6). Hence, it remains only to prove the formulas for even terms in (4)–(6).} \)
\(\text{Similarly, we can find for even terms.} \)
\[u_2 = \max \left\{ \frac{A_1}{v_0}, u_0 \right\}, \]
\(= u_0, \)
\(= u_0, \)
\(v_2 = \max \left\{ \frac{B_1}{w_0}, v_0 \right\}, \]
\(= v_0, \)
\(= v_0, \)
\(w_2 = \max \left\{ \frac{C_1}{u_0}, w_0 \right\}, \]
\(= w_0, \)
\(= w_0, \)
\[u_4 = \max \left\{ \frac{A_1}{v_2}, u_2 \right\}, \]
\(= \frac{A_1}{v_2}, \)
\(= \frac{A_1}{v_2}, \)
\(v_4 = \max \left\{ \frac{B_1}{w_2}, v_2 \right\}, \]
\(= v_2, \)
\(= v_2, \)
\(w_4 = \max \left\{ \frac{C_1}{u_2}, w_2 \right\}, \]
\(= w_2, \)
\(= w_2, \)
\(\text{By induction,} \)
\(u_{2n} = u_0, v_2, \)
\(= v_0, w_2, \)
\(= w_0, n \in \mathbb{N}_0, \)
\[(2) \text{Because } u_0 \geq A_1/v_0, v_0 \geq B_1/w_0, \text{ and } w_0 \leq C_1/u_0, \text{ we have} \]
\frac{1}{w_0} \geq \frac{u_0}{C_1} \quad (18)

Then,
\begin{align*}
v_0 & \geq \frac{B_1}{w_0} \geq \frac{B_1 u_0}{C_1} \\
u_2 &= \max \left\{ \frac{A_1}{v_0}, u_0 \right\}, \\
&= u_0, \\
v_2 &= \max \left\{ \frac{B_1}{w_0}, v_0 \right\}, \\
&= v_0, \\
w_2 &= \max \left\{ \frac{C_1}{u_0}, w_0 \right\}, \\
&= \frac{C_1}{u_0}
\end{align*}

(19)

\begin{align*}
u_4 &= \max \left\{ \frac{A_1}{v_0}, u_2 \right\}, \\
&= \max \left\{ \frac{A_1}{v_0}, u_0 \right\}, \\
&= u_0, \\
v_4 &= \max \left\{ \frac{B_1}{w_2}, v_2 \right\}, \\
&= \max \left\{ \frac{B_1}{u_0}, v_0 \right\}, \\
&= v_0, \\
w_4 &= \max \left\{ \frac{C_1}{u_2}, w_2 \right\}, \\
&= \max \left\{ \frac{C_1}{u_0}, w_0 \right\}, \\
&= \frac{C_1}{u_0}
\end{align*}

(20)

\begin{align*}
u_6 &= \max \left\{ \frac{A_1}{v_0}, u_4 \right\}, \\
&= \max \left\{ \frac{A_1}{v_0}, u_0 \right\}, \\
v_6 &= \max \left\{ \frac{B_1}{w_4}, v_4 \right\}, \\
&= \max \left\{ \frac{B_1 u_0}{C_1}, v_0 \right\}, \\
w_6 &= \max \left\{ \frac{C_1}{u_4}, w_4 \right\}, \\
&= \max \left\{ \frac{C_1}{u_0}, w_0 \right\} = \frac{C_1}{u_0}
\end{align*}

By induction, we obtain formulas for even terms as given in (11).

(3) Because \(u_0 \geq A_1/v_0, v_0 \leq B_1/w_0\), and \(w_0 \geq C_1/u_0\), then
\begin{align*}
\frac{1}{v_0} & \geq \frac{w_0}{B_1}, \\
\frac{u_0}{v_0} & \geq \frac{A_1}{B_1}, \\
u_0 & \geq A_1 \times \frac{w_0}{B_1}, \\
& \geq A_1 \frac{w_0}{B_1}, \\
u_2 & \geq \frac{A_1}{v_0}, \\
& \leq \frac{A_1}{v_0}, \\
u_0 & \geq A_1 \frac{w_0}{B_1}, \\
v_2 & \leq \frac{B_1}{w_0}, \\
w_2 & \geq \frac{C_1}{u_0}, \\
& \leq \frac{C_1}{u_0}, \\
w_0 & \geq C_1/u_0, \\
u_6 & \geq \frac{A_1}{v_0}, \\
& \leq \frac{A_1}{v_0}, \\
w_6 & = \frac{A_1}{v_0}, \\
& = \frac{A_1}{v_0}
\end{align*}

So, we have
\[
\begin{align*}
 u_4 &= \max \left\{ \frac{A_1}{v_2}, u_2 \right\}, \\
 &= \max \left\{ \frac{A_1}{B_1} w_0, u_0 \right\}, \\
 &= u_0, \\
 v_4 &= \max \left\{ \frac{B_1}{u_2}, v_2 \right\}, \\
 &= \max \left\{ \frac{B_1}{u_0} \frac{B_1}{v_0} \right\}, \\
 &= \frac{B_1}{w_0}, \\
 w_4 &= \max \left\{ \frac{C_1}{u_2}, w_2 \right\}, \\
 &= \max \left\{ \frac{C_1}{u_0} w_0 \right\}, \\
 &= w_0, \\
 u_6 &= \max \left\{ \frac{A_1}{v_4}, u_4 \right\}, \\
 &= \max \left\{ \frac{A_1}{B_1} w_0, u_0 \right\}, \\
 &= u_0, \\
 v_6 &= \max \left\{ \frac{B_1}{w_4}, v_4 \right\}, \\
 &= \max \left\{ \frac{B_1}{w_0} \frac{B_1}{v_0} \right\}, \\
 &= \frac{B_1}{w_0}, \\
 w_6 &= \max \left\{ \frac{C_1}{u_4}, w_4 \right\}, \\
 &= \max \left\{ \frac{C_1}{u_0} w_0 \right\}, \\
 &= w_0.
\end{align*}
\]

By induction, we obtain formulas as given in (26):

\[
\begin{align*}
 u_{2n+2} &= u_0, v_{2n+2}, \\
 &= \frac{B_1}{w_0}, w_{2n}, \\
 &= w_0.
\end{align*}
\]

The proof is completed. \[\square\]

Theorem 2. Suppose that \((u_n, v_n, w_n)\) is a solution of systems (1)–(3) such that \(A_0/v_{-1} \leq u_{-1}, B_0/w_{-1} \leq v_{-1}, \) and \(C_0/u_{-1} \leq w_{-1}\). Then, the following statements hold:

1. If \(A_1/v_0 \leq u_0, B_1/w_0 \leq v_0, \) and \(w_0 \geq C_1/u_0\), then

\[
\begin{align*}
 u_{2n+1} &= u_{-1}, v_{2n+1}, \\
 &= v_{-1}, w_{2n+1}, \\
 &= w_{-1}, u_{2n+1}, \\
 &= u_0, v_{2n+2}, \\
 &= v_0, w_{2n+2}. \\
\end{align*}
\]

2. If \(A_1/v_0 \geq u_0, B_1/w_0 \geq v_0, \) and \(w_0 \leq C_1/u_0\), then

\[
\begin{align*}
 u_{2n+1} &= u_{-1}, v_{2n+1}, \\
 &= v_{-1}, w_{2n+1}, \\
 &= w_{-1}, u_{2n+1}, \\
 &= u_0, v_{2n}, \\
 &= v_0, w_{2n}, \\
 &= w_0. \\
\end{align*}
\]

3. If \(A_1/v_0 \leq u_0, B_1/w_0 \leq v_0, \) and \(w_0 \geq C_1/u_0\), then

\[
\begin{align*}
 u_{n+1} &= u_{-1}, v_{2n+1}, \\
 &= v_{-1}, w_{2n+1}, \\
 &= w_{-1}, u_{2n+1}, \\
 &= u_0, v_{2n}, \\
 &= v_0, w_{2n}. \\
\end{align*}
\]

4. If \(A_1/v_0 \geq u_0, B_1/w_0 \leq v_0, \) and \(w_0 \geq C_1/u_0\), then

\[
\begin{align*}
 u_{n+1} &= u_{-1}, v_{2n+1}, \\
 &= v_{-1}, w_{2n+1}, \\
 &= w_{-1}, u_{2n+1}, \\
 &= u_0, v_{2n}, \\
 &= v_0, w_{2n}. \\
\end{align*}
\]
\[u_{2n+1} = u_{-1}, v_{2n+1}, \]
\[= v_{-1}, w_{2n+1}, \]
\[= w_{-1}, u_{2n}, \]
\[= u_0, v_{2n+2}, \]
\[= \frac{B_1}{w_0} w_{2n}, \]
\[= w_0. \]

(27)

Proof.

(1) From the conditions \(A_0/v_{-1} \leq u_{-1}, B_0/w_{-1} \leq v_{-1}, \) and \(C_0/u_{-1} \leq w_{-1}, \) we have

\[u_1 = \max \left\{ \frac{A_0}{v_{-1}} u_{-1} \right\}, \]
\[= u_{-1}, \]
\[v_1 = \max \left\{ \frac{B_0}{w_{-1}} v_{-1} \right\}, \]
\[= v_{-1}, \]
\[w_1 = \max \left\{ \frac{C_0}{u_{-1}} w_{-1} \right\}, \]
\[= w_{-1}, \]
\[u_3 = \max \left\{ \frac{A_0}{v_1} u_1 \right\}, \]
\[= \max \left\{ \frac{A_0}{v_{-1}} u_{-1} \right\}, \]
\[= u_{-1}, \]
\[v_3 = \max \left\{ \frac{B_0}{w_1} v_1 \right\}, \]
\[= \max \left\{ \frac{B_0}{w_{-1}} v_{-1} \right\}, \]
\[= v_{-1}, \]
\[w_3 = \max \left\{ \frac{C_0}{u_1} w_1 \right\}, \]
\[= \max \left\{ \frac{C_0}{u_{-1}} w_{-1} \right\}, \]
\[= w_{-1}. \]

(28)

Similarly, we can find the proof for even terms.

\[u_2 = \max \left\{ \frac{A_1}{v_0} u_0 \right\}, \]
\[= u_0, \]
\[v_2 = \max \left\{ \frac{B_1}{w_0} v_0 \right\}, \]
\[= v_0, \]
\[w_2 = \max \left\{ \frac{C_1}{u_0} w_0 \right\}, \]
\[= w_0. \]

(30)

By induction,

\[u_{2n} = u_0, v_{2n}, \]
\[= v_0, w_{2n}, \]
\[= w_0. \]

(31)

(2) Because \(u_0 \geq A_1/v_0, v_0 \geq B_1/w_0, \) and \(w_0 \leq C_1/u_0, \) then we have

\[\frac{1}{w_0} \geq \frac{u_0}{C_1}, \]
\[v_0 \geq B_1 \times \frac{u_0}{C_1}, \]

as given in (24).
By induction, we obtain the formulas as stated in (25).

(3) Because $u_0 \leq A_1/v_0$, $v_0 \geq B_1/w_0$, and $w_0 \geq C_1/u_0$, then

$$u_2 = \max \left\{ \frac{A_1}{v_0}, u_0 \right\},$$
$$v_2 = \max \left\{ \frac{B_1}{w_0}, v_0 \right\},$$
$$w_2 = \max \left\{ \frac{C_1}{u_0}, w_0 \right\},$$

$$u_4 = \max \left\{ \frac{A_1}{v_2}, u_0 \right\},$$
$$v_4 = \max \left\{ \frac{B_1}{w_2}, v_0 \right\},$$
$$w_4 = \max \left\{ \frac{C_1}{u_2}, w_0 \right\},$$

$$u_6 = \max \left\{ \frac{A_1}{v_4}, u_0 \right\},$$
$$v_6 = \max \left\{ \frac{B_1}{w_4}, v_0 \right\},$$
$$w_6 = \max \left\{ \frac{C_1}{u_4}, w_0 \right\},$$

$$u_0 = \max \left\{ \frac{1}{v_0}, u_0 \right\},$$
$$v_0 = \max \left\{ \frac{B_1}{w_0}, v_0 \right\},$$
$$w_0 = \max \left\{ \frac{C_1}{u_0}, w_0 \right\}.$$
\[A_1 v_0 - 1 \leq u_{-1}, \quad B_0 w_{-1} \geq v_{-1}, \quad C_0 u_{-1} \geq w_{-1}, \] \tag{35}

then we have
\[\frac{1}{v_{-1}} \geq \frac{w_{-1}}{B_0}, \] \tag{36}

Then, the following system holds for odd solutions:
\[u_{2n+1} = u_{-1}, v_{2n+1}, \]
\[= \frac{B_0}{w_{-1}}, \quad w_{2n+1}, \] \tag{37}
\textbf{Theorem 4.} Suppose that \(\{u_n, v_n, w_n\} \) is a solution of systems (1)-(3) such that

\[
\frac{A_0}{v_{-1}} \geq u_{-1}, \quad \frac{B_0}{w_{-1}} \leq v_{-1}, \quad \frac{C_0}{u_{-1}} \geq w_{-1},
\]

then the following statement holds:

\[
u_{2n+1} = \frac{A_0}{v_{-1}} v_{2n+1},
\]

\[= v_{-1}, w_1,
\]

\[= \frac{C_0}{u_{-1}} w_{2n+1},
\]

\[= \frac{C_0}{A_0} v_{-1}.
\]

\textbf{Theorem 5.} Suppose that \(\{u_n, v_n, w_n\} \) is a solution of systems (1)-(3) such that

\[
\frac{A_0}{v_{-1}} \geq u_{-1}, \quad \frac{B_0}{w_{-1}} \leq v_{-1}, \quad \frac{C_0}{u_{-1}} \leq w_{-1},
\]

then the following statement holds:

\[
u_{2n+1} = \frac{A_0}{v_{-1}} v_{2n+1},
\]

\[= v_{-1}, w_{2n+1},
\]

\[= w_{-1}.
\]

\textbf{Theorem 6.} Suppose that \(\{u_n, v_n, w_n\} \) is a solution of systems (1)-(3) such that

\[
\frac{A_0}{v_{-1}} \leq u_{-1}, \quad \frac{B_0}{w_{-1}} \geq v_{-1}, \quad \frac{C_0}{u_{-1}} \leq w_{-1},
\]

then the following statement holds:

\[
u_{2n+1} = u_{-1} v_{2n+1},
\]

\[= \frac{B_0}{w_{-1}} w_{2n+1},
\]

\[= w_{-1}.
\]

\textbf{2. Conclusion}

We investigate the closed form solutions of an important type of difference equation. The eventual periodicity of the following max-type 3 \(D \)-system of difference equations is

\[
u_{n+1} = \max \left\{ \frac{A_n}{v_n}, \frac{B_n}{u_n}, \frac{C_n}{w_n} \right\} v_{n+1},
\]

\[= \max \left\{ \frac{B_n}{u_n}, \frac{C_n}{w_n} \right\} w_{n+1},
\]

\[= \max \left\{ \frac{C_n}{u_n}, \frac{w_n}{u_n} \right\},
\]

where \(n \in \mathbb{N}, N_o = \mathbb{N} \cup \{0\}, (A_n)_n \in N_o, (B_n)_n \in N_o, \) and \((C_n)_n \in N_o \) are positive periodic sequences and initial conditions \(u_0, u_{-1}, v_0, v_{-1}, w_0, w_{-1} \in (0, +\infty) \).

\textbf{Data Availability}

All data utilized in this article have been included and the sources where they were adopted were cited accordingly.

\textbf{Conflicts of Interest}

The authors declare that they have no conflicts of interest regarding the publication of this paper.

\textbf{References}

[19] S. Stevic, “The recursive sequence, $x_{n+1} = \left(\frac{g(x_n, x_{n-1})}{(A + x_n)} \right)$,” *Applied Mathematics Letters*, vol. 15, no. 3, pp. 305–308, 2002.

[21] S. Stevic, “On the recursive sequence, $x_n = \left(\frac{\alpha + \sum_{i=1}^{p} a_i x_{n-i}}{(1 + \sum_{j=1}^{q} b_j x_{n-j})} \right)$,” *Journal of Difference Equations and Applications*, vol. 13, no. 1, pp. 41–46, 2007.

[23] S. Stevic, “On the recursive sequence, $x_{n+1} = \max\left\{ c, \frac{x_n^p}{x_{n-1}^p} \right\}$,” *Applied Mathematics Letters*, vol. 21, no. 8, pp. 791–796, 2008.

[26] Y. Yazlik, D. T. Tollu, and N. Taskara, “On the solution of a max type difference equation $x_{n+1} = \max\{1/x_n, \min\{1, A/x_n\}\}$, $y_{n+1} = \max\{1/y_n, \min\{1, A/y_n\}\}$,” *Mathematical Methods in the Applied Sciences*, vol. 39A10–39A23, 2015.