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�e population parameters are estimated using sample surveys. However, the current investigation’s goal is to estimate sub-
populations parameters such as total through a calibration approach. �e proposed estimator’s properties have been given under
simple random sampling. In addition, the class of estimators for subpopulation total has been discussed. �e proposed estimator
has been evaluated theoretically and empirically in a comparative study. �e results demonstrated that a high-level estimate
outperforms a low-level estimate for subpopulation total using a calibration approach.

1. Introduction

Generally, the sample surveys are applied to estimate the
population parameters. However, this study is interested in
estimating the subpopulations total. If these subpopulations
are classi�ed through some characteristics, like socio-eco-
nomic, geographical regions may also term to be the do-
mains. �e estimate of these subpopulations (domains) total
has become a very popular and e�ective tool when framing
the program and policies of the government and private
sectors. Hence, subpopulations demand has been growing
acceleratory for a couple of years. Purcell and Kish [1] have
classi�ed the subpopulation due to the size with respect to
population. �e simple classi�cation of the subpopulations
is as follows:

Major subpopulation: it comprises 1/10 of the pop-
ulation or more. For example, the major geographical re-
gions like (north, east, west, south, central), 10-year age
group, or major classes like occupations.

Minor subpopulation: it comprises between 1/10 to 1/
100 of the population, for example, state population, single-

year age, two-fold classi�cation like education and
occupations.

Mini subpopulation: it comprises between 1/100 to 1/
10000 of the population, for example, the population of the
counties (more than 3000 in the U.S.A) or three fold clas-
si�cations like age, education, and occupation.

Rare subpopulation: it comprises less than 1/10000 of the
population. For example, health services regions are clas-
si�ed into local regions of residence.

�e subpopulation total estimate can be used to estimate
the social exclusion and well-being levels. Also, some of the
environmental and epidemiological issues can be solved
through subpopulation estimates. �e consequence of the
domain estimate with the popular direct and indirect
methods has been explained in the literature (see Rao [2] and
Singh [3]). Rahman [4] has been given the direct and indirect
estimation with the model-based ideas. �e availability of
units in the study subpopulation depends on the method.
Hence, in such a situation we used the indirect method. In
the indirect method, the sample selected from the pop-
ulation (which consists of the subpopulations) than the
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subpopulation. &e surrounding units are utilized when the
units in the study subpopulation may be low or near zero for
some subpopulations. &is is due to the restriction of the
units in the study subpopulation so, utilized the surrounding
subpopulations units. If the surrounding units are similar in
nature to the subpopulation, then the estimate gives a precise
result that is acceptable at the desired level. &e indirect
estimates for subpopulations parameters like total have been
explained through an auxiliary variable by Rao and Molina
[5]. Singh et al. [6] have estimated the poverty indicators,
many socio-economic indicators, and food insecurity for
subpopulations total. In the indirect method, the availability
of the auxiliary variable for the subpopulation has significant
importance to Tikkiwal et al. [7]. &e ratio and regression
estimators through the calibration approach for population
total have been discussed by numerous authors, such as
Särndal [8], Singh and Mohl [9], Singh et al. [10], Wu and
Sitter [11]. &e extension of the calibration-based mean
estimation through an auxiliary variable has been discussed
by Koyuncu and Kadilar [12] and Koyuncu [13]. Further-
more, the estimation of the subpopulation parameter by
Khare et al. [14]. &e calibrate estimator was initiated by
Horvitz and &ompson [15] on the study variable Y, and
estimate the population total through simple random
sampling without replacement designs. Deville and Särndal
[16] have incorporated the auxiliary variable under the re-
striction of minimum chi-square distance. Särndal [8] has
estimated the variance of the ratio and regression estimators
for the population parameter. &e mean square error using
model based approach has been given by Slud andMaiti [17].
Whenever, recently classes of the estimators for variance
estimation have been discussed by Bhushan et al. [18, 19].
We are motivated by Sarndal [8] and hence propose the
calibration estimate for the subpopulation total as well as
their variance. &e rest of the article is constructed as fol-
lows: firstly, the Methodology employed is explained. Also,
evaluate the variance of the proposed estimator using a
calibration approach with the low and high levels, respec-
tively. &en, a class of calibration estimators is presented.
Furthermore, theoretical and empirical comparisons along
with Concluding Results are presented and summarized.
Finally, Recommendations and Applications are outlined.

2. Methodology

Consider the ath subpopulation Ω1 +Ω2 + . . . +ΩA �

􏽐
A
a�1Ωa � Ω with the sizes Na: a � 1, . . . , A{ }. Select a

sample from the population in which the selected sampling
units of ath domains are Sa Sa ⊂ Ωa􏼈 􏼉. &e overall sample of
size n is 􏽐

A
a�1 na � n. A sample is selected by the population

rather than the subpopulation. &e auxiliary variable of the
subpopulation should be known. Hence, the auxiliary in-
formation for the proposed estimator is utilized. In the
current work, both ideas of Deville and Särndal [16], and
Tikkiwal et al. [7] are used in the same context.&e proposed
indirect generalized regression (GREG) estimator of ath

subpopulation total is written as follows:

TPD,a � 􏽘
n

i�1
ti,ayi, (1)

where ti; i � 1, . . . , n represent the updated weight which is
close to the design weight di. &e utilization of the auxiliary
variable can be a good option in the calibration estimator of
the ath domain. Also, ath subpopulation total of the auxiliary
variable is equal to the sum of the nth units equal to the
subpopulation total of auxiliary variable X. &e auxiliary
equation of the subpopulation total of X is

􏽘

n

i�1
ti,axi � Xa. (2)

&e minimum chi-square distance function is

􏽘

n

i�1

ti,a − di􏼐 􏼑
2

diqi

, (3)

where qi is a chosen constant. Utilize (2) and (3), the cal-
ibration equation can be written as follows:

f ti,a, δ􏼐 􏼑 � 􏽘
n

i�1

ti,a − di􏼐 􏼑
2

diqi

+ 2δ Xa − 􏽘
n

i�1
ti,axi

⎛⎝ ⎞⎠. (4)

Partially differentiate (4) w.r. to new weights ti,a,

zf ti,a, δ􏼐 􏼑

zti,a

� 􏽘

n

i�1

2 ti,a − di􏼐 􏼑

diqi

− 2δ􏽘
n

i�1
xi � 0. (5)

Simplifying (5), then

ti,a � di + δdiqixi. (6)

Substitute ti,a in the auxiliary equation (2), we obtain the
value of δ which further substitute in (5), we obtain the new
weight as follows:

ti,a � di +
diqixi

􏽐
n
i�1 diqix

2
i

Xa − 􏽘
n

i�1
dixi

⎛⎝ ⎞⎠. (7)

&e new weight ti,a substitute in (1), the proposed es-
timator will be

TPD,a � 􏽘
n

i�1
diyi +

􏽐
n
i�1 diqixiyi

􏽐
n
i�1 diqix

2
i

Xa − 􏽘
n

i�1
dixi

⎛⎝ ⎞⎠. (8)

3. Variance of TPD,a through Low-Level
Calibration Approach

Särndal et al. [20] provided the variance of the GREG es-
timator. Zaman and Bulut [21] recently discussed the var-
iance of ratio estimators. &e proposed estimator is like a
regression estimator. For obtaining the variance of the
population’s total estimator of Deville and Särndal [16], the
sample is taken based on Yates and Grundy [22]
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V TDS( 􏼁 �
1
2

􏽘

n

i�1
􏽘

n

j�1
Dij diyi − djyj􏼐 􏼑

2
, (9)

where Dij � πiπj − πij/πij; i≠ j, ei � yi − 􏽢βxi,
􏽢β � 􏽐

n
i�1 diyi/

􏽐
n
i�1 dixi.

&e proposed estimator is an indirect estimator for
subpopulation hence we take the asymptotic concept of an
unbiased estimator. &e variance of the subpopulation total
is written as follows:

V TP D,DS ,a􏼐 􏼑 �
1
2

􏽘

n

i�1
􏽘

n

j�1
Dije

2
i,a, (10)

where ei,a � yi,a − 􏽢βXa, 􏽢β and Dij as defined previously.
&e members of the proposed estimator are as follows:

(I) For qi � 1, the proposed estimator in (8) reduced to
the GREG estimator, as follows:

TYG,1,a � 􏽘
n

i�1
diyi +

􏽐
n
i�1 dixiyi

􏽐
n
i�1 dix

2
i

Xa − 􏽘
n

i�1
dixi

⎛⎝ ⎞⎠. (11)

(II) For qi � 1/xi, the proposed estimator in (8) will be
ratio estimator, as follows:

TYG,2,a �
􏽐

n
i�1 diyi

􏽐
n
i�1 dixi

Xa. (12)

&e variance of TP D,DS ,a can be obtain with the help of
(9). &e variance of the proposed estimator

V TPD,DS ,a􏼐 􏼑 �
1
2

􏽘

n

i�1
􏽘

n

j�1
Dij ti,aei,a − tj,aej,a􏼐 􏼑

2
, (13)

where

Dij �
πij − πiπj

πij

; i≠ j, ei,a � yi,a − 􏽢βXa. (14)

&e variance of the ratio estimator

V TPD,DS ,a􏼐 􏼑 �
1
2

􏽘

n

i�1
􏽘

n

j�1

πiπj − πij

πij

􏼠 􏼡 diei,a − djej,a􏼐 􏼑
2

+ 􏽢ξa1 Xa − 􏽘

n

i�1
dixi

⎛⎝ ⎞⎠ + 􏽢ξa2 Xa − 􏽘

n

i�1
dixi

⎛⎝ ⎞⎠

2

,

(15)

and

􏽢ξa1 �
􏽐

n
i�1 􏽐

n
j�1 Dij diei,a − djej,a􏼐 􏼑 diqixiei,a − djqjxjej,a􏼐 􏼑

􏽐
n
i�1 diqix

2
i

,

􏽢ξa2 �
􏽐

n
i�1 􏽐

n
j�1 Dij diei,a − djej,a􏼐 􏼑 diqixiei,a − djqjxjej,a􏼐 􏼑

2 􏽐
n
i�1 diqix

2
i( 􏼁

2 .

(16)

&e value of GREG is under the simple random sampling
without replacement. &e probability of ith unit is selected

πi � n/N, the probability of jth unit is selected πj � n/N and
the probability of both ith and jth units are selected
πij � n(n − 1)/N(N − 1). &e variance of the low-level cal-
ibration of the GREG estimator of the subpopulation total.

VL TYG,1,a􏼐 􏼑 �
N

2
(1 − f)

n(n − 1)
􏽘

n

i�1
e
2
i,a, (17)

where ei,a � yi,a − 􏽢βXa,f � n/N and the variance of the ratio
estimator that given in (15) is

VL TYG,2,a􏼐 􏼑 �
N

2
(1 − f)

n(n − 1)
􏽘

n

i�1
e
2
i,a

Xa

􏽢X
􏼒 􏼓

2
, (18)

where ei,a � yi,a − y/xXa.
&e indirect regression estimator is TYG,1,a � 􏽐

n
i�1 diyi +

􏽐
n
i�1 dixiyi/􏽐

n
i�1 dix

2
i (Xa − 􏽐

n
i�1 dixi) and 􏽢X � N/n 􏽐

n
i�1 xi.

We used the idea of Deng andWu [23] and estimated the
variance of the subpopulation total. &e variance of the low-
level calibration of ratio estimator VL(TYG,2,a) can be esti-
mated for the subpopulation using equation in (15).

VL TYG,3,a􏼐 􏼑 �
N

2
(1 − f)

n(n − 1)
􏽘

n

i�1
e
2
i,a

Xa

􏽢X
􏼒 􏼓

h

, (19)

where ei,a � yi,a − 􏽢βXa and write (Xa/ 􏽢X)h up to second
order, neglect higher order due to a small value

Xa

􏽢X
􏼒 􏼓

h

� 1 + h
Xa

􏽢X
− 1􏼒 􏼓 + h(h − 1)

Xa

􏽢X
− 1􏼒 􏼓

2
+ . . .􏼢 􏼣.

(20)

If substitute h � 2 in (19) the then variance of the ratio
estimator.

We obtain the variance of the linear regression estimator
which is a special case of the estimator of the variance of ratio
estimator of domain total. If the subpopulation total is
equivalent to the population total that is (Xa/ 􏽢X) � 1, then it
reduces into the linear form of the class of estimators of (19).
&e variance of the regression estimator is written as follows:

VL TYG,4,a􏼐 􏼑 �
N

2
(1 − f)

n(n − 1)
􏽘

n

i�1
e
2
i,a. (21)

&e variance of low-level calibration 􏽢VL(TYG,1,a) of the
regression estimator is more efficient than the ratio esti-
mator when (Xa/ 􏽢X)> 1. However, for (Xa/ 􏽢X)< 1 always
variance ratio estimator of the low-level calibration ap-
proach is lower than the value of the regression estimator of
the low-level calibration approach. &e variance of the
GREG estimator is equal to the class of estimates of Deng
and Wu [23].

4. Variance of TPD,a through High Level
Calibration Approach

&e high-level calibration is the adjustment of the weight
function of the selected units of ith unit, jth unit, and both ith

and jth units. We estimate the variance and checked the
variance of the high-level calibration approach of ratio and
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regression estimators. We consider the function Ωij instead
of the Dij then the variance of the proposed estimator

V TPD,DS ,a􏼐 􏼑 �
1
2

􏽘

n

i�1
􏽘

n

j�1
Ωij ti,aei,a − tj,aej,a􏼐 􏼑

2
, (22)

where Ωij is the new weight which is very close to Dij. &e
simple calibration equation

1
2

􏽘

n

i�1
􏽘

n

j�1
Ωij diei,a − djej,a􏼐 􏼑

2
� 􏽢VYG

􏽢XHT,a􏼐 􏼑, (23)

where VYG( 􏽢XHT,a)�1/2􏽐
N
i�1􏽐

N
j�1(πiπj−πij)(dixi,a−djxj,a)2

is known variance with the auxiliary information for each
subpopulation total should be known Xa�􏽐

Na

i�1xi. &is is an
auxiliary equation (see (3)) of the Horvitz–&ompson which
is written as 􏽢XHT �􏽐

n
i�1dixi. We estimated the value of the

GREG estimator for the subpopulation total. Utilize the
information of the auxiliary variable of the census registers,
previous survey value, or administrative registers. &e es-
timation of the variance of regression and ratio estimators
have been given by Singh and Srivastava [24], Srivastava and
Jhajj [25], Isaki [26], and Wu [27]. Fullar [28] has given the
adjustment the weight for the regression estimator. &e
minimum chi-square distance function of the new weights
Ωij and weight of ith and jth units Dij(i,j�1,2,...,n) from the
population

D �
1
2

􏽘

n

i�1
􏽘

n

j�1

Ωij − Dij􏼐 􏼑
2

DijLij

, (24)

where Lij is the chosen constant. &e estimated value of D

under the restriction of (23) is

Ωij � Dij + Pa VYG
􏽢XHT,a􏼐 􏼑 −

1
2

􏽘

n

i�1
􏽘

n

j�1
Dij dixi,a − djxj,a􏼐 􏼑

2⎡⎢⎢⎣ ⎤⎥⎥⎦,

(25)

where Pa � (dixi,a − djxj,a)2/1/2􏽐
n
i�1 􏽐

n
j�1 DijLij(dixi,a−

djxj,a)4.
&e optimum value of the Lagrange’s multiplier λa with

the help of (23) and (24) is written as follows:

λa �
VYG

􏽢XHT,a􏼐 􏼑 − 1/2􏽐
n
i�1 􏽐

n
j�1 Dij dixi,a − djxj,a􏼐 􏼑

2

1/2􏽐
n
i�1 􏽐

n
j�1 DijLij dixi,a − djxj,a􏼐 􏼑

4 .

(26)

Substitute the value of Ωij from (26) in (22). &e GREG
estimator is

VSS TGREG,a􏼐 􏼑 � VYG TDS ,a􏼐 􏼑

+ ϕ1,a VYG
􏽢XHT,a􏼐 􏼑 − 􏽢VYG

􏽢XHT,a􏼐 􏼑􏽨 􏽩,
(27)

where

ϕ1,a �
􏽐

n
i�1 􏽐

n
j�1 DijLij dixi,a − djxj,a􏼐 􏼑

2
ti,aei,a − tj,aej,a􏼐 􏼑

2

1/2􏽐
n
i�1 􏽐

n
j�1 DijLij dixi,a − djxj,a􏼐 􏼑

4 �� .

(28)

&e members of calibration based approach of higher-
level calibration approach are

(I) If we put the weights Lij,a � 1/(dixi,a − djxj,a)2

within (28), then the variance of the ratio estimator
through high-level is

VH TYG,1,a􏼐 􏼑 �
N

2
(1 − f)

n(n − 1)
􏽘

n

i�1
e
2
i,a

Xa

􏽢X
􏼒 􏼓

2 S
2
x

s
2
x

􏼠 􏼡, (29)

where s2x � 1/n − 1􏽐
n
i�1 (xi − x)2 and S2x � 1/N − 1

􏽐
N
i�1 (xi − X)2, the sample variance is an asymptotic

unbiased estimate of the population variance.
(II) For Lij,a � 1, the equation (28) will be the variance of

the regression estimator

VH TYG,2,a􏼐 􏼑 �
N

2
(1 − f)

n(n − 1)
􏽘

na

i�1
e
2
i,a + 􏽢δ1,a Xa − 􏽢X􏼐 􏼑

+ 􏽢δ2,a Xa − 􏽢X􏼐 􏼑
2

+ 􏽢δ3,a S
2
x − s

2
x􏼐 􏼑,

(30)

where

􏽢δ1,a �
􏽐

n
i�1 􏽐

n
j�1 Dij,a diei,a − djej,a􏼐 􏼑 diqixi,aei,a − djqjxj,aej,a􏼐 􏼑

􏽐
n
i�1 diqix

2
i

Xa − 􏽘
n

i�1
dixi

⎛⎝ ⎞⎠,

􏽢δ2,a �
􏽐

n
i�1 􏽐

n
j�1 Dij,a diqixiei,a − djqjxjej,a􏼐 􏼑

2

2 􏽐
n
i�1 diqix

2
i( 􏼁

2 Xa − 􏽘
n

i�1
dixi

⎛⎝ ⎞⎠

2

,

􏽢δ3,a �
N

2
(1 − f)

n 􏽐
n
i�1 xi − xj􏼐 􏼑

4 xi − xj􏼐 􏼑 ei,a − ej,a􏼐 􏼑
Xa − 􏽢X􏼐 􏼑 xi − xj􏼐 􏼑

2

􏽐
n
i�1 x2

i

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

2

.

(31)

Equation (31) shows that the high-level calibration es-
timator is different from Deng and Wu [23]. &e GREG and
ratio estimators are members of the class of estimators of
Srivastava and Jhajj [25]

VSJ TYG,2,a􏼐 􏼑 �
N

2
(1 − f)

n(n − 1)
􏽘

n

i�1
e
2
i,a

⎛⎝ ⎞⎠F
Xa

􏽢X
,
S
2
x

s
2
x

􏼠 􏼡, (32)

where F(., .) is the function such that F(1, 1) � 1 holds the
certain regularity conditions is better than the low-level
calibration estimates, Srivastava and Jhajj [25] and Deng and
Wu [23].

5. Class of Calibration Estimators

&is section is presenting the class of estimators. A class of
estimators is a collection of various estimators under certain
regularity conditions that give the same variance.We assume
r � Xa/􏽐

n
i�1 dixi and s � V(XHT)/􏽢V( 􏽢XHT). &e variance of

a class of estimators of the sub-population total is

4 Mathematical Problems in Engineering



VSS TYG,2,a􏼐 􏼑 �
1
2

􏽘

n

i�1
􏽘

n

j�1
Dij,a diei,a − djej,a􏼐 􏼑

2⎛⎝ ⎞⎠F(r, s),

(33)

where the function F(r, s) is of r and s. For example,
F(1, 1) � 1 possesses the following regularity conditions:

(1) Function F(r, s) exists for all the values of (r, s)

which contain the points (Xa/􏽐
n
i�1 dixi,

V(XHT)/􏽢V( 􏽢XHT)) inbound subset of two dimen-
sional real spaces.

(2) First and second-order partial derivatives of the
function F(r, s) exist and are also continuous and
bounded.

Different members of the class of estimators are exists
under regularity conditions. However, three members are

F(r, s) � rηsκ, F(r, s) � 1 + η(r − 1) + κ(s − 1), F(r, s) �

[1 + η(r − 1) + κ(s − 1)]− 1 where η and κ both unknown
parameters. &e value of η and κ are depending on the
estimated value. &e asymptotic variance of the three esti-
mators will be the same as Srivastava and Jhajj [25] and
Singh and Singh [29]. Our proposed estimator is better than
the Srivasatava and Jhajj [25] and Singh and Singh [29],
hence also better than the class of estimator under the
regularity restrictions 1 and 2.

5.1. 7eoretical Comparison. &e theoretical comparison is
given due to keeping in mind, the efficiency of the high-level
and low-level indirect estimated variances. &e high-level
variance of the ratio estimator for the subpopulation total is

VH TYG,1,a􏼐 􏼑 �
N

2
(1 − f)

n(n − 1)
􏽘

n

i�1
e
2
i,a

Xa

􏽢X
􏼒 􏼓

2 S
2
x

s
2
x

􏼠 􏼡. (34)

&e estimated variance of the ratio estimator through the
low-level calibration approach for ath subpopulation total is
written as follows:

VL TYG,1,a􏼐 􏼑 �
N

2
(1 − f)

n(n − 1)
􏽘

n

i�1
e
2
i,a
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􏽢X
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2
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Now, from both (37) and (35), the variance of the high-
level is lower as compared to the variance of the low-level of
ratio estimate for S2x < s2x

VH TYG,1,a􏼐 􏼑<VL TYG,1,a􏼐 􏼑. (36)

Furthermore, a comparison of the high-level variance
estimate of GREG estimator is
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􏽘

na
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2
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(37)

&e low-level variance estimate of the GREG estimator is

VL TYG,2,a􏼐 􏼑 �
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2
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(38)

With help of (37) and (38), the restriction is that last
term (s2x − S2x)> 0

VH TYG,2,a􏼐 􏼑<VL TYG,2,a􏼐 􏼑. (39)

We can say that the high-level is more efficient than the
low-level calibration approach of ratio and regression
estimators.

6. Empirical Study

&is section presents an empirical comparison based on the
simulation. We take a real data set from Sarndal et al. [30]
where the population of 1975 is considered as an auxiliary
variable and population of 1985 is considered as a study
variable. &e subpopulation is considered from Sweden’s
municipalities regions. However, we take only five regions
(subpopulation) 1, 2, 3, 7, and 8 out of the existing eight
subpopulations 1, 2, 3, 4, 5, 6, 7, and 8. &e study sub-
populations have units 25, 48, 32, 15, and 29. For the
simulation, we select a random sample of approximately
10%, 20%, and 30% units from the population by study and
auxiliary characters y and x, respectively. &is process is
repeated to the finite times and then obtained the estimated
error. Equations (34)–(38) are utilized to obtain the variance
of the ratio estimator and generalized estimator of ath

subpopulation with low-level and high-level calibration.
&e variances of the ratio estimator through high-level

calibration are lower as compared to the low-level calibra-
tion estimate for all subpopulations. &e high-level esti-
mated value is lower as compared to low-level calibration
with the sizes 15, 30, and 45, (4.5 to 10.43), (1.75 to 9.5), and
(2.53 to 7.1) percentage for domains, respectively. It is
observed that the low-level calibration estimate variances are
decreasing with the sizes increase from 15 to 45. A similar
pattern is also observed for the high-level calibration
approach.

&e estimated value of the variance of the GREG esti-
mator through the high level is smaller than the low-level
estimate for all the subpopulations. &e high-level estimated
value is lower than the low-level GREG with sizes 15, 30, and
45 in terms of percentage are (2.4 to 12.55), (1.78 to 8.8) and
(2.32 to 10.41) for subpopulations, respectively. &e width of
the generalized is higher than the ratio estimator for the
sub-populations. &e GREG through low-level calibration
estimate is decreasing with the variances when their sizes
increase from 15 to 45.

&e variance of the ratio and regression estimators with
low-level and high-level calibration approach on 15, 30, and
45 units are given. Figures 1–3 are showing the real view of
the estimated variance of the ratio estimator on low-level
and high-level 15, 30, and 45 sizes. However, Figures 4–6 are
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Figure 1: &e variance of the ratio estimator with low and high
levels calibration approach on 15 size. Scale: Y-axis: variance (in
thousands), X-axis: domain.
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Figure 2: &e variance of the ratio estimator with low and high
levels calibration approach on 30 size.
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Figure 3: &e variance of the ratio estimator with low and high
levels calibration approach on 45 size.
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Figure 4: &e variance of the regression estimator with low and
high levels calibration approach on 15 size.
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Figure 5: &e variance of the regression estimator with low and
high levels calibration approach on 30 size.
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Figure 6: &e variance of the regression estimator with low and
high levels calibration approach on 45 size.
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presenting the real view of the regression estimate variance
of high and low-level calibration approach on the different
sample sizes (15, 30, and 45).

7. Concluding Results

Tables 1 and 2, and Figures 1–6 show that the high-level
calibration estimate of ratio is preferred over than low-level
calibration estimate of the subpopulations 1, 2, 3, 4, and 5.
&e regression estimate through calibration approach ratio
is more effective than the generalized estimate. &e low-level
estimate is poor performance than the high-level estimate in
both the estimators. &e regression estimate is a higher
length interval of the variance for the subpopulations than
the ratio estimate. &e discussed estimator generalized is a
member of the generalized estimate of Srivastava and Jhajj
[25]. &e ratio estimate of high-level calibration is superior
to Deng andWu [23]. Based on the theoretical and empirical
findings, we can conclude that the proposed estimate is more
efficient than the regression estimates proposed by Srivas-
tava and Jhajj [25] and Deng and Wu [23] for subpopula-
tions 1, 2, 3, 4, and 5.

7.1. Recommendations and Applications. &e following
recommendations are given as follows:

(1) &e recommendation points have analysis through
theoretical, and empirical for the ratio and gener-
alized estimates for subpopulation total.

(2) &e present estimate is utilized when the domain
total of the auxiliary variable is available but the
number of units in the subpopulation is small.

(3) &e indirect estimate value also depends on how
much the subpopulation value of the auxiliary var-
iable is closed to the estimated sample of the
population.

(4) &e subpopulation estimates of the variance of the
high-level are a better option than the low-level
variance estimates of ratio and regression estimates
for the subpopulations. &e high-level variance es-
timate of the ratio estimator can be introduced for
the problems related to the health-related problems,
environmental issues, and welfare programs like
epidemiological issues, estimates for areas that are
similar to estimates for those areas which are other
parts.
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