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+is paper presents an overlapping decentralized guaranteed cost hybrid control method for adjacent buildings with uncertain
parameters, by combining the guaranteed cost control algorithm with the overlapping decentralized control strategy. +e passive
dampers are used as link members between the two parallel buildings, and the active control devices are installed between two
consecutive floors in two adjacent buildings. +e passive coupling dampers modulate the relative responses between the two
buildings, and the active control devices modulate the interstory responses of each building. Based on the inclusion principle, a
large-scale structure is divided into a set of paired substructures with common parts first. +en, the controller of each pair of
substructures is designed by using the guaranteed cost algorithm. After that, the controller of the original system is formed by
using the contraction principle. Consequently, the proposed approach is used to prevent pounding damage and achieve the best
results in earthquake response reduction of uncertain adjacent buildings when compared with the calculation results obtained by
the centralized control strategy. Furthermore, the stability and reliability of the control system are promoted by adopting the
overlapping decentralized control strategy.

1. Introduction

With rapid urbanization, an increasing number of adjacent
buildings are appearing in cities. +ese buildings are usually
separated from each other without connecting members,
and their seismic performance of them depends on their
characteristics. However, adjacent structures with insuffi-
cient spacing may collide with each other and cause more
serious damage under earthquake excitation. For instance,
the results of the investigation into the 1985 Mexico City
earthquake showed that more than 40% of the 330 severely
damaged buildings surveyed had collided with each other
[1]. During the 1989 Loma Prieta City earthquake in the
United States, over 200 of more than 500 buildings surveyed

were destroyed by collision [2]. +e Wenchuan earthquake
in 2008 [3] and the Lushan earthquake in 2013 [4] caused
adjacent buildings to be damaged by pounding. +e in-
quiries on structural damage caused by the Christchurch
earthquake in New Zealand in 2011 indicated that more than
6% of buildings had been severely destroyed by collision [5].
Previous earthquake damage investigations have shown that
the collision damage to structures cannot be ignored. So, it
has important research value to research how to improve the
seismic performance of adjacent structures and avoid the
occurrence of collision damage.

In recent years, the connected control method (CCM),
which connects two independent structures by placing
control equipment between adjacent buildings to resist
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external disturbances such as earthquakes, has attracted
widespread attention from domestic and foreign scholars.
+e link members between adjacent buildings can adopt
passive, active, or semiactive controllers [6]. CCM has been
applied in mechanical, aerospace, and civil engineering
fields, the study of which is of great significance. Now, CCM
cannot only reduce the dynamic response of each structure
but also effectively escape the occurrence of collision damage
between adjacent structures [7]. Christenson et al. [8] used
CCM to study the seismic response of adjacent buildings and
discussed the influence of the ratio of building height on the
control effect. Roh et al. [9] considered setting a combination
of linear viscous dampers and linear springs between ad-
jacent buildings to mitigate the seismic response of the
structure and analyzed the influence of the ratio of adjacent
building height, the ratio of fundamental periods, damping
parameters of connected dampers, and external excitation of
different frequencies on the story response. Patel and Jangid
[10] optimized the number and damping coefficients of
viscoelastic dampers which were adopted to link two ad-
jacent multi-degree-of-freedom buildings. Cimellaro et al.
[11] considered robust control algorithms to enhance the
performance of adjacent structural models connected by
passive dampers. Motra et al. [12] studied the problem of
adjacent buildings linked by MR dampers with LQR control,
considering a modified Bouc–Wen model that relates
damping force to the input voltage state. +en, the response
attenuation results were compared by employing LQR-RNN
and LQR-CVL. Bigdeli et al. [13, 14] discussed the number
and location of connecting dampers so that the performance
of adjacent buildings can be promoted. Gao et al. [15] put
forward a dynamic output feedback control method for
mitigating structural seismic vibration and obtaining the
location of the actuators and sensors, which were placed
between adjacent buildings. Gudarzi and Zamanian [16]
designed an output feedback controller based on the Kalman
filter and optimal control theory for three adjacent buildings
under earthquake action to provide a promising means of
response attenuation. Yang and Lam [17] extensively studied
the vibration of two eccentric adjacent buildings linked by
viscoelastic dampers under bidirectional earthquakes. Uz
and Hadi [18] introduced an optimization design method of
nonlinear hysteretic dampers based on genetic algorithms
[19] and demonstrated that the proper number of dampers
was more helpful in improving the seismic performance of
two adjacent buildings.

However, the centralized control strategy has flaws such
as large computation, low reliability, and poor stability.
+erefore, the decentralized control strategy with the ad-
vantages of fast data transmission, less feedback delay, and
strong system reliability received extensive attention
[20–23]. Especially, the focus of the research is on over-
lapping decentralized control strategies, based on the in-
clusion principle, which is a method to dispose of
decentralized control of a large-scale system. +is approach
can effectively deal with the interconnection information
between substructures and realize the decoupling of the
system. Besides, it can also enhance the robustness and
flexibility of controller design, when a large-scale system is

decomposed into several low-order subsystems, and the
subcontroller design is carried out through parallel com-
puting. First of all, a large-scale system is divided into a series
of paired subsystems based on the inclusion principle, in
which shared information is considered. +en, a preset
control algorithm is used to design the controller for the
subsystem. Finally, the contraction principle is applied to
contract the extended subsystem controller to form the
controller of the original system [21–24]. Palacios-Quiño-
nero et al. [7, 25] studied an overlapping decentralized
passive-active control method of adjacent buildings under
an earthquake, which integrates the high performance of an
active control system with the reliability of a passive control
system and allows the decentralized design and operation of
an active control subsystem.

Due to the influence of model errors, material defor-
mation, external interference, and other factors, the struc-
tural model parameters are uncertain in practical
engineering. Uncertainty-based design is becoming one of
the research hotspots for engineering systems [26–28]. If the
influence of uncertainty is not considered in the controller
design, the control effect of the system will be difficult to
guarantee. +erefore, the reliability of the system becomes
especially important in various fields [29–35]. So, to improve
the accuracy of modeling and ensure the stability of the
control system, the constructed model is made to resemble
the actual model by adding uncertainty influencing factors
in the process of modeling. Chang and Peng [36] first
proposed the guaranteed cost control method for uncertain
systems in 1972 and successfully solved this problem. +is
methodmakes the performance functions of the system have
a certain upper bound and can also ensure its robust sta-
bility. Bakule et al. [37, 38] adopted overlapping decen-
tralized guaranteed cost control methods to analyze
uncertain continuous time-delay systems and uncertain
discrete time-delay systems. +e references [39, 40] studied
uncertain discrete state time-delay systems and uncertain
discrete time-delay systems with both states and inputs while
proposing a guaranteed cost control method based on bi-
linear matrix inequality. Gyurkovics et al. [41] discussed
dynamic output feedback guaranteed cost control for un-
certain discrete time-delay systems. Aiming at a class of
uncertain linear systems, Ahmadi et al. [42] extended the
original system to a weakly interconnected system that re-
tains all the properties of the original system based on the
inclusion principle. +en, the iterative linear matrix in-
equality (ILMI) algorithm was applied to design the static
output feedback overlapping decentralized controller of the
extended system, which eventually contracted into the
overlapping decentralized guaranteed cost controller of the
original system.

In this paper, an overlapping decentralized guaranteed
cost hybrid control method, using the inclusion principle
and the overlapping decentralized control scheme with the
guaranteed cost control algorithm, has been established for
uncertain parameter adjacent structure systems under
earthquake. +e guaranteed cost control algorithm is
adopted in each subsystem to get their controller, which is
contracted to the original state-space to obtain the
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overlapping decentralized controller, and the mitigation of
responses between adjacent buildings is dependent on
passive dampers linked by them.+emethod has been tested
for two neighboring buildings with uncertain parameters,
and the numerical analysis results are compared with those
of the centralized guaranteed cost vibration control strategy
to illustrate its effectiveness.

2. HybridControl ofOverlappingDecentralized
Guaranteed Cost for Systems with
Uncertain Parameters

2.1. Systematic Description of Adjacent Buildings with Un-
certain Parameters. Figure 1 shows the structural model of
the adjacent buildings. Considering the uncertainties of the
mass, stiffness, damping, and other factors of the structure,
the motion equation of the controlled system is obtained:

(M + ΔM) €x (t) +(C + ΔC) _x(t) +(K + ΔK)x(t) � Ds €xg(t) + Buu(t), (1)

whereM,C, andK are the total mass, damping, and stiffness
matrices of adjacent buildings, respectively;
ΔM, ΔC, and ΔK are the corresponding variation matrices,
respectively; Ds and Bu are the position matrices of seismic
excitation and control force, respectively; x(t) is the dis-
placement vector of the structure; u(t) is the control force
vector; and €xg is the seismic acceleration. In Figure 1,
m

j
i , c

j
i , and k

j
i denote the mass, damping coefficient, and

interlayer shear stiffness, where i, l, r, and d represent the
floor, the left building, the right building, and the passive
dampers, respectively.where
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C � CB + CD. (7)

+e matrices CB and CD can be obtained by using
equations (3)∼(6) and replacing interlayer stiffness coeffi-
cient k

j
i with damping coefficient c

j
i .ML andKL are the mass

and stiffness matrices of the building on the left, respectively;
MR and KR are the mass and stiffness matrices of the
building on the right, respectively; KB and CB are the
stiffness and damping matrices of adjacent structures, re-
spectively; and KD and CD are the stiffness and damping
matrices of connected systems, respectively.
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where α, β, and c are the maximum rate of change of mass,

damping, and stiffness, respectively. δM �
δML

0
0 δMR

 ,
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 , δK �
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0
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 , δC and δK are unknown

real function matrices of appropriate dimensions. Since δM
is a diagonal matrix [43], so
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.
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Equation (1) is transformed into a state-space model
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Figure 1: +e model of adjacent buildings.
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+e new state-space model can be expressed as
_Z(t) � (A + ΔA)Z(t) +(B + ΔB)u(t) + E€xg (t), (14)

where

A � TApT
− 1
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B � TBp,
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ΔA � TΔApT
− 1

,

ΔB � TΔBp.

(15)

2.2. System Extension. Consider the following state-space
model of a linearly continuous time-invariant system

S: _Z(t) � (A + ΔA)Z(t) +(B + ΔB)u(t),

y(t) � CyZ(t),

S: _Z(t) � (A + ΔA)Z(t) +(B + ΔB)u(t),

y(t) � Cy
Z(t),

(16)

where Z(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rl are the state,
input vector, and output vector of the system S, respectively.
Z(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rl are the state, input
vector, and output vector of the system S, respectively. A, B,
Cy and A, B, and Cy are n × n, n × m, l × n, n × n, n × m, and
l × n dimensional matrices, respectively. n≤ n, m≤ m, l≤l.
Based on the inclusion principle [21], for a linear uncertain
system S, a set of extended matrices V,R, andT, and a set of
shrinkage matrices U,Q, and S, the corresponding extended
system S can be expressed as follows:

A � VAU + M,

B � VBQ + N,

Cy � TCyU + L,

ΔA � VΔAU,

ΔB � VΔBQ,

(17)

where M,N, andL are the compensation matrices [21, 44].
+e system S is decomposed into L fully decoupled

paired subsystems by extending decoupling [21].

S(i)

D : _Zi(t) � Aii + ΔAii Zi(t) + Bii + ΔBii( ui(t),

yi(t) � Cy 
ii
Zi(t), i � 1, 2, . . . , L,

(18)

where Aii and Bii are known constant matrices describing
the system model. ΔAii and ΔBii are unknown matrices
that represent the parameter uncertainty in the system
model. It is assumed that the parameter uncertainty under
consideration is norm-bounded and has the following
form:

ΔAii ΔBii  � Di
Fi(t) Ei1

Ei2 , (19)

where Di, Ei1, and Ei2 are matrices of constants, which reflect
uncertain structural information, Fi(t) is an unknown
matrix, and F

T

i (t)Fi(t)≤ I.

2.3. Design of Guaranteed Cost Controller. It is assumed that
system S(i)

D meets the quadratic performance metric
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where Q
∗
i and R

∗
i are given symmetric positive definite

weighted matrices.
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Theorem 1 (see [45]). For the parameter uncertainty
subsystem S(i)

D and performance index (20), if the following
optimization problem

min
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has a solution (εi,
Yi,

Xi,
Wi), then u∗i (t) � Yi

X
− 1
i

Zi(t) is the
optimal state feedback guaranteed cost control law of the
system, where εi denotes a scalar greater than 0. Xi and Wi

denote symmetric positive definite matrix, Yi denotes a matrix
of appropriate dimensions. =e gain matrix of subsystem
decentralized controller is Gi � Yi

X
− 1
i .

2.4. Contraction of the System. +e overlapping decentral-
ized hybrid control method is a design method that com-
bines the passive connected damping units between adjacent
buildings with the overlapping decentralized active control
systems of each building. For the extended decoupling
system S(i)

D , i � (1, 2, . . . , L), the feedback gain matrices Gi of
all subsystems are calculated by using the control algorithm,
represented as a block diagonal matrix

G � diag G1,
G2, . . . , GL . (22)

+e extension controller G can be contracted to an
overlapping controller based on the contraction principle
[21, 44], i.e.,

G � QGV. (23)

3. Example Simulation and Analysis

Taking 4-story and 5-story adjacent buildings (as shown in
Figure 2) as an example, the corresponding parameters of
the adjacent structures can be seen in reference [46].

+e damping matrix is determined according to the
Rayleigh damping, and the damping ratio is set to 2%. +e
damping coefficient of the viscous damper connecting the
two structures is cd � 6.87 × 106N · s/m, and the stiffness
coefficient is 0.+e linked damper is located between the 4th
floor of the two buildings.

Northridge seismic wave is used as external excitation,
and its peak value is 3.0m/s2, duration is 30 s, and sampling
step is 0.02 s.

Only structural stiffness variation is taken into account
in this calculation example, and the maximum possible

variation of stiffness is ±15% [47]. In (9), let α � β � 0, so
ΔM � ΔC � 0 and ΔK � cK, where K represents the
nominal stiffness matrices and c � 0.15 reflects the variation
of stiffness matrix, then

ΔAl
p � Dl

pF
l
pE

l
p1,

ΔBl
p � 0,

Dl
p �

0

− M− 1
L KL

 
2n1×n1

,

Fl
p � δ[I]2n1×2n1

,

El
pl � I 0 n1×2n1

,

(24)

δ is an uncertain real scalar, |δ|< 1.
In the same way, we can get ΔAr

p,ΔBr
p,ΔDr

p, ΔFr
p,

ΔEr
p1, andΔE

r
p2.

3.1.CentralizedControl. Centralized control adopts the state
feedback guaranteed cost control method in +eorem 1 to
design the controller for the whole multistructure system.
+e weighting matrices of the building on the left are Ql

1 �

1 × 102I8 and Rl
1 � 10− 10I4. +e weighting matrices of the

building on the right are Ql
1 � 1 × 102I10 and Rl

1 � 10− 10I5.
Gl and Gr can be obtained by solving inequality (21);

then, the gain matrix of the whole multistructure structure
system can be expressed as G � diag Gl,Gr .

3.2. Overlapping Decentralized Control. +e inclusion
principle is applied to perform overlapping decomposition
of the adjacent buildings, and then controller design is
carried out, as shown in Figure 3. Extended decoupling of
the two buildings separately: system S

l

1 � [1, 2, 3], system
S

l

2 � [3, 4], system S
r

1 � [1, 2, 3], and system S
r

2 � [3, 4, 5].
+e overlapping layers are all set at the third layer of the
structure. +e state-space model of the subsystem can be
expressed in the form of equation (18).
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+rough the trial, the weighted matrices of the system S
l

1

and S
l

2 are ( Q
l

1)
∗ � 1.0 × 102I6, (R

l

1)
∗ � 10− 10I3,

( Q
l

2)
∗ � 1.0 × 102I4, and (R

l

2)
∗ � 10− 10I2; the weighted

matrices of the system S
r

1 and S
r

2 are ( Q
r

1)
∗ � 8.0 × 102I6,

(R
r

1)
∗ � 10− 10I3, ( Q

r

2)
∗ � 1.0 × 102I6, and (R

r

2)
∗ � 10− 10I3.

Solving the linear matrix inequality (LMI) according to
+eorem 1, we can get εl

i,
Y

l

i,
X

l

i,
W

l

i and εr
i ,

Y
r

i ,
X

r

i ,
W

r

i .+e

gain matrices of the building subsystem on the left are G
l

1 �

Y
l

1(
X

l

1)
− 1 and G

l

2 � Y
l

2(
X

l

2)
− 1. +e gain matrices of the

building subsystem on the right are G
r

1 � Y
r

1(
X

r

1)
− 1 and

G
r

2 � Y
r

2(
X

r

2)
− 1.

+e gain matrices of the system S
l and S

r are expressed as
block diagonal matrix, so G

l
� diag G

l

1,
G

l

2  and
G

r
� diag G

r

1,
G

r

2 . +e gain matrices of the original system
Sl and Sr are obtained according to the contraction principle,
so Gl � Ql G

lVl and Gr � Qr G
rVr; then, the gain matrix of

the entire multistructure system can be expressed as
G � diag Gl,Gr .

3.3. Analysis of Calculation Results. Figures 4–6 show the
peak interlayer displacement of adjacent buildings with
uncertain parameters.

It can be seen from the figure that, for the building on the
left, (1) when ∆K� 0, the average control effect of centralized
guaranteed cost hybrid control method (CHC) is 66.94%,
and the average control effect of overlapping decentralized
guaranteed cost hybrid control approach (ODHC) is 74.68%;
(2) when ∆K�+0.15K, the average control effect of cen-
tralized guaranteed cost control method is 66.58%, and the
average control effect of overlapping decentralized guar-
anteed cost hybrid control approach is 72.33%; and (3) when
∆K� − 0.15K, the average control effect of centralized
guaranteed cost control method is 65.88%, and the average

(Le� building)

(Right building)

Figure 2: +e model of 4-story and 5-story adjacent buildings.
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Figure 3: +e design of overlapping decentralized controller.
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Figure 4: +e peak interstory displacement (ΔK� 0): (a) the left building; (b) the right building.
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Figure 5: +e peak interstory displacement (ΔK�+0.15K): (a) the left building; (b) the right building.
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Figure 6: +e peak interstory displacement (ΔK� − 0.15 K): (a) the left building; (b) the right building.
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Figure 8: Maximum control forces (ΔK�+0.15K): (a) the left building; (b) the right building.
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Figure 9: Maximum control forces (ΔK� − 0.15 K): (a) the left building; (b) the right building.
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control effect of overlapping decentralized guaranteed cost
hybrid control approach is 75.86%.

For the building on the right, (1)when ∆K� 0, the av-
erage control effect of centralized guaranteed cost control
method is 72.75%, and the average control effect of over-
lapping decentralized guaranteed cost hybrid control ap-
proach is 72.90%; (2)when ∆K�+0.15K, the average control
effect of centralized guaranteed cost control method is
70.70%, and the average control effect of overlapping
decentralized guaranteed cost hybrid control approach is
70.36%; and (3)when∆K� − 0.15K, the average control effect
of centralized guaranteed cost control method is 75.90%, and

the average control effect of overlapping decentralized
guaranteed cost hybrid control approach is 76.22%.

Figures 7–12 show the maximum control force and
acceleration response of uncertain adjacent building systems
under seismic excitation. From Figures 7–9, it can be seen
that the maximum control force of the ODHCmethod is not
much different from that of the CHC method.

It can be seen from Figures 10–12 that the ODHC
method can still effectively control the acceleration response
of the structure in the case of variation of structural pa-
rameters, which illustrates the effectiveness of the ODHC
method proposed in this paper.
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Figure 10: Acceleration time-history curves of the top floor (ΔK� 0): (a) the left building; (b) the right building.
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Figure 11: Acceleration time-history curves of the top floor (ΔK�+0.15K): (a) the left building; (b) the right building.
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4. Conclusions

In this paper, a new scheme to solve the problem of
structural vibration control for adjacent buildings with
uncertain parameters has been proposed.+e pilot studies in
exploring overlapping decentralized guaranteed cost hybrid
control design, which integrates the high performance of
active control system with the reliability of the passive
control system, while allowing the decentralized design and
operation of the active control subsystem, that combines the
overlapping decentralized control strategy and the guar-
anteed cost control algorithm via LMI are carried out. +e
main findings are summarized as follows:

(1) +e centralized control strategy can effectively an-
alyze the structural vibration control problem, while
the overlapping decentralized control strategy pro-
vides a new idea.+e LMI is used as a tool that makes
the design of the guaranteed cost controller easier to
solve. Numerical simulation results using uncertain
parameters for 4-story and 5-story adjacent build-
ings illustrate the feasibility of the proposed control
approach, which can still effectively reduce the
seismic response of a multistructure system when the
structural parameters are uncertain.

(2) A comparison of performance between the over-
lapping decentralized guaranteed cost controllers
and the centralized guaranteed cost controllers
indicates that both controllers deliver the expected
effect. Meanwhile, the proposed control method in
this paper can improve the sampling rate and data
transmission speed to ensure the reliability of the
adjacent system.

(3) +e overlapping decentralized control design, which
overcomes the disadvantages of traditional central-
ized control strategies such as large computation, low

reliability, and poor stability, offers promising so-
lutions to complex structural systems.
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