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In the Internet of �ings (IoT) ecosystem, localization is critical for tracking and monitoring targets via nodes. �e distance
vector-hop (DV-Hop) technique is a good choice for localizing neighborhood in IoT networks. �e conventional DV-Hop
algorithm is a distributed localization approach that does not consider the distribution of the nodes into full deliberation when
calculating the hop count from the source to destined nodes. �e transfer distance and node positions thus do not attain higher
e�ciency while ascertaining the distance between sources and destined nodes. �e study aims to resolve the pitfalls in the
traditional algorithm by making enhancements in controlling the original DV-Hop algorithm’s hop count and transfer distance
method by utilizing the particle swarm to estimate the node positions. Error rate in the distance between beacon nodes and unseen
nodes is e�ectively reduced with the proposed technique that calculate error factors with corrections in a reversed fashion to revise
hop counts. An escape factor is introduced to take control of updating particles’ velocity in the system, and the inertia weight is
de�ned by a piecewise function to enlarge search space. �is mechanism increases the diversity of the particle populations and
mitigates the tendency of estimations on node positions to be trapped into local optima under stationary state. Also, the improved
DV-Hop algorithm described in the paper has a better convergence speed due to the presence of random inertia weight log-
arithmic method. Finally, the problem of premature convergence is also tackled as a variation factor is adopted in collaboration
with a �tness function that a�ects the particles’ movement range and assists in global convergence. �e overall performance of
improved DV-Hop is evaluated by statistical metrics and also compared with the traditional DV-Hop algorithm under simulated
environment with the data collected from real-world scenarios. Industry 4.0 is fully dependent upon IoTand the count of hops is
very important for deciding the routing from the source to destination for speedy transmission of data. �e improved DV-hop
algorithm can achieve better results and has reduced error rate by more than 30%.�e DV-Hop algorithm plays an important role
in IoT-enabled environment especially in Industry 4.0.

1. Introduction

Wireless sensing networks (WSNs) have a large number of
small sensing nodes, which means they have less compute,
storage, and transmission capability. Wireless sensor
networks are less expensive, have lower power consump-
tion, and are self-con�gurable sensor nodes [1]. By con-
sidering these parameters, WSNs are used in areas like
healthcare, for smart transportation, home monitoring,
military tracking, environmental monitoring, national
security purpose, and indoor navigation [2]. �e sensing
nodes sense the location and accordingly disseminate the
data. For this, the position of the destination node needs to

be detected. �e detection of position becomes di�cult due
to the �uctuations of signal and noise in the environment.
Many di�culties have been faced for location analysis [3].
Localization methods used inWSNs are independent of the
previous localization position. �ey rely on the position
data of a few speci�c sensor nodes as well as some inter-
network measurements. Using Global Positioning System
(GPS), the accurate and precise location can be found.
However, this technique is impractical due to its high cost,
increased power consumption, unavailability of signal, and
ine�cient performance [4]. Hence, there are many
methods proposed in the literature to locate the position of
node by exchanging data between the nodes.
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Many localization approaches have been presented as a
result of the location estimation problem. It is primarily
classified as a range-assisted and range-free method [4]. To
compute location among neighboring sensing, range-based
localization technique uses count of hops, distance, or angle
information which requires a higher cost to calculate dis-
tance. *e range-based technique is based on pattern
matching or connectivity measurements. It is categorized as
(1) time of arriving (TOA), (2) time difference of arriving
(TDOA), (3) received signaling strength indicator (RSSI),
and (4) angle of arriving (AOA) [2]. *ese approaches
provide good location accuracy, but they necessitate the use
of hardware for location calculation. In contrast, the range-
free technique does not require any hardware. *e cost is
reduced here because it does not use any hardware and also
the power consumption is less. To calculate distance between
nodes, it uses hop counts and distance approximation al-
gorithm [5].

*e range-free approach is further classified as follows:
centroid algorithm, amorphous, DV-Hop method, multi-
dimensional scaling (MDS) method, and approximate point
in triangulation (APIT) method. *e DV-Hop technique is
simple and easy to implement in a range-free localization
algorithm. As a result, the DV-Hop algorithm is the most
often employed [3]. *e DV-Hop algorithm reduces lo-
calization errors.*is algorithm has its localization function.
Using this function, it requests an anchor node, which
provides information of the node position. Sensor node
arranges anchor node and calculates position. *is tech-
nique gives better scalability and distribution. If sensor node
distribution is not uniform, it affects the accuracy. Because of
this, the algorithm gives poor localization accuracy [4, 6]. So,
the improvement in the existing DV-Hop algorithm has
been done. *e main contributions of the paper are as
follows:

(i) Improved DV-Hop algorithm is proposed which is
hybrid of the DV-Hop algorithm and RSSI mea-
surements to enhance the accuracy of localizing
nodes.

(ii) An RSSI-based ranging mechanism is used that
predicts one-hop distance.

(iii) Levenberg–Marquardt approach is used to compute
node position.

(iv) Analysis of DV-Hop algorithm is performed on
parameters like mean hop distance, hop count, and
node coordinates. Also, error analysis has been done
to achieve accuracy.

(v) To minimize the calculation error, the algorithm is
improved.

(vi) *e formula for mean hop distance, the hop count,
and particle swarm optimization has improved. *e
improved DV-hop algorithm has achieved better
results and has reduced the error rate by more than
30%.

Rest of the paper is organized as follows: In Section 2,
state of the art of the existing work is discussed. In Section 3,

existing working approach of DV-Hop algorithm is elabo-
rated. In Section 4, detailed implementation details of the
proposed improved DVH algorithm with the parameters
introduced and steps of implementation are elaborated. In
Section 5, detailed simulation and experimental result
analysis are discussed. In Section 6, the conclusion of the
research work is elaborated.

2. Related Works

Many authors have contributed on the same problem
statement by offering solutions based on fuzzy-based ap-
proaches, evolutionary algorithms, swarm intelligence-
based algorithms, and machine leaning-based schemes.

In [7], the authors have addressed the localization
technique used to compute the place of nodes using a
collection of nodes known as anchors. *e density collec-
tions of these anchors would be increased or decreased due
to various reasons such as maintenance, breakdown, and
lifetime. *e DV-Hop (DVH) technique is appropriate for
the positioning of nodes that consists of a few neighbor
anchors. However, the existing DVH-based technique has
not taken into account the issue of anchor failure, which can
occur during a localization operation. To solve this issue, the
authors have proposed an online sequential DVH (OS-
DVH) algorithm which is used to calculate the localization
of nodes sequentially and to enhance the position accuracy
of the nodes for multi-hop WSN. DVH method is used to
process node localization using an optimized approach for
estimating the average distance of hops between nodes. In
[8], the authors have proposed an advanced DVH technique.
*e authors have tried to lessen the error rate for the DVH
technique in two ways. At first, it is equivalent to com-
munication radius when the gap between the two hops is
less. *ese hops are known as sequential hops. *e distance
between the hops is computed by the shadowing structure.
*e unknown nodes indicate that the hop size started from
beacon nodes; however, the distribution of nodes in WSN is
not equal.

In [9], the authors have presented an improved DVH
algorithm used to boost the accuracy of the DVH algorithm
without enhancement in the computational complexity. *e
authors presented two different algorithms. Firstly, the
presented algorithms use the K-mean approach followed by
the repositioning of nodes. *e second algorithm also uses
the K-mean approach but is followed by cluster division
localization. *e first algorithm was not used frequently due
to certain conditions in the applications during the repo-
sitioning of the nodes. Hence, this algorithm cannot achieve
accuracy optimally. *at is why the advanced algorithm was
used to evaluate the distance among hops and have shown
better enhancement in accuracy. In [10], the authors have
examined the issue of hop count info among nodes having a
large influence on the localization accuracy of the standard
DVH method. As a result, an advanced method based on
RSSI was proposed to overcome the problem. In [11], the
authors have proposed to enhance the version of DVH
algorithms such as quadratic DVH (QDVH) and uncon-
strained DVH (UDVH) algorithm for the greater
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localization without the requirement of additional hardware
for the measurement of range among nodes. *e QDVH
algorithm is utilized to reduce the error rate to generate
higher localization, and the UDVH algorithm attains lo-
calization accuracy equivalent to QDVH. *e proposed
algorithms outperform than the existing DVH algorithm.

When applying the DVH algorithm to node position in
WSN, the authors presented an iDVH algorithm in [12],
which takes into account deprived precision localization. In
this approach, the mean hop size of anchor nodes is en-
hanced by minimum mean square error (MSE) and is
modified by the error factor.*en, the mean hop size among
the unknown hops and anchor hop is improved through the
dynamic load coefficient. In [13], the authors have discussed
the two kinds of localization algorithms (LA) such as range-
based LA and range-free LA. Range-based LA, on the other
hand, has stringent hardware requirements, making it dif-
ficult to implement. In the case of range-free, however, it
lowers the hardware cost. *is practice is good for only
known hops to evaluate accuracy. Hence, to evaluate better
accuracy for unknown hops, a proposed RSSI-based DVH is
proposed in this paper.

In [14], the authors have presented a DVH positioning
algorithm to evaluate better positioning accuracy. *e node
position is determined based on the radio range of anchor
nodes. In this paper, they have used the discovery probability
technique for the evaluation of localization error. In [15], the
authors have proposed the RMADVH (regular moving
anchor DVH) algorithm to enhance the DVH algorithm
based on the regular moving anchor node and RSSI range
approach. *e proposed localization algorithm utilizes a few
anchor nodes, achieves distribution of hops equally, and
reduces the hardware cost.

In [16], the authors have discussed the localization al-
gorithm, which is of utmost proficiency because of its
simplicity, low cost, and less complexity. But having the
limitation is poor localization accuracy when the anchor
nodes are reduced. Hence, this paper proposed a weighted
DVH based on RSSI. In [17], the authors have proposed an
improved DVH based on a dynamic anchor node-set
(DANS DVH) to increase the accuracy of location. In this
proposed algorithm, part of anchor nodes participates in
localization, whereas in existing DVH algorithms complete
nodes are applied. Binary particle swarm optimization
(BPSO) algorithm is utilized to design DANS. In [18], the
authors have a detailed analysis of the DVH algorithmwhich
is not efficient in the evaluation of localization accuracy due
to various constraints.

In order to overcome the drawbacks of existing ap-
proaches, this paper is introducing two new mechanisms
such as the weighted averaged approach which is utilized to
calculate each hop distance and estimation of unknown node
distance and beacon nodes to estimate average of hop
distance.

3. DV-Hop Algorithm

*e hop counts operate as multipliers in most DV-Hop
extensions’ algorithms, applying to a normalized distance

unit that represents the discrete form of real distance be-
tween nodes after quantification. When initializing the
nodes, the minimum hop count of a beacon node gets
initialized together with that of unseen nodes by simply
checking connectivity according to the transmission range
in the channel [19]. *e current hop count is 1 if the two
nodes can communicate or else is infinity (also, in imple-
mentations, mark the current hop count as 0 to indicate the
nodes are identical). *ese connectivity-related meta-data
are broadcast to the entire network, forming a topology
model for future usage [20]. *en, iterate through the
connection matrix using the minimum path method,
updating the local hop count and sending it to the network.
Finally, the number of hops to the destination node is
calculated and logged as hij.

3.1. Mean Hop Distance. Firstly, after calculating the min-
imum hop count, the value is assigned to the nodes of the
whole network through broadcasting, denoted as hij, and the
value of correction nodes is calculated as given in

di �
j≠i

������������������

xi − xj 
2

+ yi − yj 
2



j≠ihij

,

kij � xi − xj 
2

+ yi − yj 
2
,

di �
j≠i

���
kij



j≠ihij

.

(1)

After the unseen node receives the transfer distance of
the nearest beacon node, it takes the product of the transfer
distance obtained from that node to estimate its value to
each beacon node as shown in equation (2) [21]. *en, the
known nodes and target nodes are calculated by using this
algorithm.

Di � di × hij. (2)

Unseen node coordinates: *e distance between two
points is as given in

���
k11


� d1,

���
k22


� d2,

⋮
���
k33


� dn,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where (x, y) represents the distance between the unknown
points.

Equation (3) uses the first n − 1 terms to subtract the n-th
term convertible least squares difference to estimate the
unseen node coordinates as shown in

X � ATA 
− 1
ATB. (4)

Among them,
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,

X � [x, y]
T
.

(5)

3.2. DV-HopAlgorithm Error Analysis. Many methods use a
correction factor to change the jump distance in order to
increase the robustness [21], but the errors of the transfer
distance are not weighted. Hence, the improvement is rel-
atively large and has unstable positioning error rate. In other
works, an error factor is used to improve the weight;
however, since it did not arrange the problem into the early,
middle, and later stage based on the particle swarm’s
properties, in the process of calculation, thus the global
optimal position cannot be found. By assistance from some
normalization and correction techniques on hop count and
hop distance, the coordinates of nodes can be calculated
more accurately [22].

3.2.1. Hop Count Error. *e hop count is a number that
represents the value of how many aliquots a number can be
divided into. Previous methods assumed that the distribu-
tion of nodes was even enough to ignore disparities in
distance per hop between node pairs. *us, it simply counts
every direct communication between two nodes as 1 hop,
regardless of the actual distance. *erefore, the errors in hop
count get accumulated in the routing process, which makes
the final result inaccurate [23].

3.2.2. Error in Mean Hop Distance. *e entire traditional
algorithm resolves the routing paths as straight paths
connecting node pairs, as opposed to polygonal lines in most
cases when the node positioning strategy is generally con-
sidered random. *erefore, the current distance estimate
model representing the airline distances rather than the
actual routing paths would certainly produce large errors,
especially when its propagation routes cannot be reduced to
straight lines.

Maximum limit method for the error of point coordi-
nates: From the formula of calculating the coordinates of
points by the maximum likelihood method [24], the coor-
dinates (x, y) of the unseen nodes are the intersections of the
circles with the radius of d1, d2, d3, . . . , dm and
(x1, y1), . . . , (xm, ym) as the center of the circle.

However, in practical applications, the circles would not
intersect at one point in most cases, but intersect in a small
area. *erefore, there certain error is obtained in the node
coordinates that cannot be eliminated. Moreover, when the

nth equation is sequentially subtracted by the (n − 1)th

equation, a large iteration error is generated each time [25].

4. The Proposed Improved DVH Algorithm

According to the actual distribution of sensor nodes, the
principle of shortening the gap between actual data and ideal
conditions is adopted to minimize the calculation error as
much as possible. When resolving the transition distance
and number of transitions, consider the distribution of the
sensor nodes in actual situations and then improve it
according to the different distribution conditions by putting
weight to the discrete raw data with the help of correction
factor or error factor.

4.1. Improvement of the Mean Hop Distance. Calculating the
average transfer distance by multiplying the transition count
will directly affect the accuracy of the algorithm. In this
paper, two variables are introduced as error factors to
control the weight and average transfer distance of the
beacon node.

First, this error factor calculates the transfer distance
error of beacon nodes. *e algorithm for most DV-Hop
extensions adopts the principle of proximity which only
accepts the first message sent by beacon nodes. *e indi-
vidualized data selection cannot match the random distri-
bution situation of the actual nodes. It reduces the accuracy
rate of the algorithm.

*en, this algorithm takes the measuring average error
caused by the average node and the average numbers of
transfer count of any single beacon node by using the it-
erative error generated by the traditional algorithm when
calculating the distance between the nodes.

Equation (6) describes how to calculate measuring mean
error of transfer distance of beacon nodes E.

E �
1
2

e1 + e2( . (6)

In equation (6), e1 and e2 represent error rates.

e1 � di − Davg 
2
, (7)

e1 represents the error, which is generated by comparing the
average transfer distance of the beacon node with the actual
hop distance as shown in

Davg �
1
n



n

i�1
di, (8)

Davg represents the mean transfer distance of all beacon
nodes. n represents the number of beacon nodes. di rep-
resents the mean transfer distance of beacon nodes.

*e error rate of e2 is represented by

e2 �
1
n


i≠j

dij − Dij

hopij

 

2

, (9)
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e2 represents mean transfer distance error of every hop. dij

denotes the actual distance of the beacon nodes. hopij de-
notes the minimum transition count.

*e distance of the beacon node is represented by

Dij � di × hopij, (10)

where Dij represents the estimated distance between beacon
nodes.

A weighted average method is proposed to reduce the
error bymaking the weighted value inversely proportional to
the average error. *e weights are calculated as shown in

wi �
(1/|E|) + 1/hopi( 


M
j�1 (1/|E|) + 1/hopj  

. (11)

In equation (11), hop is the transition count between
unseen nodes and the beacon node. M is the number of
nodes.

Finally, the modified weighting method is used to cal-
culate by using

d � 
M

i�1
widi, (12)

where di is the original transfer distance and d represents the
improved transition distance.

4.2. Improvement of the Hop Count. *e hop count is de-
fined as a value that describes the amount of normalized
distance unit. *e conventional DV-Hop algorithm records
the hop count as 1 hop abstractly regardless of actual hop
distance. Obviously, this hypothesis is improper. In response
to this problem, error factor and correction factor are in-
troduced in this paper.

First, get the correction factor by broadcast

ξij � 1 − L
2
ij, (13)

where Lij represents the error factor. Larger Lij represents
greater error as given in

Lij �
hij − Hij

hij

, (14)

where hij represents the estimated transition count. Hij

represents the ideal hop count. *e ideal hop count is
calculated as actual distance dij as given in equation (15)
which divide the communication radius R.

Hij �
di

R
. (15)

*en, calculate the improved hop count using

hopij � 1 −
hij − Hij 

2

h
2
ij

⎛⎝ ⎞⎠. (16)

Finally, through the calculation of unseen nodes, an
accurate location is found in

Ds � d × hopij. (17)

4.3. Improvement of the Particle Swarm Optimization.
Particles in particle swarm algorithm not only act inde-
pendently and move randomly, but also share information
and cooperate among particles. *e algorithm uses iteration
search to find optimal solution. *en, we calculate the
optimal position of the target node in the entire particle
population.

*e speed and position are updated as follows:

v
k+1
id � w∗ v

k
id + c1 ∗ r1 p

k
id − x

k
id  + c2 ∗ r2 p

k
gd − x

k
id ,

(18)

x
k+1
id � xk

id + v
k+1
id . (19)

In the common particle swarm algorithm, the particles
will fall into a relatively stable stage which causes premature
convergence of the particles. During this period, the con-
vergence of particles will slow down so that the particles are
difficult to achieve global optimal, thereby affecting the local
minimum and increasing the difficulty of particle escape.

In this paper, the improvement has been made. Firstly,
the particle velocity update equation is changed. *is escape
element is introduced to velocity update equation to disturb
the particle learning strategy, thus escaping the local opti-
mum. *en, the weight of the particle swarm algorithm is
changed into a classification function classified according to
the number of iterations, and different weights are calculated
for different iteration times. Finally, the variation factor s is
added to enhance the population diversity and reduce the
probability of premature.

4.4. Improvement of the Particle Velocity Update Formula.
To prevent particles from falling in local optimum in stable
stage, this paper puts a premature flag to determine current
position of particles by examining whether it is in the
standard threshold. If the algorithm is in a normal state, it is
optimized by the standard particle swarm algorithm. When
the flag reaches the set threshold, it is judged that the particle
enters the premature convergence at this time. At this time, a
central learning strategy is applied to the particles, and an
escape factor is defined to avoid premature aging of the
particles. Let the particles escape the local optimum and
continue to find the global optimal as in

v
k+1
id � w∗ v

k
id + c1 ∗ r1 p

k
id − x

k
id  + c2

∗ r2 p
k
gd − x

k
id  + c3 ∗ r3 c

k
end − x

k
id .

(20)

In equation (20), k is number of iterations, w is inertia
weight, c1 and c2 are acceleration constants, pid is the op-
timal position at which the particles are present, and pgd is
the optimal position of the global particles. r1, r2, r3 are
constants in the interval (0, 1), and xid is the position vector
of the particle.
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Define cend � r1 ∗pbest + r2 ∗pgest/2 as the escape
factor, the pbest is the optimal position in the transition
process i, and pgest is the global counterpart.

4.5. Improvement of Weights. *e inertia weight is usually
used to control search ability of particle as shown in equation
(21). Based on this theory, this paper proposes to set the
weight as a piecewise function.

w �

wmax − 0.1 · wmax − wmin(  · e

k

100,

wmax − wmax − wmin(  · log 1.15 ·
k

100
  + 0.1A,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(21)

wherewmin andwmax represent theminimum andmaximum
inertia weights. A � 0.5 · rand ( ) 0.

By gradually decreasing the inertial weight of the entire
particle population with a random algorithm, the accuracy
of the particle swarm algorithm is improved.

4.6. Addition of a Variation Factor. Variation factor is in-
troduced to clearly show the fitness of particle between
variation factors s and si. It is simpler to choose particles
with relatively low fitness to continue iteration.*is not only
enlarges search space and increases the population diversity,
but also clearly shows the distribution situation of new
nodes, as represented in

s � si − a si1 − si2(  +(1 − a) si − pg( , (22)

where si represents the position of the current particle, si1
and si2 are any two particle positions except the whole
population, and si1 ≠ si2.

4.7. Selection of Fitness Function. *e distance error is
expressed by

���
k11


� d1 + ε1,

���
k22


� d2 + ε2,

⋮
���
knn


� dn + εn.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

When ε equals to its minimum, position of the optimal,
the reciprocal of hop counts is introduced as weight to
control error caused by estimated distance of numerical high
hop in variation of fitness function. Fitness function is all
shown in

fitness(x, y) � 
n

i�1

1
hi

���
kij


− di



 . (24)

Minimize the value of fitness(x, y) by multiple itera-
tions to improve positioning accuracy.

4.8. Steps of Proposed Improved DVH Algorithm

(1) Calculate hop count h.
(2) Calculate the error of hop count by

Lij � hij − Hij /hij. (25)

(3) Calculate the correction factor by the reciprocal of
error. Use correction factor to correct the hop
count to get new hop count with less error as
shown in

hopij � 1 −
hij − Hij 

2

hij
2

⎛⎝ ⎞⎠hij. (26)

(5) Calculate mean transfer distance.
(6) Calculate weight according to error of hop count by

using

hopij � 1 −
hij − Hij 

2

hij
2

⎛⎝ ⎞⎠hij. (27)

(7) Use weight to correct transfer distance to get new
transfer distance with less error by using

d � 
M

i�1
widi. (28)

(8) Distance between beacon node and unseen node is
shown in

D � hd. (29)

(9) Initialize k, N, c1, c2, wmax, and wmin.
(10) Update speed formula and calculate the optimum

position of global particle.
(11) Get the final coordinate of node (x, y).

*e optimized and improved location algorithm is as
follows:

(1) *e minimum hop count is calculated by the
shortest path method.

(2) For each beacon node, first repeat steps (13)–(16) to
correct the number of bars, and the result of the
loop execution is the average hop distance.

(3) Use equations (6)–(9) to correct the mean transfer
distance and combine the hop count to estimate the
distance from each beacon node.

(4) Set relevant parameters.
(5) Initialize a certain number of particles in a given

area.
(6) *e variation factor s is generated by (22) and

compared with si to preserve the less adaptable.
(7) Let t � t + 1, and update the velocity and position.
(8) *e fitness value of each particle at its current

position is calculated using the fitness function
fitness(x, y).
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(9) First, compare the individual optimal values of
individuals into pbest.

(10) Node positioning is based on the optimized particle
swarm algorithm.

(11) Determine whether the iteration stop condition is
reached, and if not return to step 8. Otherwise, the
optimal coordinate solution is output.

(12) *e optimal coordinate solution of the current
output is used as the positioning coordinate of the
unseen node.

5. Experimental Results and Analysis

5.1. Simulation and Result Analysis. *e simulation was
carried out on the MATLAB 2019b platform. *e datasets
used in this paper are the longitude and latitude of weather
station and mobile terminals of the main campus of BUPT.
*e data selection range of weather station information in
partial areas is from 99.228211E, 41.186073N to
117.404741E, 25.930456N, while the selection range of
mobile terminal information in the main campus of BUPT is
from 116.36188E, 39.969686N to 116.36806E, 39.969686N as
shown in Figures 1 and 2. After normalization, the latitude
and longitude are, respectively, mapped to the interval of (0,
1) in proportion to meet the input data requirements of the
algorithm.

*e advantages of this algorithm from the above results
can be observed. *e two pictures simulate sensor clusters
with datasets of two real environments that shows sensor
nodes are distributed in different places at random states.
Red stars and black dots are used to represent beacon nodes
and unseen nodes, respectively. After random shuffling of
the dataset, the first few ones are selected as the beacon
nodes. In each experiment, the beacon nodes obtained were
fixed at the same scale.

5.2. Analysis of Experimental Results. Hop count and hop
distance are shown in Figures 3 and 4.

Hops count and hop distance have an impact on
maximum likelihood estimation. *e suggested technique
improves a variety of input parameters, including the
number and distance of leaps transferred, as well as the
positional fitting model that processes them. In terms of hop
count, the hop count resolved by the original algorithm
using simple linear division method cannot fit into certain
scenarios very well, where the nodes are gathered partially
while they are discretized globally. For instance, although the
original DV-Hop works well with evenly distributed nodes,
as the weather station dataset shown in Figure 1, it cannot
handle datasets like mobile terminals inside buildings as
shown in Figure 2 and can be sensitive to these changes. So,
the improved DV-Hop algorithm can cover more cases with
better precision by weighting the original maximum hop
count, which can better reflect the actual routing path.

*e actual node distribution is complicated, and the
hops between nodes are completely different. To solve this
problem further, the article solves the problem of dropping
mean transfer distance information through broadcasting

and introduces two error factors averaged algebraically.
From Figures 3 and 4, when solving the hop count and hop
distance, the average accuracy is higher; thus, it has higher
robustness under different concentrations of node dataset.
By comparison, it is found that the derivative of the tra-
ditional calculation is unstable, so serious deviation will
occur in the operation. In other words, the distribution of
nodes has high randomness in the process of selecting
beacon nodes. *is is because the two datasets have different
properties on the distribution of nodes. It shows that the
traditional original algorithm cannot effectively use the
meta-information captured in the broadcast communication
process. *e improved DV-Hop algorithm aims to solve the
error loss and utilizes more information of the broadcast
mechanism, so that the accuracy of the estimated distance is
steadily improved, and the impact is smoother as the nodes’
distribution feature changes. Use particle swarm to improve
the unseen node coordinate estimation. Figure 5 shows
average error against transmission radius with 30 particles
and 50 iterations, and Figure 6 shows average error with 30
particles and 100 iterations. Figure 7 shows average error
with 100 particles and 100 iterations.

Figure 8 shows average error against beacon nodes with
30 particles and 50 iterations, and Figure 9 shows average
error against beacon nodes with 30 particles and 100 iter-
ations. Figure 10 shows average error against beacon nodes
with 100 particles and 100 iterations.

*e enhanced technique can estimate the unseen node
with accuracy. *e original technique uses the estimated
distance as the radius and uses the coordinates of m beacon
nodes as the center of the circle. *em circles are difficult to
intersect at one point, leading to a certain error in the
obtained node coordinates. After iteration, the error be-
comes larger, so the position accuracy is greatly affected.
Unlike previous methods that employ the maximum like-
lihood estimate approach to determine node coordinates,
the modified DV-Hop algorithm chooses to improve on the
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Figure 1: Weather stations in partial areas of China.
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classic particle swarm algorithm. It incorporates escape
factors to increase and manage particle update speed, pre-
venting particles from escaping from the local optimum
owing to premature status change, as well as finding the
global optimum rapidly. *en, a piecewise function is in-
troduced to calculate inertia weight in the iterative process,
and weights are calculated according to the number of
iterations.

*e comparison between Figures 3 and 9 shows that this
algorithm can effectively calculate the location of unseen
nodes. By comparing Figures 5, 6, 8, and 9, it is concluded
that the proposed algorithm optimizes the hop counts and

hop distances. For example, within the communication
range of 10, the average error of the experiment with 30
particles is 0.38, and the average error of the experiment with
100 particles is 0.24, so the improvement is more than 36%.
*e rest of Figures 6 to 10 shows the difference in average
error when using different iteration times. After reducing the
number of iterations from 100 to 50, the results of the al-
gorithm did not change significantly; that is, analyzing its
advantages, the number of iterations increases without
causing an overreaction.

90

80

70

60

50

40

30

20

10

100 20 30 40 50 60 70 80 90 100
0

100

Nodes disribution of mobile terminals
Red*as beacon node. Black . as unknown node

Figure 2: Mobile terminals of the main campus of BUPT.
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Figure 3: Hop count and hop distance on workstations.
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Figure 4: Hop count and hop distance on mobile terminals.
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Figures 11 and 12 show the comparison of the two al-
gorithms.*e average error of this algorithm decreases more
obviously with the change of communication range. Con-
sidering that the routing protocol used in this experiment is
pre-static routing, the shortest path method is adopted. *e
communication range has little effect on the final routing
path, so the main reason for the rapid improvement of
efficiency in this part is the removal of invalid communi-
cation nodes, and the coordinate estimation accuracy of the
node of this part is relatively close to a two-dimensional
uniform distribution which can be found in experiments,
especially if the mobile terminal dataset is used. After the
communication range keeps increasing, the number of

isolated nodes can be ignored. It can be observed that the
two types of algorithms are in a stable state, but due to the
improved DV-Hop algorithm using its reasonable correc-
tion of number of conversion and distance, the error rate of
the results in any dataset all shows a monotonously de-
creasing nature. *e traditional algorithms have a situation
where the error rate increases as the communication radius
increases. Although the performance of the communication
range around 40m that appeared on the weather station
dataset has improved due to the local distribution
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Figure 6: Average error for 30 particles and 100 iterations.
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Figure 5: 30 particles and 50 iterations.
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Figure 7: Average error for 100 particles and 100 iterations.
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Figure 8: Average error for 30 particles and 50 iterations.
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characteristics of nodes, the error rate of the traditional
algorithm remains stable at 0.5, which is close to unavailable
on the mobile terminal dataset. In this situation, the im-
proved DV-Hop algorithm’s predicted coordinate error rate
is 1/2 to 1/5 of the traditional algorithm’s error rate. In-
fluence of transmission radius on positioning error is shown
in Figures 13 and 14.

Figures 13 and 14 show the variation trend of the average
error calculated according to the different beacon nodes in
different datasets. Moreover, for the traditional DV-Hop
that uses maximum likelihood estimation, more beacon
nodes mean longer estimation depth, which has a certain
effect on the improvement of accuracy. Under large quantity

of beacon nodes, traditional DV-Hop is restricted by the
transfer distance acquisition under the proximity principle.
As new beacon nodes are added to the global transfer
distance value, the global transfer distance value changes
greatly, resulting in the accuracy rate, and fluctuates up and
down. *e derived traditional algorithm basically effectively
alleviates the instability problem by averaging the broadcasts
of all beacon nodes, but it does not contribute to the overall
accuracy rate, and there is still a serious error rate rebound.
*e improved DV-Hop algorithm can achieve better results
in both datasets and has reduced error rate by more than
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Figure 9: Average error for 30 particles and 100 iterations.
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Figure 10: Average error for 100 particles and 100 iterations.
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Figure 11: Influence of beacon node density on positioning error.
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Figure 12: Coordinate estimation influenced by communication
range.
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30%. Until the beacon node accounts for 10% of all nodes, it
has not entered the platform period. And as the proportion
of beacon nodes increases, it shows a strict monotonic
decrease, showing good robustness.

5.3. Discussion. In this paper, the improvement has been
made in traditional DV-Hop algorithm. Firstly, the particle
velocity update equation is changed. *e escape element is
introduced in velocity update equation to disturb the particle
learning strategy, thus escaping the local optimum.*en, the
weight of the particle swarm algorithm is changed into a
classification function and classified according to the
number of iterations. Different weights are calculated for
different iteration times. Finally, the variation factor is added

to enhance the population diversity and reduce the prob-
ability of premature convergence. To prevent particles from
falling in local optimum in stable stage, this paper puts a
premature flag to determine current position of particles by
examining whether it is in the standard threshold. If the
algorithm is in a normal state, it is optimized by the standard
particle swarm algorithm. When the flag reaches the set
threshold, it is judged that the particle enters the premature
convergence at this time. *e original DV-Hop works well
with evenly distributed nodes, as the weather station dataset
shown in Figure 1; it cannot handle datasets like mobile
terminals inside buildings as shown in Figure 2 and can be
sensitive to these changes. So, the improved DV-Hop al-
gorithm can cover more cases with better precision by
weighting the original maximum hop count, which can
better reflect the actual routing path.

6. Conclusion

*e study aims to propose an improved DV-Hop algorithm
for IoT-enabled Industry 4.0 applications which make use of
wireless communications, and hop count plays an important
role. *e improved DV-Hop improves the transfer distance
method by using the advantages of particle swarm for the
assessment of the node positions. Error rate in the distance
between known and unseen nodes is optimized with the
proposed technique that calculate error factors with cor-
rections in a reversed fashion to revise hop counts. A new
escape factor is devised to take control of updating particles’
velocity in the system, and the inertia weight is defined by a
piecewise function to enhance the search space. *is
mechanism increases the diversity of the particle pop-
ulations and mitigates the tendency of particles’ estimations
on node positions to be trapped into local optima under
stationary state. *e improved DV-Hop algorithm described
in the paper has a fast global convergence speed due to the
presence of random inertia weight logarithmic method. *e
overall performance of improved DV-Hop is evaluated as
shown in result section and is also compared with the
traditional DV-Hop algorithm under simulated environ-
ment with the data collected from real-world scenarios. *e
DV-Hop algorithm plays an important role in IoT-enabled
environment especially in Industry 4.0. In the future, we will
propose a case study by using the improved DV-Hop
algorithm.
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