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Nanocrystalline spinel ferrite based compounds are technological drivenmaterials with interesting potentials in photocatalysis for
renewable energy generation, gas sensing for pollution control, magnetic drug delivery, rod antennas, storagemedia (high density)
and supercapacitive materials, among others. Speci�c surface area of spinel ferrite based compounds contributes immensely to the
application of this semiconductor in industrial domains. Experimental determination of speci�c surface area is laborious and
costly and consumes appreciable time. Compositional substitutions in crystal structure e�ectively improve physical properties and
enhance speci�c surface area through alteration of moment distribution between tetrahedral oxygen sites and octahedral co-
ordination.With the aid of distorted lattice parameters due to compositional substitution and the spinel ferrite nanocrystallite size
as model descriptors, this present work models the speci�c surface area of spinel ferrite nanomaterial through extreme learning
machine (ELM) based intelligent modelingmethod. e developed sigmoid activation function-based ELM (S-ELM)model shows
superior performance over genetic algorithm based support vector regression (GBSVR) and stepwise regression (STWR) models
existing in the literature with performance improvement of 61.31% and 70.01%, respectively, using root mean square error
performance metric.  e signi�cances of cobalt and lanthanum compositional substitution on the speci�c surface area of spinel
ferrite nanomaterials were investigated using S-ELM model. Ease of implementation of S-ELM model as compared with the
existing GBSVRmodel, coupled with the demonstrated improved performance and persistent closeness of its predictions with the
experimental values, would be highly meritorious for quick and precise characterization of speci�c surface area of spinel ferrite
nanomaterials for various desired applications.

1. Introduction

Spinel ferrite nanomaterials have recently attracted signi�-
cant attention due to their unique and fascinating chemical,
physical, magnetic, electrical, and optical properties [1, 2].
 ese properties are useful in a variety of technological

advancements and applications, which include photo-
catalysis for renewable energy generation [3], cancer
treatment [4], agents for antibacterial [5], electromagnets
[6], gas sensors, biomedicine [7], switching devices [8], drug
delivery [9, 10], magnetic recording [11], water splitting [12],
magnetic resonance imaging [13], multilayer chip inductors
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[14], supercapacitors [15], and spintronics, among others.
Recent significant attention on nanomaterial basedmagnetic
materials such as spinel ferrite nanomaterials can be at-
tributed to their unique properties, which include the ability
to adjust their optical, structural, magnetic, and electronic
properties through doping as well as vacancy creation
[16–19]. By altering the size, shape, manufacturing tech-
nique, dopant ions, and their concentration, various physical
properties of a system containing nanoparticles can be
changed [20–22]. Large specific surface area, excellent cal-
cination ability, quantum confinement effect, and smaller
crystal size render spinel ferrite based compound indis-
pensable for many applications [23]. +e size difference
between a nanoparticle and its surface area is a vital aspect of
nanotechnology since the smallest particle has a charac-
teristic larger surface area. +e inverse relation between the
size of the nanoparticle and the surface area creates a
dramatic change between the electronic structure of the bulk
particle and that of the nanoparticle [24]. +is work employs
crystallite size and lattice distortion to model the specific
surface area of spinel ferrite nanomaterial.

+e ferrite family is classified as garnets, hexagonal, and
spinel ferrite using crystal structure as a criterion [25]. Spinel
ferrites are distinguished from other ferrite family members
by their distinctive features, which have led to their de-
ployment for many technological applications [9, 26, 27].
Spinel ferrites have the general chemical formula MFe2O4,
with M denoting divalent ions such as Fe2+, Co2+, Zn2+,
Mg2+, Mn2+, and Ni2+, among others [28]. +ere are two
types of interstitial sites characterizing spinel crystal
structure: the tetrahedral (A) and octahedral (B) sites. Spinel
can further be grouped into three categories based on its
crystal structure: inverse spinel, normal spinel, and complex
spinel [29]. Fe(III) and M(II) occupy octahedral sites and
tetrahedral, respectively, in normal spinel, and ZnFe2O4 is a
typical example [30]. Because the interstitials of octahedral
sites are often larger than those of tetrahedral sites, cations
with lesser radii are more likely to be found at M sites. In
contrast, those with larger radii are more likely to be found at
Fe(III) sites. In inverse spinel, half of the Fe(III) is located in
tetrahedral sites, whereas the M(II) and the remaining
Fe(III) are found in octahedral sites, such as NiFe2O4 [31].
In complex spinel, M(II) and Fe(III) occupy tetrahedral and
octahedral sites in a random order [12]. +e features of
spinel ferrites are compositional dependence, distribution of
cations over sites available, and their preparation techniques
[32]. To enhance their specific surface area for the desired
application, several metal ions, including Ni, Gd, Sr, Zn, Co,
Cd, etc., have been used to dope ferrite nanoparticles
[25, 33–39], which alter the crystal lattice properties of the
spinel ferrite at various nanoparticle sizes.+e crystallite size
and lattice parameter are utilized in this work to model
specific surface area of spinel ferrite through an intelligent
algorithm based on an extreme learning machine.

Extreme learningmachine (ELM) is an enhanced version
of a single hidden layer feedforward network with con-
ventional potentials to adjust network weights (such as the
output and input weights) and biases using traditional
gradient descent approach [40, 41]. However, this approach

consumes appreciable training time with characteristic less
efficiency [42]. Extreme learning machine algorithm trains
single hidden layer feedforward network using amazing trick
in which the values of the biases and input weights are
chosen randomly and arbitrarily. Hence, generalized inverse
operation is purposely employed for output weight com-
putation to minimize the generalized error while the system
becomes simplified as linear systems [43]. Moreover, the
ELM algorithm determines only the output weight with the
circumvention of a descent-based approach known to be
slow. +erefore, the computational techniques utilized by
ELM algorithm lead to minimized training error, reduced
computational time, and enhanced generalization ability due
to minimization of output weight norm. +ese unique
features of ELM algorithm have widened its application
domain in varieties of fields and specialization [44–47]. +e
uniqueness of ELM algorithm is harnessed in this contri-
bution to model specific surface area of spinel ferrite based
compounds while the existing models in the literature de-
termine specific surface area of the same compounds using
stepwise regression (STWR) model and hybrid genetic al-
gorithm based support vector regression (GBSVR) model
[27]. +e deficiency of STWR based model comes from its
inability to account for nonlinearity between the descriptors
and the measured specific surface area [27]. +e existing
GBSVR model shows better performance over STWRmodel
due to its ability to adopt nonlinear mapping function for
feature space data transformation coupled with hyper-
parameters optimization using genetic algorithm. +e em-
pirical risk minimization principle which formulates the
mathematical background of ELM based model strengthens
its universal approximation capacity over the structural risk
minimization principle adopted by GBSVR model. +e
superiority of ELM has been demonstrated in this contri-
bution by comparing the estimates of ELM basedmodel with
the existing models in the literature. +e obtained perfor-
mance enhancement of the ELM based model compared
with other existing intelligent models in the literature is due
to the universal approximation feature of ELM through
Moore-Penrose generalized inverse implementation.

Novelties of the developed sigmoid activation function-
based ELM (S-ELM) model over the existing models in the
literature include the ease of implementation and better
generalization capacity on the basis of performance metrics.
+e developed S-ELM model can be easily implemented
using Excel or standard calculator while the implementation
of the existing genetic algorithm based support vector re-
gression (GBSVR) model [27] is restricted to MATLAB
environment. S-ELM model has demonstrated enhanced
performance of 4.67% (using correlation coefficient, CC),
5.28% (using mean absolute error, MAE), and 58.22% (using
root mean square error, RMSE) over the existing GBSVR
model [27] for training set of data samples while it achieves
improved performance of 11.64% (using CC metric), 61%
(using MAE metric), and 61.31% (using RMSE metric) for
testing set of data samples. In the same vein, the developed
S-ELM model shows performance improvement of 58.29%
(using CC metric), 87.66% (using MAE metric), and 84.12%
(using RMSE metric) over the existing stepwise regression
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(STWR) model [27] on training set of samples while it
demonstrates improved performance of 18.28% (using CC
metric), 67.05% (using MAE metric), and 70.01% (using
RMSE metric) for testing set of samples.

+e roadmap of this work entails Section 2 (which
presents the background of ELM, data acquisition, and
computational methodology) and Section 3 (which shows
and discusses results with comparison to the existing models
in the literature).

2. Empirical Study and
Computational Methodology

+e mathematical background and extreme learning ma-
chine description are presented in this section. +e section
also includes the computational strategies and physical
description of the dataset.

2.1. Extreme Learning Machine Intelligent Method.
Extreme learning machine (ELM) is an intelligence based
algorithm with single-layer feedforward network architec-
ture and characteristic single hidden layer [40, 48, 49]. +e
algorithm randomly maps the hidden layer and ultimately
assigns values for the biases and input weights with the goal
of output weight computation using least-square approach.
ELM algorithm conserves training time compared with the
conventional backpropagation algorithm. At the same time,
the characteristic stochastic choice of the input weights and
the biases ensures universal approximation of the rela-
tionship between the target and descriptors. Consider a
training set (ψr, Sr) of spinel nanoferrite based compounds
of M number of samples in which the measured specific
surface area of the magnetic semiconductor is defined as
Sr � [sr1, sr2, . . . .., sm]T while the crystallite size and the
lattice distortion which serve as the model descriptors are
defined as ψr � [ψr1,ψr2, . . . ..ψm]T. ELM algorithm models
and approximates function linking (ψr, Sr) of spinel
nanoferrite based compounds with σ hidden nodes and χ(ψ)

activation function with an output presented in equation (1)
[50].

δr � 
σ

r�1
∅rχr ψi( 

� 
σ

r�1
∅rχr crψr + λr( ,

(1)

where r � 1, 2, 3, . . . , M cr � [cr1, cr2, . . . .., cm]T is the
weight vector linking hidden nodes with the input nodes,
∅r � [∅r1,∅r2, . . . .,∅m]T is the weight vector joining
hidden nodes with the output nodes, and λr represents the
threshold of r hidden nodes. Supposing that the ELM al-
gorithm approximates M-spinel nanoferrite based com-
pound samples withminimum error, parameters∅r, cr, and
λr exist, so that equation (2) is satisfied.
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where the estimated specific surface area using ELM algo-
rithm is defined as Spred. +e matrix representation of the
expression contained in equation (2) is shown in the fol-
lowing equation:

Hφ � Spred, (3)
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+e parameters cr and λr of the hidden layer are selected
randomly, while the parameter ∅r of the output layer is
computed through Moore-Penrose generalized inverse as
presented in equation (4) [51].

∅ � H
T

HH
T

 
−1

Spred. (4)

2.2. Spinel Ferrite Nanomaterial Data Samples for Modeling
and Simulation. +e dataset samples utilized for modeling
ELM based model that estimates specific surface area of
doped spinel ferrite nanomaterials consist of the crystallite
size and lattice parameter (along the crystallographic direc-
tion) as descriptors, while the desired target is the specific
surface area after dopant incorporation. +e entire samples
for modeling are extracted from available forty different
compounds of spinel ferrite nanomaterials in [52–58]. In-
troduction of dopants such as zinc into spinel ferrite nano-
material crystal structure influences the specific surface area
of the parent compound and further expands the crystal
lattice without causing a disturbance on the lattice symmetry
[59]. Similarly, crystallite size contributes to structural dis-
order on nanoparticle surface due to the significance of spin
disorder as the ratio of the surface and volume is altered [60].

+e correlation cross-plot between crystallite size, lattice
parameter, and specific surface area is shown in Figure 1 pur-
posely to deduce the trend of linear relationship between the
specific surface area of spinel ferrite nanomaterials and the de-
scriptors. +e coefficients of a linear relationship between
crystallite size and lattice parameter are −26.67% and −26.58%,
respectively, which strongly indicates that the lattice constant and
crystallite size are not linearly correlated with the specific surface
area despite the established physical discretional relation [60–62].
To establish a relationship for specific surface area of spinel ferrite
nanomaterial, hybrid genetic algorithm based support vector
regression (GBSVR) and stepwise regression (STWR) models
were proposed recently with acceptable performance metrics
[27]. +e present developed model based on ELM has charac-
teristic ease of implementation and further shows superior
performance as compared with the existing models.

2.3. Computational Method and Details. Extreme learning
machine (ELM) based model for spinel ferrite nanomaterial
specific surface area prediction was developed using
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MATLAB computing environment. Randomization of
forty samples of spinel ferrite nanomaterial based com-
pounds was conducted while 4 :1 ratio of data separation
into training and testing phase followed. Randomization
strengthens model efficiency and saves computational time
in such a manner that model enjoys validation on ap-
proximated patterns during training phase. +e general-
ization and predictive capacity of the proposed ELM based
model were further enhanced through grid search approach
of model parameters. +e model parameter is the number
of hidden nodes for different activation functions. How-
ever, these parameters could be optimized using meta-
heuristic algorithms [63–67], manual method [68], and grid
search approach [69]. +e choice of grid search approach in
this work is due to a few numbers of model parameter
(which is only the hidden node) which makes the choice of
heuristic algorithm computationally noneconomical.
Computational steps for the ELM based model are de-
scribed as follows:

Step 1: Initialization of Mersenne Twister Generator:
input weights and biases are generated using Mersenne
Twister Generator within MATALAB. +is pseudo-
random generator further preserves the reproducibility
of the model.
Step 2: Number of hidden node optimization through a
grid search approach for each of the chosen activation
functions: with the search space spanning between 1
and 100 for hidden node selection, one activation
function was selected at a time from different available
functions such as sigmoid function, triangular basis
function, sine function, radial basis function, and
hardlim function.
Step 3: Hidden layer output matrix computation: De-
ployment of training set of data on equation (3) yields
the output matrix of the hidden layer.
Step 4: Calculation of output weights connecting the
hidden layer with the output layer: Implementation of
Moore-Penrose generalized inverse using equation (4)
computes the output weights.

Step 5: Validation stage and performance metrics com-
putation: +e computed output matrix and the ran-
domly generated input weights as well as the biases are
employed using ELM operational principles to deter-
mine the specific surface area of spinel ferrite nano-
material compounds that were excluded during training
phase. +e predictions of ELM based models developed
were compared with the known experimental values of
specific surface area while performance metrics such as
mean absolute error (MAE), correlation coefficient
(CC), and root mean square error (RMSE) were com-
puted. +e model with characteristic lowest value of
MAE and RMSE was assigned the best model. +e
weights corresponding to the best model were also saved
for subsequent deployment. +e computational illus-
tration of every step is presented in Figure 2.

3. Results and Discussion

+e results of S-ELM model for specific surface area esti-
mation is contained in this section. +e comparison of the
prediction strength of S-ELM model with the two existing
models in the literature is further discussed.

3.1. Extreme Learning Based Functions for Specific Surface
Area Prediction. +e empirical equation generated through
implementation of ELM algorithm for prediction of specific
surface area of doped spinel ferrite nanomaterials is shown
in equation (5). +e obtained relation extends equation (4)
with the sigmoid activation function.

Spred � 
σ

r�1
∅r/1 + exp − crψi + λr(  . (5)

Several activation functions were explored while the
sigmoid function demonstrated superior performance. +e
output weights (∅r), bias (λr), and input weights (cr) for
each of the descriptors are presented in Table 1 for each of
the hidden node. As presented in the table, the optimum
number of hidden node is thirty-four. Ease of imple-
mentation of equation (5) contributes to its superiority (over
the existing hybrid intelligent model in [27]) in addition to
the enhanced performance demonstrated by the developed
S-ELM model.

3.2. Model Performance Comparison. Performance of
S-ELM model developed in this work is compared with
GBSVR (2021) [27] and STWR (2021) [27] existing models
in the literature and shown in Figure 3. Using mean absolute
error (MAE) shown in Figure 3(a), S-ELM model outper-
forms GBSVR (2021) and STWR (2021) model with per-
formance improvement of 5.28% and 87.66%, respectively,
while percentage improvements of 4.67% and 58.30% were,
respectively, obtained using correlation coefficient (CC) as
presented in Figure 3(b).

Similar comparison on the basis of root mean square
error (RMSE) presented in Figure 3(c) shows performance
improvement of 58.21% and 84.12%, respectively. During
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Figure 1: +ree-dimensional cross-plot between the descriptors
and specific surface area of doped spinel ferrite nanomaterial.
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testing stage of model development, S-ELM model out-
performs GBSVR (2021) [27] and STWR (2021) [27] existing
models with performance improvement of 61.0% and
67.06% on the basis of MAE presented in Figure 3(d), and
11.64% and 18.28% on the basis of CC presented in
Figure 3(e), 61.31% and 70.1% on the basis of RMSE pre-
sented in Figure 3(f ), respectively. Table 2 presents the values
of each of the parameters’ measuring performance as well as
the performance superiority of the present S-ELM model
over the existing models.

3.3. Predictions of the Present and Existing Models. +e re-
sults of the influence of different dopants on specific surface
area of spinel ferrite nanomaterials are presented in Table 3.
Cobalt-based spinel ferrite shows enhanced surface area at
various crystallite sizes of nanomaterials with reduced
crystal lattice constant [52]. +e variation in lattice constant
which manifested into enhanced surface area is due to
smaller ionic radius of cobalt as compared with the copper
ions. Site preference for each of the metal ions results in
enhanced surface area, as can be observed in manganese,
copper, and codoping systems presented in Table 3. +e
significances/effects of other different kinds of dopants on
surface area of spinel ferrite nanomaterials are presented in
Table 3. +e estimates of S-ELM model show consistent and

persistent closeness with the measured values compared
with the estimates of the two existing GBSVR (2021) and
STWR (2021) models. +e precision characterizing the
developed S-ELMmodel can also be inferred from the lowest
MAE value and highest CC value for the entire spinel ferrite
nanomaterials presented in Table 3. +e universal approx-
imation power of ELM algorithm through Moore-Penrose
generalized inverse implementation contributes immensely
to its superior performance. +e result of yttrium substi-
tution for cadmium in Cd1-xYxFe2O4 ferrite compound is
presented in Table 3. +ere is alteration in cation distri-
bution since yttrium and cadmium ions occupy the tetra-
hedral site during the substitution while the octahedral site is
occupied by the iron [54]. +e observed ions distribution
leads to gradual reduction in the value of the compound’s
specific surface area as the yttrium concentration increases
while the results of the developed S-ELM model capture the
majority of the observed experimental trends. +e estimated
specific surface area for gadolinium (rare Earth metal)
substitution in spinel ferrite compound using S-ELM model
is also presented in Table 3. Gadolinium ions in lattice
structure of Zn0.5Mg0.5Fe2-xGdxO4 ferrite cause interstitial
site stretching in octahedral and tetrahedral sublattice and
further promote cations redistribution which alters the
specific surface area of the compound [55]. +e empirical
risk minimization principle governing the employed ELM
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Output matrix
Randomized 

biases and input 
weightsOutput weight

Training portion

No Yes

RMSE = 0 or 
maximum 

hidden node is 
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Save the weights of the best model
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(descriptor 1), lattice
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ferrite nano-material
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ELM based 
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Figure 2: ELM based model flowchart for specific surface area of spinel ferrite nanomaterial estimation.
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Table 1: ELM parameters for empirical equation implementation.

Hidden node (r) ∅r λr cr (lattice parameter) cr (crystallite size)

1 −0.62274 −0.09551 0.662722 −2.2E+ 09
2 0.945422 0.888646 0.396684 5E+ 12
3 −0.57982 0.29738 0.507116 −4.8E+ 07
4 −0.8383 −0.51232 0.65382 −3E+ 13
5 −0.14263 −0.9731 0.825833 −9.3E+ 11
6 0.732903 −0.37844 0.361 −1669932
7 −0.04152 0.070403 0.559194 425195.2
8 0.445617 −0.23035 0.746379 5102536
9 −0.68086 −0.28236 0.693861 1.38E+ 11
10 0.240922 −0.3114 0.324664 −3E+ 08
11 0.250907 0.186269 0.344454 1.54E+ 10
12 0.17992 −0.55345 0.807188 −2.9E+ 09
13 0.935471 0.408186 0.118581 −1.2E+ 13
14 −0.4163 0.231036 0.123533 26047114
15 0.020411 0.840614 0.373485 −6.4E+ 12
16 −0.56299 0.54586 0.000409 −5.7E+ 08
17 0.085264 0.700882 0.376104 −4.3E+ 12
18 −0.36751 −0.1255 0.329068 1.06E+ 09
19 0.577621 −0.22523 0.785514 434085.8
20 0.247755 0.230884 0.351277 1.09E+ 10
21 0.437797 −0.95321 0.661203 1.99E+ 11
22 −0.71626 −0.62271 0.015629 −1.1E+ 13
23 −0.77069 0.949419 0.086171 −1.7E+ 10
24 0.911439 0.232516 0.903004 3.4E+ 12
25 −0.34473 −0.20198 0.030566 4.1E+ 10
26 0.351874 −0.82816 0.117889 −7.1E+ 11
27 0.956593 0.165212 0.633875 1.81E+ 10
28 −0.9117 −0.42496 0.101884 8.58E+ 12
29 0.716314 0.082483 0.388419 −4.1E+ 09
30 −0.25616 −0.87667 0.23045 −1.1E+ 12
31 −0.81234 0.208952 0.366493 −98509.6
32 0.89921 0.692168 0.754947 5.48E+ 12
33 0.867543 −0.79842 0.374596 5.58E+ 08
34 0.988284 0.566743 0.021894 8.37E+ 12
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Figure 3: Continued.
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Figure 3: Comparison of S-ELM model and GBSVR (2021) and STWR (2021) models: (a) based on a mean absolute error on training
dataset; (b) based on coefficient of correlation on training dataset; (c) based on root mean square error on training dataset; (d) based on
mean absolute error on testing dataset; (e) based on coefficient of correlation on testing dataset; (f ) based on root mean square error on
testing dataset.

Table 2: Comparison of model performance as well as the performance superiority.

Training Testing
CC MAE RMSE CC MAE RMSE

S-ELM 0.9902 2.0029 3.1181 0.9566 4.3021 4.8494
GBSVR (2021) [27] 0.9440 2.1146 7.4631 0.8452 11.0318 12.535
STWR (2021) [27] 0.4130 16.2313 19.6192 0.7817 13.0592 16.2186
% superiority of S-ELM over GBSVR 4.6726 5.2819 58.2192 11.6454 61.0032 61.3127
% superiority of S-ELM over STWR 58.2962 87.6602 84.1066 18.2793 67.0573 70.0991

Table 3: Specific surface area of different spinel ferrite based nanomaterials as obtained from experimental values and developed S-ELM
model as well as the existing GBSVR (2021) and STWR (2021) models. All values of specific surface area are measured in (M2/g).

Spinel ferrite nanomaterial Measured specific surface
area

S-
ELM Residual GA-SVR

(2021) Residual SWR
(2021) Residual

CoFe2O4 23.500 [52] 23.598 0.098 23.600 0.100 46.054 22.554
CuFe2O4 8.900 [52] 3.754 5.146 9.000 0.100 48.881 39.981
MnFe2O4 0.400 [52] 1.035 0.635 36.117 35.717 34.528 34.128
MN0.4Co0.6Fe2O4 11.900 [52] 11.906 0.006 12.000 0.100 35.832 23.932
Mn0.4Co0.4Cu0.2Fe2O4 8.800 [52] 10.793 1.993 28.379 19.579 34.361 25.561
Mn0.4Co0.2Cu0.4Fe2O4 4.000 [52] 4.770 0.770 4.100 0.100 38.662 34.662
MN0.4Cu0.6Fe2O4 1.400 [52] 6.734 5.334 1.500 0.100 34.932 33.532
Mg0.25Ni0.15Cu0.25Co0.35Fe2-xLaxO4
(x� 0) 40.047 [53] 40.656 0.609 40.046 0.001 27.126 12.921

Mg0.25Ni0.15Cu0.25Co0.35Fe2-xLaxO4
(x� 0.03) 43.503 [53] 46.320 2.817 40.436 3.067 29.593 13.910

Mg0.25Ni0.15Cu0.25Co0.35Fe2-xLaxO4
(x� 0.06) 48.562 [53] 51.320 2.758 48.462 0.100 32.158 16.404

Mg0.25Ni0.15Cu0.25Co0.35Fe2-xLaxO4
(x� 0.09) 49.071 [53] 44.652 4.419 46.434 2.637 32.337 16.734

Mg0.25Ni0.15Cu0.25Co0.35Fe2-xLaxO4
(x� 0.12) 40.067 [53] 33.590 6.477 40.167 0.100 28.269 11.798

Mg0.25Ni0.15Cu0.25Co0.35Fe2-xLaxO4
(x� 0.15) 39.361 [53] 43.102 3.741 39.461 0.100 27.573 11.788

Cd1-xYxFe2O4(x� 0) [54] 32.180 [54] 32.539 0.359 32.280 0.100 19.719 12.461
Cd1-xYxFe2O4(x� 0.125) 29.900 [54] 37.289 7.389 30.000 0.100 25.880 4.020
Cd1-xYxFe2O4(x� 0.250) 30.420 [54] 22.383 8.037 30.320 0.100 25.393 5.027
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algorithm strengthens its universal approximation capacity
and translates to improved performance as compared with
structural risk minimization principle utilized by the
existing GBSVR model. +e deviations between the esti-
mates of S-ELM model and the measured values can be
reduced further through implementation of advanced in-
telligent algorithms such as sensitivity linear learning
method of neural networks, metaheuristically optimized
extreme learning method, and gravitational search algo-
rithm based support vector regression, among others.

4. Conclusion

Extreme learning machine (S-ELM) based model was de-
veloped for predicting the specific surface area of spinel
ferrite based nanomaterials using the lattice distortion (due
to the incorporated dopants) and the size of nanoparticle
crystallite as descriptors. S-ELM model has demonstrated
enhanced performance of 4.67% (using CC metric), 5.28%
(using MAE), and 58.22% (using RMSE metric) over the
existing GBSVR model for training set of data samples while
it achieves improved performance of 11.64% (using CC
metric), 61% (using MAE metric), and 61.31% (using RMSE
metric) for testing set of data samples. Similarly, S-ELM
model shows performance improvement of 58.29% (using
CC metric), 87.66% (using MAE metric), and 84.12% (using
RMSEmetric) over the existing STWRmodel on training set
of samples while it demonstrates improved performance of
18.28% (using CC metric), 67.05% (using MAE metric), and
70.01% (using RMSE metric) for testing set of samples. +e

developed S-ELMmodel investigates the influence of cobalt,
yttrium, magnesium, nickel, and cadmium on specific
surface areas of spinel ferrite nanomaterials. Aside from the
ease of implementation of S-ELM model, its enhanced
performance further contributes to its uniqueness. +e
precision demonstrated by S-ELM model would strengthen
quick, efficient, and precise characterization of the specific
surface area of spinel ferrite based compounds with cir-
cumvention of time demanding experimental procedures.
Advanced intelligent algorithms such as sensitivity linear
learning method of neural networks, metaheuristically op-
timized extreme learning method, and gravitational search
algorithm based support vector regression could be devel-
oped for spinel ferrite specific surface area modeling in
future works.
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Table 3: Continued.

Spinel ferrite nanomaterial Measured specific surface
area

S-
ELM Residual GA-SVR

(2021) Residual SWR
(2021) Residual

Cd1-xYxFe2O4(x� 0.375) 25.440 [54] 25.637 0.197 25.540 0.100 39.862 14.422
Cd1-xYxFe2O4(x� 0.5) 28.740 [54] 28.238 0.502 28.840 0.100 31.757 3.017
Zn0.5Mg0.5Fe2O4 24.860 [55] 23.746 1.114 40.292 15.432 35.567 10.707
Zn0.5Mg0.5Fe1.98Gd0.02O4 25.524 [55] 24.207 1.317 38.006 12.482 34.715 9.191
Zn0.5Mg0.5Fe1.96Gd0.04O4 26.756 [55] 26.820 0.064 26.856 0.100 34.053 7.297
Zn0.5Mg0.5Fe1.94Gd0.06O4 28.250 [55] 32.117 3.867 28.350 0.100 33.331 5.081
Zn0.5Mg0.5Fe1.92Gd0.08O4 29.497 [55] 32.109 2.612 29.480 0.017 32.559 3.062
Zn0.5Mg0.5Fe2-xGdxO4 (x� 0.1) 31.837 [55] 30.688 1.150 31.937 0.100 31.884 0.047
Zn0.5Co0.05LaxFe2-xO4 (x� 0) 33.300 [56] 27.141 6.159 40.083 6.783 34.896 1.596
Zn0.5Co0.05LaxFe2-xO4 (x� 0.025) 55.500 [56] 54.887 0.613 55.400 0.100 38.741 16.759
Zn0.5Co0.05LaxFe2-xO4 (x� 0.05) 58.800 [56] 50.000 8.800 58.700 0.100 38.286 20.514
Zn0.5Co0.05LaxFe2-xO4 (x� 0.075) 59.200 [56] 53.848 5.352 59.300 0.100 38.330 20.870
Zn0.5Co0.05LaxFe2-xO4 (x� 0.1) 60.900 [56] 60.363 0.537 39.996 20.904 38.324 22.576
Zn0.5Co0.05LaxFe2-xO4 (x� 0.125) 60.800 [56] 61.102 0.302 43.691 17.109 38.333 22.467
Co0.9Ni0.1Fe2O4 41.800 [57] 41.418 0.382 41.700 0.100 34.085 7.715
Co0.7Ni0.3Fe2O4 64.700 [57] 64.691 0.009 64.600 0.100 39.379 25.321
Co0.5Ni0.5Fe2O4 79.500 [57] 79.488 0.012 79.400 0.100 45.148 34.352
Co0.3Ni0.7Fe2O4 85.200 [57] 85.195 0.005 85.100 0.100 51.574 33.626
Co0.1Ni0.9Fe2O4 92.700 [57] 92.695 0.005 92.600 0.100 73.049 19.651
Cu0.5Cd0.25Co0.25Fe2O4 25.349 [58] 29.527 4.178 25.449 0.100 31.361 6.012
Cu0.5Cd0.25Co0.25Fe1.9875O4 26.311 [58] 23.605 2.706 34.640 8.329 32.075 5.764
Cu0.5Cd0.25Co0.25Fe1.975O4 29.266 [58] 29.984 0.718 40.431 11.165 31.776 2.510
Cu0.5Cd0.25Co0.25Fe1.9625O4 37.102 [58] 35.063 2.040 37.002 0.100 33.245 3.857
Cu0.5Cd0.25Co0.25Fe1.95O4 41.808 [58] 47.090 5.282 41.708 0.100 33.760 8.049

MAE 2.463 3.898 15.597
CC 0.986 0.916 0.461
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