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 e topic of estimating the parameters of Gompertz distribution using an adaptive Type-II progressively censored data are
described in this paper.  e unknown parameters, the reliability, and the hazard functions are estimated using maximum
likelihood and Bayesian estimation methods.  e approximate con�dence intervals of them are then determined. Furthermore,
the Markov chain Monte Carlo approach is used to perform a Bayesian estimate procedure and compute the credible intervals.
Finally, a Monte Carlo simulation study is done to assess the performance of the two estimating methods, and a numerical
example with real data is shown to demonstrate the procedures’ utility.

1. Introduction

In life testing and survival analysis, there are numerous
scenarios, in which units are withdrawn or lost from the
experiment before it fails.  e data obtained from such an
experiment is referred to as censored data.  e most
important reason for censoring is to reduce the total
length of the test, as well as the expense and labor involved
with it. A censoring method that can achieve a balance
between the total time spent on the experiment, the
number of units used in the experiment, and the e�ciency
of statistical inference based on the experiment’s results is
also desirable. Because of time constraints and other data
gathering constraints, censoring is prevalent in life
experiments.

Naturally, there are di�erent types of censoring schemes.
 e most common censoring schemes are Type-I censoring,
in which the life testing experiment is terminated at a
speci�ed time T and in this case, the number of failures
(from a sample size n) is a random variable; and Type-II
censoring, in which the life testing experiment is terminated

upon the rth failure, and in this case, the total time of test is a
random variable. One of the disadvantages of the traditional
Type-I and Type-II censoring schemes is that they do not
have the �exibility to allow units to be removed at times
other than the experiment’s end.

As a result, we investigate a more general censoring
scheme known as progressive Type-II censoring, which o�ers
this feature. In a brief, this is how it works: consider a reliability
experiment, in which n units are tested throughout a lifetime
experiment. R1 units of the (n − 1) surviving units are ran-
domly eliminated from the experiment when the �rst failure
(X1) occurs. Similarly, R2 units of the (n − 2 − R1) surviving
units are randomly removed from the experiment when the
second failure (X2) occurs.  e test continues until the mth
failure (Xm) occurs and at that time the remaining (Rm �
n − m − R1 − · · · − Rm− 1) units are removed. Prior to the
study, the Ri values are set.  e progressive Type-II censoring
sample is de�ned as the ith order observed failure times
denoted by XR1 ,R2 ,...,Rm

i: m: n ; i � 1, 2, . . . , m.  e censoring scheme
in the notation of theXi: m: n’s be suppressed for convenience.
We also use the notation X1:m: n <X2:m: n < · · · <Xm:m: n to
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represent the observed values of a progressively Type-II
censored sample.

)e adaptive Type-II progressive censoring, abbreviated
by (AT2PC), is a mixture of Type-I censoring and Type-II
progressive censoring systems (cf. Ng and Chan [1]). In this
censoring scheme, we allow R1 − R2 − · · · − Rm to depend on
the failure times. As a result, the effective sample size is
always m, and it is known in advance. )e following are
some of the benefits of a well-designed AT2PC life testing
experiment: (i) reduce the total test time; (ii) reduce the costs
associated with unit failure; and (iii) improve the statistical
analysis efficiency.

)e following is a description of the censoring scheme:
consider n identical units in a life testing experiment, and
presume the experimenter selected an ideal aggregate test
time T, while the experiment may run throughout time T.
)e experiment stops at time Xm: m: n if themth progressively
censored failure happens before time T (i.e., Xm: m: n <T).
Otherwise, the experiment will be rapidly ended if the ex-
perimental time T has passed but the number of observed
failures has not surpassed m (i.e., Xm: m: n >T). As a result,
we attempt to include as many items as possible on the test.
)e number of failures observed before to time T is denoted
by J. Hence, we have

XJ: m: n ≤T<XJ+1: m: n, J � 0, 1, . . . , m, (1)

where X0: m: n ≡ 0 and Xm+1: m: n ≡ ∞. After the experiment
elapsed the time T, we set

RJ+1 � . . . � Rm− 1 � 0, and Rm � R
∗
m � n − m − 􏽘

J

i�1
Ri.

(2)

Use this formula to finish the experiment rapidly if the
(J + 1)th failure time is more than T for J + 1<m. It is worth
noting that the value of T influences the values of Ri, as well
as providing a compromise between a shorter experimental
time and a larger chance of observing outlier failures. )e

usual progressive Type-II censoring scheme with the pre-
fixed progressive censoring scheme (R1, . . . , Rm) is pro-
duced when T⟶∞. )e schematic representation of the
adaptive Type-II progressive censoring scheme is shown in
Figure 1. Cramer and Iliopoulos [2], Mahmoud et al. [3],
Balakrishnan and Cramer [4], Ye et al. [5], El-Sayed et al. [6],
Mohie El-Din et al. [7], Almetwally et al. [8], Almetwally
et al. [9], Nassr et al. [10], Mohan and Chacko [11], Almongy
et al. [12], Haj Ahmad et al. [13], Dutta and Kayal [14, 15],
and Abo-Kasem et al. [16] provide comprehensive reviews of
the literature on the adaptive Type-II progressive censoring
scheme.

)e Gompertz distribution, which is used as a survival
model in reliability and survival analysis and plays a sig-
nificant role in modeling human mortality and fitting ac-
tuarial tables, is the underlying distribution in this work.)e
investigation of statistical methods and characterization of
the Gompertz distribution, which was initially described by
Gompertz [17], has been contributed by many researchers.
)e probability density function (PDF), cumulative distri-
bution function (CDF), reliability function, and hazard rate
function of the two-parameter Gompertz distribution are
provided, respectively, as follows:

f(x; δ, β) � δβe
− β eδx − 1( )+δx

, x> 0, (3)

F(x; δ, β) � 1 − e
− β eδx − 1( ), x> 0, (4)

s(t) � e
− β eδt − 1( ), t> 0, (5)

and

h(t) � βδe
δt

, t> 0, (6)

where δ > 0 and β> 0 are the scale and shape parameters,
respectively. )e PDF and hazard rate function of the
Gompertz distribution are represented in Figures 2 and 3,
respectively, for different values of the scale parameter δ and
shape parameter β.
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Figure 1: Schematic representation of the adaptive Type-II progressive censoring scheme: (a) case 1: experiment terminates before time T
(i.e., Xm <T); (b) case 2: experiment terminates after time T (i.e., T<Xm).
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 e Gompertz distribution is used in a variety of do-
mains, including gerontology, computer science, biology,
and marketing science, to describe human mortality and
create actuarial tables. Figures 2 and 3 illustrate that the
Gompertz distribution has a unimodal PDF and an in-
creasing hazard function, respectively.  e features, infer-
ential methods, and a wide range of applications of the
Gompertz distribution have been studied by a number of
researchers. Willekens [18] looked at the relationships be-
tween the Gompertz distribution and other distributions,
including the Type-I extreme value and Weibull distribu-
tions. Using a progressive Type-II censoring scheme, Chang
and Tsai [19] calculated the maximum likelihood (ML)
estimates as well as the exact con�dence interval for the
parameters of the Gompertz distribution. Soliman et al. [20]
used progressive �rst-failure censoring to compute the ML
and Bayesian estimates for the unknown parameters, as well
as the hazard rate and reliability functions of the Gompertz
distribution. For the unknown parameters, they also

calculated approximate and exact con�dence intervals.
Based on a generalized progressively hybrid censoring
scheme, Mohie El-Din et al. [21] derived ML and Bayesian
estimates for the parameters of the Gompertz distribution, as
well as one- and two-sample Bayesian predictions for future
observations from the same population.

 is is how the rest of the paper is organized.  e ML
estimators of the unknown parameters, as well as the as-
sociated survival and hazard functions, are derived in Sec-
tion 2.  e approximate con�dence intervals for δ and β, as
well as the associated survival and hazard rate functions, are
also provided. In Section 3, the Gibbs sampling process is
utilized to generate a sample from the posterior density
function, which is then used to compute Bayesian estimates
and create credible intervals. A Monte Carlo simulation
study is undertaken in Section 4 to assess the performance of
the two estimation methods as well as the con�dence in-
tervals. In Section 5, some numerical �ndings utilizing a real
data set are presented to demonstrate the inferential pro-
cesses. Finally, in Section 6, we �nish the work with some
conclusions.

2. Maximum Likelihood Estimation

 eML estimators of δ, β, s(t), and h(t) are discussed in this
section. Also we calculated the approximate con�dence
intervals δ, β, s(t), and h(t).

Let X1:m: n< · · · <XJ:m: n<T<XJ+1:m: n< · · · <Xm:m: n be
an adaptive Type-II progressive censored sample from a
continuous population with CDF F(x) and PDF f(x) along
with a censoring scheme R� (R1, . . . ,Rj,0, . . . ,0,R∗m), where
T is pre�xed and R∗m � n − m − ∑

J
i�1Ri.  en, the joint density

function ofX1:m: n< · · · <XJ:m: n< T<XJ+1:m: n< · · · <Xm:m: n

is given as (Ng et al. [22])

f1,2,...,m: m: n x1, x2, . . . , xm( )

� dJ ∏
m

i�1
f xi: m: n( )  ∏

J

i�1
1 − F xi: m: n( )( )Ri 

× 1 − F xm: m: n( )( )R
∗
m ,

0<x1: m: n < x2: m: n < · · · <xm: m: n <∞,

(7)

where

dJ �∏
m

i�1
n − i + 1 − ∑

max i− 1,J{ }

k�1
Rk . (8)

From (3), (4), and (7), the likelihood function of δ and β
is given by the following equation:

L x; δ, β( )∝ ∏
m

i�1
δβe− β eδxi − 1( )+δxi 

× ∏
J

i�1
e− βRi eδxi − 1( )  e− βR

∗
m eδxm − 1( )[ ],

(9)

and then, the log-likelihood function may be written as
follows:
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Figure 3: Hazard rate function of the Gompertz distribution for
di�erent values of δ and β.
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Figure 2: PDF of the Gompertz distribution for di�erent values of
δ and β.
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ℓ x;δ,β( 􏼁∝m log δ+ m log β

+δ􏽘
m

i�1
xi − β􏽘

m

i�1
e
δxi − 1􏼐 􏼑 − β􏽘

J

i�1
Ri e

δxi − 1􏼐 􏼑 − βR
∗
m e

δxm − 1􏼐 􏼑.
(10)

)e likelihood equations are constructed by differenti-
ating (10) with regard to δ and β and equating to zero:

zℓ x; δ, β( 􏼁

zδ
�

m

δ
+ 􏽘

m

i�1
xi − β􏽘

m

i�1
xie

δxi

− β􏽘

J

i�1
Rixie

δxi − βR
∗
mxme

δxm � 0,

(11)

zℓ x; δ, β( 􏼁

zβ
�

m

β
− 􏽘

m

i�1
e
δxi − 1􏼐 􏼑 − 􏽘

J

i�1
Ri e

δxi − 1􏼐 􏼑

− R
∗
m e

δxm − 1􏼐 􏼑 � 0.

(12)

Based on a progressive Type-II censored sample, Ghi-
tany et al. [23] formulated the necessary and sufficient
condition for the existence and uniqueness of the ML
estimators of the parameters of the Gompertz distribu-
tion. )e following theorem introduces the necessary and
sufficient condition for the existence and uniqueness of
the ML estimators of the parameters of the Gompertz
distribution based on an adaptive progressive Type-II
censored sample by substituting k � m,
RJ+1 � . . . � Rm− 1 � 0, and Rm � R∗m into )eorem 1, ob-
tained by Ghitany et al. [23].

Theorem 1. Let X1: m: n < · · · <XJ: m: n <T<XJ+1: m: n

< · · · <Xm: m: n be an adaptive Type-II progressive censored
sample with a censoring schemeR � (R1, . . . , Rj,

0, . . . , 0, R∗m). 7en, the maximum likelihood estimates 􏽢δML

and 􏽢βML of the parameters δ and β of the Gompertz distri-
bution exist, and they are unique with

􏽢βML � m 􏽘
m

i�1
e
δxi − 1􏼐 􏼑 + 􏽘

J

i�1
Ri e

δxi − 1􏼐 􏼑 + R
∗
m e

δxm − 1􏼐 􏼑⎡⎣ ⎤⎦

− 1

,

(13)

and 􏽢δML as the solution of the nonlinear equation,

m

δ
+ 􏽘

m

i�1
xi −

m 􏽐
m
i�1 xie

δxi + 􏽐
J
i�1 Rixie

δxi + R
∗
mxme

δxm􏼐 􏼑

􏽐
m
i�1 e

δxi − 1􏼐 􏼑 + 􏽐
J
i�1 Ri e

δxi − 1􏼐 􏼑 + R
∗
m e

δxm − 1􏼐 􏼑
� 0,

(14)

if and only if

2􏽘
m

i�1
xi 􏽘

m

i�1
xi + 􏽘

J

i�1
Rixi + R

∗
mxm

⎛⎝ ⎞⎠>m 􏽘
m

i�1
x
2
i + 􏽘

J

i�1
Rix

2
i + R
∗
mx

2
m

⎛⎝ ⎞⎠.

(15)

)e ML estimators of the reliability function 􏽢s(t) and
hazard rate function 􏽢h(t) may be produced utilizing the
invariance property of the ML estimator by substituting 􏽢δML

and 􏽢βML in (5) and (6), respectively, and given by the fol-
lowing equation:

􏽢s(t) � e
− 􏽢β e

􏽢δt − 1􏼒 􏼓
, t> 0, (16)

and
􏽢h(t) � 􏽢δe

􏽢βt
, t> 0. (17)

2.1. Approximate Confidence Intervals. From the log-likeli-
hood function in (10), we have

z
2ℓ x; δ, β( 􏼁

zδ2
�

− m

δ2
− β􏽘

m

i�1
xi( 􏼁

2
e
δxi − β􏽘

m

i�1
xi( 􏼁

2
e
δxi

− βR
∗
m xm( 􏼁

2
e
δxm ,

(18)

z
2ℓ x; δ, β( 􏼁

zδ zβ
�

z
2ℓ x; δ, β( 􏼁

zβ zδ

� − 􏽘
m

i�1
xie

δxi − 􏽘

J

i�1
Rixie

δxi − R
∗
mxme

δxm ,

(19)

and

z
2ℓ x; δ, β( 􏼁

zβ2
�

− m

β2
. (20)

Taking the expectation of minus equations (18), (19), and
(20) yields the Fisher information matrix I(δ, β). However,
because the expectation is difficult to get, so under some
regularity criteria, (􏽢δ, 􏽢β) is approximately bivariately normal
distributed with mean (δ, β) and covariance matrix
I− 1
0 (􏽢δ, 􏽢β): (􏽢δ, 􏽢β) ∼ N((δ, β), I− 1

0 (􏽢δ, 􏽢β)), where I− 1
0 (􏽢δ, 􏽢β) is the

inverse of the observed Fisher information matrix given by
the following equation:

I
− 1
0 (􏽢δ, 􏽢β) �

−
z2ℓ x; δ, β( 􏼁

zδ2
−

z2ℓ x; δ, β( 􏼁

zδ zβ

−
z2ℓ x; δ, β( 􏼁

zδ zβ
−

z2ℓ x; δ, β( 􏼁

zβ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

(􏽢δ,􏽢β)

�
var(􏽢δ) cov(􏽢δ, 􏽢β)

cov(􏽢δ, 􏽢β) var(􏽢β)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(21)

)us, the 100(1 − c)% approximate confidence intervals
for δ and β are, respectively,

􏽢δ ± zc/2

������

var(􏽢δ)

􏽱

and 􏽢β ± zc/2

������

var(􏽢β)

􏽱

. (22)

where var(􏽢δ) and var(􏽢β) are the first and second elements
on the main diagonal of the covariance matrix I− 1

0 (􏽢δ, 􏽢β) and
zc/2 is the percentile of the standard normal distribution with
right-tail probability r/2.

2.2. Approximate Confidence Intervals Using the Delta
Method. Greene [24] proposed the delta technique as a
general way for computing approximate confidence intervals

4 Mathematical Problems in Engineering



for ML estimator functions. See Agresti [25] for a de-
scription of the delta approach, which takes a function that is
too complex to compute the variance analytically, generates
a linear approximation of it, and then computes the variance
of the simpler linear function that can be utilized for large
sample inference. )e approximate confidence intervals for
s(t) and h(t) are calculated using the delta approach in this
subsection. Let

V1 �
zs(t)

zδ
zs(t)

zβ
􏼢 􏼣 andV2 �

zh(t)
zδ

zh(t)
zβ

􏼢 􏼣, (23)

where

zs(t)

zδ
� − βte

β 1− eδt( )+δt
,

zs(t)

zβ
� e

β 1− eδt( ),

zh(t)

zδ
� βδte

δt
,

zh(t)

zβ
� δte

βt
.

(24)

)en, the approximate estimates of var(􏽢s(t)) and
var(􏽢h(t)) are given, respectively, by the following
equation:

var(􏽢s(t))≃ V
T
1 I

− 1
0 V1􏽨 􏽩

(􏽢δ,􏽢β)
and var(􏽢h(t))≃ V

T
2 I

− 1
0 V2􏽨 􏽩

(􏽢δ,􏽢β)
,

(25)

where VT
i is the transpose of the vector Vi, i � 1, 2. So, the

100(1 − c)% approximate confidence interval of s(t) and
h(t) are

􏽢s(t) − zc/2

��������
var(􏽢s(t))

􏽰
, 􏽢s(t) + zc/2

��������
var(􏽢s(t))

􏽰
􏼐 􏼑 (26)

and

􏽢h(t) − zc/2

��������

var(􏽢h(t))

􏽱

, 􏽢h(t) + zc/2

��������

var(􏽢h(t))

􏽱

􏼓.􏼒 (27)

3. Bayesian Estimation

)eBayesian estimation of δ, β, s(t), and h(t) is developed in
this section. As Arnold and Press [26] have highlighted,
there is no mechanism for selecting adequate priors for
Bayesian estimation. Under the assumption that both pa-
rameters δ and β are unknown and have independent
gamma priors, Bayesian estimation is utilized here, with
PDFs provided by the following equation:

ϕ1(δ | a, b) �
b

a

Γ(a)
δa− 1

e
− bδ and ϕ2(β|c, d) �

d
c

Γ(c)
βc− 1

e
− dβ

,

(28)

respectively, where a, b, c, d> 0 and Γ(.) denotes the
complete gamma function. It is worth mentioning that the
gamma prior’s class is flexible because these distributions
may be used to model a wide range of prior information.
Furthermore, by setting hyperparameters to zero, the
improper priors of δ and β may be derived as special cases
of independent gamma priors. Several researchers have
employed gamma priors, such as Maiti and Kayal [27] and

Dey et al. [28]. )e joint prior density of δ and β is given as
follows:

ϕ(δ, β) �
b

a
d

c

Γ(a)Γ(c)
δa− 1βc− 1

e
− bδ− dβ

. (29)

)e joint posterior density of δ and β is generated by
using the likelihood function in (9) and the joint prior in
(29), which is given by the following equation:

ϕ∗ (δ, β)| x( 􏼁 �
L x; δ, β( 􏼁ϕ(δ, β)

􏽒
∞
0 􏽒
∞
0 L x; δ, β( 􏼁ϕ(δ, β)dδ dβ

∝ δm+a− 1βm+c− 1
e

− bδ− dβ

× m 􏽙
i�1

e
− β eδxi − 1( )+δxi⎡⎣ ⎤⎦ J 􏽙

i�1
e

− βRi eδxi − 1( )⎡⎣ ⎤⎦

e
− βR∗m eδxm − 1( )􏼔 􏼕.

(30)

)erefore, the Bayesian estimator of some function of δ
and β say g(δ, β), with respect to the squared error loss
function, will be the posterior expectation of g(δ, β), i.e.,

􏽢g(β, δ) � Eδ,β| x[g(δ, β)]

�
􏽒
∞
0 􏽒
∞
0 g(δ, β) × L x; δ, β( 􏼁 × ϕ(δ, β)dδ dβ

􏽒
∞
0 􏽒
∞
0 L x; δ, β( 􏼁 × ϕ(δ, β)dδ dβ

.

(31)

Unfortunately, in most cases, the integrals in (31) cannot
be derived in explicit form. Even if this integration can be
done explicitly, the corresponding credible interval may be
impossible to create, and numerical approaches may fail. In
this case, we propose using the Markov chain Monte Carlo
(MCMC) method to approximate (31).

3.1. 7e Metropolis–Hastings Algorithm within Gibbs
Sampling. We use MCMC technique in this subsection,
which approximates the generation of random variables
from a posterior distribution ϕ(δ, β), then computes the
Bayesian estimation of δ, β, s(t), and h(t), as well as the
corresponding credible intervals. )ere are many different
MCMC schemes to choose from, and it might be difficult to
decide which one to use. Within Gibbs sampling, we pri-
marily focus on a special form of the MCMC known as
Metropolis-Hastings, which was developed by Metropolis
et al. [29] and then extended by Hastings [30].

From (30), the posterior conditional density function of
δ given β can be obtained as follows:

ϕ∗δ δ|β, x( 􏼁∝ δm+a− 1
e

− bδ
􏽙

m

i�1
e

− β eδxi − 1( )+δxi⎡⎣ ⎤⎦

􏽙

J

i�1
e

− βRi eδxi − 1( )⎡⎣ ⎤⎦ e
− βR∗meδxm

􏼔 􏼕.

(32)

Similarly, the posterior conditional density function of β
given δ can be obtained as follows:
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ϕ∗β β|δ, x( 􏼁∝ βm+c− 1
e

− dβ
􏽙

m

i�1
e

− β eδxi − 1( )⎡⎣ ⎤⎦

􏽙

J

i�1
e

− βRi eδxi − 1( )⎡⎣ ⎤⎦ e
− βR∗m eδxm − 1( )􏼔 􏼕.

(33)

Both δ and β posterior density functions in equations
(32) and (33) cannot be reduced analytically to well-known
distributions. As a result, standard methods cannot be used
to sample directly, although the plots indicate that they are
similar to the normal distribution. To generate random
numbers from this distribution, we use Metropolis-Hast-
ings sampling with a normal proposal distribution. )e
following approach is proposed for generating δ and β from
posterior density functions and obtaining Bayesian esti-
mates of δ and β, as well as the corresponding credible
intervals.

(1) Begin with (δ(0), β(0)) as the initial value.
(2) Put j � 1.
(3) Using N(δ(j− 1),Var(􏽢δ)) as the proposal distribu-

tion, generate δ(j) from ϕ∗δ(δ|β, x).
(4) Using N(β(j− 1),Var(􏽢β)) as the proposal distribu-

tion, generate β(i) from ϕ∗β(β|δ, x).
(5) Calculate δ(j) and β(i).
(6) Calculate s(j)(t) and h(j)(t) and substitute δ(j) and

β(i) into (5) and (6), respectively.
(7) Put j � j + 1
(8) Steps 3 − 7 should be repeated N times.
(9) Using the squared error loss function, the Bayesian

estimates of δ and β are calculated as follows:

δ∗ �
􏽐

N
j�M+1 δ(j)

N − M
,

β∗ �
􏽐

N
j�M+1 β(j)

N − M
,

(34)

where M is burn-in.
(10) Using the squared error loss function, the ap-

proximate Bayesian estimates of s(t) and h(t) are
obtained as follows:

s
∗
(t) �

􏽐
N
j�M+1 s(j)(t)

N − M
, h
∗
(t) �

􏽐
N
j�M+1 h(j)(t)

N − M
. (35)

(11) Sort δ(M+1), δ(M+2), . . . , δ(N) and β(M+1), β(M+2), . . . ,

β(N) as δ(1) < δ(2) < . . . < δ(N− M) and
β(1) < β(2) < . . . < β(N− M), respectively.)e 100(1 −

c)% symmetric credible intervals of δ and β can be
then calculated as follows:

δ k1( ), δ k2( )􏼒 􏼓 an d β k1( ), β k2( )􏼒 􏼓, (36)

where k1 � (N − M)c/2 and k2 � (N − M)

(1 − c/2).

(12) Sort s(M+1)(t), s(M+2)(t), . . . , s(N)(t) and h(M+1)(t),
h(M+2)(t), . . . , h(N)(t) as s(1)(t)< s(2)(t)< . . .

< s(N− M)(t) and h(1)(t)< h(2)(t)< . . . <
h(N− M)(t), respectively. )e 100(1 − c)% sym-
metric credible intervals of s(t) and h(t) can be then
calculated as follows:

s
k1( )(t), s

k2( )(t)􏼒 􏼓, h
k1( )(t), h

k2( )(t)􏼒 􏼓, (37)

4. Bootstrap Confidence Interval

When the effective sample size m is large, the approximate
and Bayesian confidence intervals are adequate. When m is
small, the bootstrap resampling approach is preferable for
constructing the confidence interval. )e procedure for
obtaining the confidence interval for δ, β, s(t), and h(t)

using the bootstrap resampling approach is described as
follows:

Step 1: based on n, m, R, and T, compute 􏽢δML and 􏽢βML.
Step 2: use 􏽢δML and 􏽢βML and the same values of n, m, R,

and T to generate a bootstrap resample.
Step 3: calculate the bootstrap estimates 􏽢δ

B
, 􏽢β

B
, 􏽢sB(t),

and 􏽢h
B
(t) based the generated bootstrap sample.

Step 4: repeat steps 2-3 up to N times to get 􏽢δ
B

1 , . . . , 􏽢δ
B

N

and 􏽢β
B

1 , . . . , 􏽢β
B

N as well as 􏽢sB
1(t), . . . ,􏽢sB

N(t) and
􏽢h

B

1(t), . . . , 􏽢h
B

N(t).
Step 5: rearrange these bootstrap estimates obtained in

step 4 in ascending order as 􏽢δ
B

[1], . . . , 􏽢δ
B

[N]; 􏽢β
B

[1],

. . . , 􏽢β
B

[N]; 􏽢s
B
[1](t), . . . ,􏽢sB

[N](t); 􏽢h
B

[1](t), . . . , 􏽢h
B

[N](t).
Step 6: )e 100(1 − c)% bootstrap confidence intervals

for δ, β, and h(t) are, respectively, given by the
following equations:

􏽢δ
B

[Nc/2],
􏽢δ

B

[N(1− c/2)]􏼒 􏼓, 􏽢β
B

Nc/2,
􏽢β

B

[N(1− c/2)]􏼒 􏼓, (38)

and

􏽢s
B
[Nc/2](t), 􏽢s

B
[N(1− c/2)](t)􏼐 􏼑, 􏽢h

B

[Nc/2](t), 􏽢h
B

[N(1− c/2)](t)􏼒 􏼓.

(39)

5. Monte Carlo Simulation Study

In this section, Monte Carlo simulation is used to compare
the different estimation methods presented in the previous
sections. We employed a variety of sample sizes and different
sets of Ri’s, as shown in Table 1. We next simulated adaptive
Type-II progressively censored samples from the Gompertz
distribution with parameters δ � 0.8 and β � 1.1 when T �

0.5 using the algorithm reported by Ng et al. [23]. We
computed the ML and Bayesian estimates for the two un-
known parameters as well as the corresponding reliability
and hazard rate function (when t � 0.3) in each case.We also
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Table 1:  e di�erent censoring schemes R with di�erent choices of n and m.

n m CS R

40 30 1 2(0), 1, 5(0), 1, 6(0), 1, 1, 3(0), 1, 0, 2, 4(0), 2, 0, 1{ }
50 30 2 0, 1, 2(0)1, 2(0), 2, 0, 2, 0, 1, 1, 2(0), 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 3(0), 3, 0{ }
50 40 3 0, 1, 2(0), 1, 6(0), 1, 1, 2(0), 1, 1, 3(0), 1, 8(0), 1, 1, 8(0), 1{ }
60 30 4 3(0), 5, 0, 8, 2(0), 2, 2(0), 7, 3(0), 1, 3, 3(0), 1, 2(0), 3(0), 1, 2(0), 2{ }
60 40 5 2(0), 2, 0, 4, 4(0), 3, 3(0), 2, 0, 3, 3(0), 1, 3(0), 2, 2(0), 1, 2(0), 1, 9(0), 1{ }
60 50 6 8(0), 1, 3(0), 1, 2(0), 1, 4(0), 1, 2(0), 1, 4(0), 1, 1, 4(0), 1, 4(0), 1, 8(0), 1{ }
70 50 7 2, 3(0), 2, 3(0), 2, 6(0), 1, 2, 3(0), 1, 3(0), 2, 4(0), 2, 1, 4(0), 2, 4(0), 2, 8(0), 1{ }
r(0) means that 0 repeated r times.

Table 2:  e average, bias, and MSE of the ML and Bayesian
estimates of δ and β.

CS
ML I − Bayesian NI − Bayesian

δ β δ β δ β

1
Average 1.2939 1.1742 0.9738 1.0455 1.1702 1.7719
Bias 0.1939 0.3742 0.1262 0.2455 0.0702 0.9719
MSE 0.4302 2.8172 0.230 0.697 0.414 2.3288

2
Average 1.3574 1.213 0.9852 1.0479 1.2194 1.8378
Bias 0.2574 0.413 0.1148 0.2479 0.1194 1.0378
MSE 0.573 3.1107 0.205 0.728 0.537 2.5401

3
Average 1.226 0.9489 0.987 1.0417 1.0988 1.6165
Bias 0.126 0.1489 0.113 0.2417 0.0012 0.8165
MSE 0.2219 0.9991 0.206 0.711 0.24 1.8356

4
Average 1.2948 1.103 0.9832 1.0421 1.1594 1.7499
Bias 0.1948 0.303 0.1168 0.2421 0.0594 0.9499
MSE 0.413 2.1398 0.213 0.708 0.4098 2.2479

5
Average 1.229 1.0282 0.9876 1.0412 1.1054 1.6715
Bias 0.129 0.2282 0.1124 0.2412 0.0054 0.8715
MSE 0.263 1.3206 0.212 0.727 0.2836 2.0354

6
Average 1.1954 0.9553 0.9889 1.0396 1.0776 1.5937
Bias 0.0954 0.1553 0.1111 0.2396 0.0224 0.7937
MSE 0.1972 0.7391 0.213 0.725 0.2229 1.7763

7
Average 1.2083 0.9901 0.9869 1.0347 1.0816 1.6389
Bias 0.1083 0.1901 0.1131 0.2347 0.0184 0.8389
MSE 0.2258 1.1242 0.213 0.703 0.2516 1.94
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Figure 4:  e mean square error of δ and β.

Table 3:  e average, bias, and MSE of the ML and Bayesian
estimates of s(0.3) and h(0.3).

CS
ML I − Bayesian NI − Bayesian

s(0.3) h(0.3) s(0.3) h(0.3) s(0.3) h(0.3)

1
Average 1.2939 1.1742 0.7022 1.3637 0.6126 1.9465
Bias 0.1939 0.3742 0.0292 0.1396 0.1188 0.7224
MSE 0.4302 2.8172 0.0415 0.2228 0.1456 0.8599

2
Average 0.7364 1.2362 0.6981 1.3903 0.5976 2.0674
Bias 0.005 0.0121 0.0333 0.1662 0.1338 0.8433
MSE 0.0566 0.2474 0.0483 0.2652 0.1644 1.0186

3
Average 0.7351 1.2246 0.6998 1.379 0.6365 1.7755
Bias 0.0037 0.0005 0.0316 0.1549 0.0949 0.5514
MSE 0.0482 0.2141 0.0425 0.2282 0.1241 0.6905

4
Average 0.7005 1.3757 0.7005 1.3757 0.6177 1.9097
Bias 0.0309 0.1516 0.0309 0.1516 0.1137 0.6856
MSE 0.0445 0.2415 0.0445 0.2415 0.1412 0.8237

5
Average 0.7332 1.2349 0.7 1.3782 0.633 1.7974
Bias 0.0018 0.0108 0.0314 0.1541 0.0984 0.5733
MSE 0.0484 0.2135 0.0428 0.2302 0.1267 0.7063

6
Average 0.7314 1.2398 0.7002 1.3766 0.6443 1.7211
Bias 0.0016 0.0157 0.0312 0.1525 0.0871 0.497
MSE 0.045 0.2013 0.0415 0.2218 0.1158 0.6306

7
Average 0.7326 1.235 0.7019 1.3673 0.6401 1.7471
Bias 0.0012 0.0109 0.0295 0.1432 0.0913 0.523
MSE 0.0462 0.2058 0.041 0.2196 0.1196 0.6562
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Table 4:  e length and Cov of the approximate, Bayesian, and bootstrap estimation intervals of δ and β.

CS
ML I − Bayesian NI − Bayesian Bootstrap

δ β δ β δ β δ β

1 Length 2.5082 6.5906 0.7013 1.0275 1.9233 5.2458 2.3698 2.6144
Cov 0.948 0.807 0.991 0.993 0.895 0.896 0.998 0.966

2 Length 2.7847 7.4145 0.7319 1.0214 2.0863 5.4309 1.9121 2.6017
Cov 0.926 0.799 0.989 0.982 0.877 0.87 1. 0.973

3 Length 1.8456 3.3299 0.6555 1.0036 1.5283 4.6595 1.4977 2.6376
Cov 0.966 0.846 0.985 0.976 0.907 0.908 1. 0.986

4 Length 2.456 5.7975 0.7132 1.0114 1.8377 5.1261 1.7292 2.995
Cov 0.945 0.81 0.991 0.984 0.886 0.88 1. 0.977

5 Length 1.9902 4.0991 0.6687 0.999 1.5641 4.7739 2.085 3.2472
Cov 0.938 0.856 0.972 0.963 0.86 0.863 1. 0.975

6 Length 1.7135 2.9553 0.6407 0.9868 1.404 4.4039 2.4193 2.8444
Cov 0.954 0.869 0.976 0.967 0.872 0.876 0.996 0.971

7 Length 1.8267 3.4283 0.6569 0.9851 1.4752 4.5466 1.541 1.9798
Cov 0.956 0.871 0.981 0.967 0.871 0.856 1. 0.985
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Figure 5:  e interval estimation length of δ and β.

Table 5:  e length and Cov of the approximate, Bayesian, and bootstrap estimation intervals of s(0.3) and h(0.3).

CS
ML I − Bayesian NI − Bayesian Bootstrap

s(0.3) h(0.3) s(0.3) h(0.3) s(0.3) h(0.3) s(0.3) h(0.3)

1 Length 2.5082 6.5906 0.0706 0.7841 0.1286 1.023 0.219 1.5105
Cov 0.948 0.887 0.875 0.952 0.873 0.914 0.993 0.990

2 Length 0.218 0.956 0.1112 0.8895 0.14 1.1271 0.1969 1.3199
Cov 0.925 0.947 0.874 0.959 0.877 0.882 0.987 0.979

3 Length 0.205 0.9109 0.0199 0.5995 0.0958 0.8068 0.0992 1.8401
Cov 0.957 0.961 0.935 0.924 0.947 0.883 0.990 0.976

4 Length 0.0891 0.8568 0.0891 0.8568 0.1339 1.0571 0.1078 1.1518
Cov 0.964 0.936 0.947 0.936 0.942 0.924 0.982 0.977

5 Length 0.2042 0.8995 0.0485 0.7047 0.1045 0.8649 0.0992 2.0694
Cov 0.950 0.959 0.939 0.921 0.917 0.925 0.980 0.964

6 Length 0.1882 0.8295 0.0266 0.5567 0.0846 0.7308 0.1693 2.7344
Cov 0.952 0.956 0.933 0.955 0.936 0.918 0.971 0.952

7 Length 0.1823 0.7959 0.019 0.5645 0.0936 0.7765 0.080 1.9612
Cov 0.936 0.949 0.926 0.965 0.885 0.929 0.981 0.968
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calculated the 95% approximate and Bayesian and Bootstrap
estimation intervals for δ, β, s(0.3), and h(0.3).

We used a noninformative gamma prior (NI-Bayesian:
a � b � c � d � 0) and an informative gamma prior (I-
Bayesian: a � 10, b � 8, c � 9, d � 7) to compute Bayesian
estimates and credible intervals based on 11000 MCMC
samples, discarding the �rst 1000 values as burn-in. We
repeated the process 1000 times and computed the average,
bias, and mean squared error (MSE) of the ML and Bayesian
estimates for δ and β, as shown in Table 2 and Figure 4, and
for s(0.3) and h(0.3), as shown in Table 3. Also, we cal-
culated the length and the coverage probability (Cov) for the
95% approximate and Bayesian and Bootstrap estimation
intervals for δ and β, as shown in Table 4 and Figure 5, and
for s(0.3) and h(0.3), as shown in Table 5.

6. Illustrative Example

In this section, some numerical results based on real data sets
are presented to demonstrate inferential procedures.

Real data set: Lyu [31] has represented 86 times between
failures, as shown in Table 6.

Srivastava [32] tested the model’s validity using the data
supplied by Lyu [31]. He used the Kolmogorov–Smirnov test
to plot a graph of the empirical distribution function and
�tted distribution function. He also discussed Q-Q plots for
model validation. He has stated that the Gompertz model
may well �t the data presented above. Now, we simulate an
adaptive Type-II progressively censored sample from this
data with n � 86, m � 40, T � 300, and R � 1, 1, 0, 1, 2, 1, 0,{
2, 1, 3, 1, 1, 0, 1, 2, 1, 1, 2, 1, 3, 1, 1, 0, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 0,
1, 0, 1, 1, 2, 1}.  is leads to j � 13.  us, the resulting
adaptive Type-II progressive censored sample is shown in
Table 7.

We assume the noninformative prior, where
(a, b, c, d) � (0, 0, 0, 0), because we have no prior informa-
tion about the unknown parameters. In Table 8, the ML and
noninformative prior Bayesian estimates for the parameters
δ, β, s(0.3), and h(0.3), as well as the lower and upper

Table 6: Real data set: 86 times between failures.

4.79 7.45 10.22 15.76 26.10 28.59 35.52 41.49 42.66 44.36
45.53 58.27 62.96 74.70 81.63 100.71 102.06 104.83 110.79 118.36
122.73 145.03 149.40 152.80 156.85 162.20 164.97 168.60 173.82 179.95
182.72 195.72 203.93 206.06 222.26 238.27 241.25 249.99 256.17 282.57
282.62 284.11 294.45 318.86 323.46 329.11 340.30 344.67 353.94 398.56
405.70 407.51 422.36 429.93 461.47 482.62 491.46 511.83 526.64 532.23
537.13 543.06 560.75 561.60 589.96 592.09 610.75 615.65 630.52 673.74
687.92 698.15 753.05 768.25 801.06 828.22 849.97 885.02 892.27 911.90
951.69 962.59 965.04 976.98 986.92 1025.94
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Figure 6:  e MCMC trace plots and the marginal posterior density with histograms of δ and β.
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bounds of 95% confidence intervals for them, using the
asymptotic distributions and noninformative prior Bayesian
methods are presented. )e MCMC trace plots and the
marginal posterior density with histograms of δ and β are
shown in Figure 6.

7. Concluding Remarks

In this work, we looked at several estimating approaches using
an adaptive Type-II progressive censored sample from the
Gompertz distribution. For the unknown parameters, we
calculated the ML and Bayesian estimators, as well as the
corresponding reliability and hazard rate functions. For the
unknown parameters and their corresponding reliability and
hazard rate functions, we constructed approximate, Bayesian
(usingMCMC approach), and Bootstrap confidence intervals.
Furthermore, we conducted simulation studies using a variety
of sample sizes and censoring schemes to compare and
evaluate the suggested estimate methods’ effectiveness. Fi-
nally, we used a numerical example based on real data to show
the computations of the methods proposed in this study.

From Tables 2–5 and 8 and Figures 4–6, we can notice
that

(1) )e results obtained using the Bayesian method are
better than those obtained using the ML method.

(2) )e results of the Bayesian method with informative
prior are better than those of the Bayesian technique
with noninformative prior.

(3) )e Bayesian method with noninformative prior
produces results that are quite close to the results
using the ML method. Because the Bayesian method
is computationally more expensive, it is always
preferable to use the ML method rather than the
Bayesian method with noninformative prior.

(4) )e average length of all confidence intervals and the
mean squared error of all estimations decrease as the
number of data increases.

(5) )e marginal posterior density plots and histograms
are approximately symmetric around their means,
and the MCMC trace plots of δ and β converge. As a
result, the unknown parameters may be estimated
using the MCMC generated sample.
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