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Seismic demand analysis of structures plays an important role in the structural seismic calculation; however, studies on the
importance analysis of seismic demand are limited. A new method based on a support vector machine (SVM) is proposed to
analyze the importance of structural seismic demand and study the in�uence of random variables on structural seismic demand in
this study, where the linear kernel function, Gauss kernel function, and polynomial kernel function are used in SVM. �e time
history analysis of the steel-reinforced concrete (SRC) frame structures has been carried out by the �nite element software
OpenSees under the action of di�erent seismic records. Four kinds of seismic demand of the SRC frame structure are analyzed in
this study, which are top displacement, maximum �oor acceleration, base shear, and maximum interstory drift angle, respectively.
Importance indexes of the four kinds of structural seismic demand are in good agreement with those of the Monte Carlo (MC)
numerical simulation method and Tornado graphic method, which verify the accuracy of the proposed method. Moreover, the
sample size of the proposed method is greatly smaller than that of the MCmethod.�erefore, the computation e�ciency has been
improved signi�cantly by the proposed method.

1. Introduction

Seismic demand analysis of structures is an important re-
search direction of structural seismic analysis. �ere are
several parameters that a�ect the seismic demand of
structures, such as the randomness of seismic intensity [1]
and the random variables of structures [2, 3]. However, there
are few studies on the e�ects of the uncertainty of the
random variables on the structural seismic demand.
�erefore, it is very important to study and deal with the
random variables in structures to analyze the seismic de-
mand of structures for structural safety [4].

�e analysis of the in�uence of random variables on the
seismic demand of structures belongs to the uncertainty
analysis [3]. �ere are many research methods for the un-
certainty analysis [5, 6], in which the sensitivity analysis of
random variables is the prevailing method for the uncertainty
analysis [7, 8]. It is well known that the sensitivity analysis

includes two commonmethods, which are the local sensitivity
analysis (LSA) and the global sensitivity analysis (GSA, also
known as importance analysis), respectively [9]. �e LSA
method can only study the in�uence of random variables on
the output response under certain conditions, which means
the in�uence of random variables on the output response is
only informative at a nominal point [10, 11], while the GSA
method can study the in�uence of random variables on
output response when their possible range of values changes
and can study the in�uences of the random variables si-
multaneously [12]. Hence, GSA has been widely used in the
�eld of reliability engineering. For example, Hariri-Ardebili
et al. [13] proposed an e�cient sensitivity analysis framework
based on polynomial chaos expansion metamodel to �nd the
most critical elements of infrastructures and capture the
spatial uncertainty using random �eld theory; the results
show the impact of uncertainty quanti�cation in system
identi�cation of infrastructures. Amini et al. [14] introduced
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an efficient reliability and sensitivity methodology consid-
ering nonlinear dependency among random variables via
copula theory and compared the effects of vine copula (i.e.,
the nonlinear correlation between random variables) and
Gaussian copula (linear correlation) on the sensitivity analysis
results. Zhou et al. [15] developed a GSA approach based on
the theory of active subspaces and Kriging surrogate meta-
modeling to find the most significant inputs of a radome
structure in fiber-reinforced composites.

*erefore, the GSA is adopted to study the effects of the
uncertainty of the random variables on the structural seismic
demand in this paper. It is worth noting that the importance
analysis of random variables should satisfy three conditions:
quantifiability, globality, and universality [16]. Borgonovo
[17] considered that the important measure index can fully
reflect the average influence of the distribution of random
variables on the distribution characteristics of the output
response. It is a quantitative index with clear physical
meaning. Importance measure analysis can link the un-
certainty of random variables with the uncertainty of output
response [4]. *e importance measure index can determine
the magnitude of the impact of the uncertainty of each
random variable on the output response and then determine
their priority in research or experiment. *erefore, the
importance ordering of random variables or even the un-
known parameters can be determined.*en, the uncertainty
range of output response can be reduced ultimately. Finally,
the output response with a small uncertainty range can be
obtained [12, 18]. *is importance measure analysis has
provided a new and effective method to improve the
structural model. *erefore, the importance measure anal-
ysis of random variables has become an important research
direction in the field of reliability engineering in recent years.

*ere are three importance measure analysis methods
for random variables to date, which are variance-based
importance analysis [19], information entropy-based im-
portance analysis [20], and the moment-independent im-
portance analysis [21, 22], respectively. *e importance
analysis method based on variance is used more widely than
the other two. According to work by Sobol [12], the im-
portance analysis method based on the variance has the
following advantages: (1) the interaction between random
variables can be reflected by the total measure index; (2) the
influence of random variables on the variance of output
response can be obtained when the random variables change
in their whole range; (3) the random variables can be
classified and discussed; (4) the general applicability of this
method for any input-output model. *erefore, the im-
portance analysis based on the variance is applied for the
seismic demand analysis of structures in this article.

Monte Carlo (MC) numerical simulation method is a
common solution method in the importance analysis based
on variance [23]. However, it needs a large number of
samples. Even if the efficient sampling method is applied to
MC [24], the sample size is still large, which will increase the
calculation difficulty for the complicated structures. In view
of this, this article proposes a new method based on the
support vector machine (SVM) algorithm [25, 26] to per-
form the importance analysis and investigate the influence of

random variables on the seismic demand of structures,
where the sample size required by the proposed method is
far less than that of MC. *e corresponding importance
index obtained by SVM is called the importance measure
index of SVM. *e importance of the structural seismic
demand of two SRC frame structures is analyzed. *e ac-
curacy and efficiency of the proposed method are verified by
comparing it with the MC method because the MC method
is usually considered the precise solution.*e results are also
compared with the Tornado graphic method, which is a LSA
method [27].

2. Importance Analysis Method Based on
Support Vector Machine

2.1. Basic Principles of Support Vector Machine Algorithms.
Support vector machine was first proposed by Vladimir
N. Vapnik and developed by Corinna and Vapnik [28],
which was originally used for pattern recognition. It can also
be used for regression problems. *ese two approaches are
similar. Suppose the training sample sets are {(x1, y1), (x2,
y2),. . ., (xn, yn)}, xi, yi ∈R, and x � (x1, x2, . . . , xn)′ is the
dataset. Assuming that all vectors represent column vectors,
then x1∼xn represent the transposed row vectors. Let
I � (1, 1, . . . , 1)T; the length of I is n. *en, the linear re-
gression function is defined as follows:

f(x) � wx + b, (1)

where w and b both are the undetermined coefficients.
*e objective function of SVM is to make all sample

points approach the optimal hyperplane and minimize the
total deviation of sample points. When the sum of absolute
deviations between real and predicted results of all samples is
not greater than a sufficiently small positive number ε, it can
be considered that the obtained hyperplane is determined by
w and b, as follows:
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*e sum of absolute residuals is affected by w and b. *e
distance from point (xi, yi) to hyperplane is used to correct
the above conditions:
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It can be seen that the smaller ||w||2 is, the closer the
corresponding hyperplane is for the optimal hyperplane.
*erefore, SVM should solve the following optimization
problems:

min
1
2
||w||

2
,

s.t.|xw + bI − y|≤ ε.
(4)

Generally, the existence of fitting errors is allowed, and
the relaxation factors ξ∗ and ξ are introduced, then the above
problem is transformed into the following:

2 Mathematical Problems in Engineering



min
1
2
||w||

2
+ C ξ∗ + ξ( 􏼁′I,

s.t.

xw + bI − y≤ ε + ξ∗,

y − xw − bI≤ ε + ξ∗,

ξ, ξ∗ ≥ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

*e constant C> 0 is used to balance the number of
deviations greater than the number of sample points and the
flatness of the regression function f. When the sample size is
small, the dual optimization problem can be obtained
according to the duality theory:
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After the parameters α and α∗ are obtained by dual
theory, the regression function is obtained by
w � x′(α − α∗), as follows:

f xi( 􏼁 � 􏽘
n

j�1
αj − α∗j􏼐 􏼑xix

′
j + b, (7)

where b is obtained by the following:

b � yi − 􏽘
n

j�1
αj − α∗j􏼐 􏼑xix

′
j − ε. (8)

*e basic idea of nonlinear SVM is to map data x into
Hilbert high-dimensional feature space through nonlinear
mapping Φ and then carry out linear regression; that is,
the nonlinear regression in low-dimensional space corre-
sponds to the linear regression in high-dimensional
space. *is process is realized by the kernel function
k(xi, xj) � Φ(xi)Φ(xj). *ere are many kernel functions,
such as linear kernel function, polynomial kernel function,
Gauss radial basis kernel function, exponential kernel
function, and Laplacian kernel function. *e linear kernel
function is the simplest and easy to calculate, especially in
the case of huge sample data. *e polynomial kernel

function is a nonstandard kernel function, which is very
suitable for the orthogonal normalized data, but it has many
parameters. *e Gaussian kernel function is very repre-
sentative and widely used, which is not limited by dimen-
sions. *erefore, the abovementioned three kernel functions
are selected in this study, listed as follows:

(1) Linear kernel function:

k xi, xj􏼐 􏼑 � xi, x
∗
j􏼐 􏼑. (9)

(2) Gauss radial basis kernel function:
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(3) Polynomial kernel function:
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, p ∈ N, c≥ 0. (11)

After introducing the kernel function, the optimization
problem becomes
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*en, w is updated as follows:

w � 􏽘
n
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Further, f(x) can be expressed as follows:
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where b � yi − 􏽐
n
j�1(αj − α∗j )k(xi, xj

′) − ε.
*erefore, the optimal parameters α and α∗ can be

obtained based on the dual theory, and the corresponding
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Figure 1: Sample comparison: (a) Sobol sequence and (b) ordinary random sampling.
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mathematical model of the SVM algorithm can be obtained.
On this basis, the predicted value 􏽢yi of yi(i � 1, 2, . . . , n) can
be obtained.

2.2.ComputationFlow. *e existing samplingmethods need
a lot of samples to guarantee the accuracy of the results, so it
costs a lot of time to simulate the structure by the finite

element method. For the importance measure analysis of
structural seismic demand, the larger the sample size of the
random variables, the longer the operation time. In order to
perform the importance measure analysis of structural
seismic demand efficiently, the low-deviation Sobol se-
quence is adopted in this study. According to Fox [29] and
Zhu [30], the Sobol sequence can be briefly described as
follows: each dimension of the Sobol sequence consists of a
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Figure 2: Structure diagram: (a) plan; (b) elevation.

Table 1: Section information.

Story Beam section/(mm×mm) Area of reinforcement/mm2 Column section/(mm×mm) Area of reinforcement/mm2

1 300× 600 2280 600× 600 6082
2∼7 1526 500× 500 4072

4 Mathematical Problems in Engineering



base-2 radical inversion, but the radical inversion of each
dimension has its own different matrix. Its generation can
directly use bit operations to achieve radical inversion,
which is very efficient. *e results show that it is a relatively
efficient sampling method because a better result can be
obtained as the sample size is only several hundreds.

Figure 1 shows the two-dimensional uniform distribu-
tion of 2048 samples on [0, 1] obtained by the low-deviation
Sobol sequence and the common sampling method. It can be
seen that the samples of the Sobol sequence are more evenly
filled in the two-dimensional space than those obtained by
the common samplingmethod.*e blank area in Figure 1(b)
means the absence of parameter information. To make the
information more complete, more data points are needed to
fill these blank areas, which means more sample size. Hence,
in order to make the distribution of sample points more
uniform, the common method needs to generate more
sample points, so as to ensure the accuracy of the results. In
summary, the Sobol sequence is more efficient because it can
obtain more accurate results with fewer samples.

*e specific sampling process is expressed as follows:

(1) Simulate the sample of random variables based on
the low-deviation Sobol sequences and the proba-
bility distribution of random variables. *e N × n

dimension sample matrix A is expressed as follows,
where n is the number of random variables and N is
the sample size:

A �

x11 · · · xn1

⋮ ⋱ ⋮

x1N · · · xnN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

(2) Input the matrix A into the model established by
OpenSEES software [31] and calculate the seismic

demand of structures to obtain the sample value ofN
structural seismic demand Y (i.e., the output
response):

Y �
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*e total variance of structural seismic demand Y is
calculated by the following:
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where y is the mean value of all sample values for
structural seismic demand in (16).

(3) *e variance Var(􏽢Y) of 􏽢Y is expressed as follows:

Var(􏽢Y) �
1
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􏽘
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2
, (18)

where 􏽢y is the mean value of all predictive values for
structural seismic demand and 􏽢Y is the predictive
value of the structural seismic demand Y, which is
calculated by the SVM model.

(4) Calculate the importance measure index Si of SVM
using the following equation:

Si �
Var(􏽢Y)

Var(Y)
. (19)

When the random variable is n-dimensional, n random
variables are substituted into the support vector machine
model to get the predictive value of SVM, and then the
importance measure index Si(i � 1, 2, . . . , n) of each ran-
dom variable can be obtained.

3. Case Study

3.1. Engineering Example 1. As shown in Figure 2, a seven-
story three-span steel-reinforced concrete (SRC) frame
structure is taken as an engineering example, in which the
standard floor’s story height is 3,600mm and the bottom
floor’s story height is 4,200mm. Other information is as
follows: the slab thickness is 120mm, the column spacing is
6000mm, the intensity grade of reinforcing bars is HRB335

Table 2: Statistical parameters of random variables.

Random variables Symbol Variation coefficients Units Distributions Means
Concrete strength fc 0.140 Mpa Normal [32] 34.82
Steel strength fy 0.078 Mpa Lognormal [33] 384
Section steel strength fys 0.078 Mpa Normal [34] 396
Concrete modulus Ec 0.080 Mpa Normal [35] 33904
Steel modulus Es 0.033 Mpa Normal [36] 228559
Section steel modulus Ess 0.033 Mpa Normal [36] 228559
Representative value of gravity load Ms 0.100 kN/m2 Normal [37] 6
Structural damping ratio DA 0.200 — Normal [27] 0.05
Note: the structural quality in the table is taken as the representative value of gravity load.

Table 3: Ground motion record.

Earthquake Magnitude Occurrence
time

Serial
number

Cape Mendocino 7.0 1992 RSN 3747
Northridge-01 6.7 1994 RSN 1083
Northridge-01 6.7 1994 RSN 947
Big Bear-01 6.5 1992 RSN 902
TaiwanSMART1(45) 7.3 1986 RSN 578
Friuli_Italy-02 5.9 1976 RSN130
Imperial Valley-02 7.0 1940 RSN 6

Mathematical Problems in Engineering 5



(reinforcing bar with the standard yield strength of 335N/
mm2), and the diameter of reinforcing bars is shown in
Figure 2. *e section steels are welded H-section steel whose
strength grade is Q345 (section steel with a standard yield
strength of 345N/mm2), and the steel dimensions of all
columns on the bottom floor and those on floors 2 to 7 are
H400× 400×11× 18 and H300× 300×10×15, respectively.
*e steel dimensions of the beams are H140× 440×10×16.
*e concrete strength grade is C40 (concrete with standard
cubic compressive strength of 40N/mm2), and the thickness
of concrete cover is 25mm. In addition, the reinforcement
situations of beam and column sections are shown in Table 1
and the details of input random variables are listed in Ta-
ble 2, in which the sample size N� 1000.

In this study, the finite element software OpenSees is
used to analyze the dynamic nonlinear time history in which
the El Centro seismic wave is selected. *e macro nonlinear
fiber beam-column element is used to simulate the columns
and beams. *e material model of steel bar and concrete are
simulated by Steel02 element and Concrete02 element, re-
spectively. Moreover, the maximum interstory drift angle
and base shear are selected as the seismic demand

parameters. *en the importance of each input random
variable is investigated.

In OpenSees software, the constitutive relation of Giuffr6-
Me does not affect the entire consistent negoa0-Pinto model
[38] is adopted for the Steel02 element (for the parameter
information, please refer to [39, 40]), and the constitutive
relation of Kent–Scott–Park model [41] is adopted for the
compressive section of Concrete02 element (for the param-
eter information, please refer to [42, 43]).With the increase of
the maximum tensile strain, the degradation of cyclic loading
stiffness and tensile hardening are considered after the
concrete is cracked in the drawing section. *e modified
Karsan–Jirsa constitutive model [44] is used for unloading.
*e selected groundmotion records are shown in Table 3, and
in order to study the seismic demand of structure under the
condition of large ground motion records, the PGA is 0.6 g
instead of the actual value, which acts on the longitudinal
direction of the frame structure.

3.1.1. 3e Results of Importance Analysis. *e importance
measure indexes obtained by the three kernel functions and
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Figure 3: Importance measure indexes obtained by different methods for base shear demand: (a) the results obtained by SVM based on RBF
kernel function, (b) the results obtained by SVM based on ploy kernel function, (c) the results obtained by SVM based on linear kernel
function, and (d) the results obtained by MC.
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Figure 4: Importance measure indexes obtained by different methods for maximum interstory drift angle demand: (a) the results obtained
by SVM based on RBF kernel function, (b) the results obtained by SVM based on ploy kernel function, (c) the results obtained by SVM based
on linear kernel function, and (d) the results obtained by MC.
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MC method for the random variables under two kinds of
seismic demand are shown in Figures 3 and 4, respectively.

Figure 3 shows the results of the importance measure
indexes obtained by different methods under the base shear
demand. It is obvious that the importance measure index of

fys is the largest one for the most ground motion records,
while the importance measure indexes of Es and Ec are the
smallest. All of the four methods have the same results for
the abovementioned random variables. *ere is a little
difference between the importance measure indexes of the

Table 4: Section information.

Floor Beam section/(mm×mm) Area of reinforcement/mm2 Column section/(mm×mm) Area of reinforcement/mm2

1
300× 600

3220 600× 600 6081
2∼4 2537 4114
5∼7 1821 500× 500 3216

Table 5: Statistical parameters of random variables.

Parameters Symbol Mean value Distribution Variation coefficient
Damping ratio DA 0.055 Normal 0.2 [18]
Damping coefficient of viscous damper/kN·s·mm−1 c 3 Normal 0.1
Stiffness of viscous damper/kN·mm−1 k 100 Normal 0.1
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rest random variables obtained by the four methods.
However, the characteristics of importance measure indexes
obtained by SVM based on RBF kernel function and MC
method are the same.

For most groundmotion records, Figure 4 shows thatDA
and MS have the largest importance indexes for maximum
interstory drift angle demand, while Es and Ec have the
smaller importance indexes. *e importance measure in-
dexes obtained by SVM is somewhat similar to that obtained
by MC method. *e importance indexes of DA and MS for
maximum interstory drift angle demand are the largest,
while the corresponding importance indexes of Es and Ec are
the smallest.

In a word, from the above mentioned, a conclusion can
be drawn that the importance measure indexes obtained by
SVM and MC method have the same variation charac-
teristic, which is that the random variables with large
importance measure index obtained by SVM are consistent
with those obtained by MC method and the same as
the random variables with small importance measure
indexes.

3.1.2. 3e Results of Sensitive Analysis Obtained by Tornado
Graphic Method. *e sensitivity analysis results of the
Tornado graphic method under the action of RSN3747
seismic records are shown in Figure 5, where fys has the
greatest influence on the base shear demand andMs,DA, and
fys have a great influence on maximum interstory drift angle
demand, while Es, Ec, and Ess have less influence. *e in-
fluence of random variables on the base shear demand and
maximum interstory drift angle demand is different.

3.2. Engineering Example 2. *e SRC frame structure is the
same as engineering example 1, but the parameters infor-
mation is different.*e reinforcement area is listed in Table 4.
*e statistical information of other random variables is listed
in Table 5. *e structural sketch is no longer given due to the
limitation of space in this study.*e El Centro seismic record
(RSN6) is adopted for dynamic nonlinear time history
analysis, and the Maxwell element is used to simulate the
viscous damper. Moreover, the damping exponent is 1. *e
structure is loaded along the two directions simultaneously.
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Figure 7: SVM importance measure indexes: (a) top displacement demand, (b) maximum interstory drift angle demand, (c) base shear
demand, and (d) maximum floor acceleration demand.
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3.2.1. 3e Importance Measure Indexes Obtained by SVM.
Figure 6 shows the predictive values of structural top dis-
placement based on the model of SVM with three different
kernel functions, where the red points are the predictive
values of structural top displacement based on the model of
SVM with Gauss radial basis kernel function (RBF), the
green points are those obtained by the model of SVM with
polynomial kernel function (Poly), and the blue line is that
obtained by the model of SVM with linear kernel function
(linear). In addition, the black points in Figure 6 are the
output responses (i.e., the top displacements) corresponding
to the realization values of the random variable. For ex-
ample, the black points in Figure 6(a) are the scatter plot
drawn with the realized values of the random variable fy as
the abscissa and the corresponding output responses as the
ordinate. It is obvious that the top displacement of the
structure varies with 10 random variables, and the variation
characteristics of the top displacement obtained by the three
different kernel functions are all significant and approxi-
mately consistent. For example, the top displacement of the
structure decreases significantly with the increase of DA and
decreases slowly with the increase of fys, c, and k while
increasing with the increase of Ess and fc. However, the top

displacement of the structure varies little with the increase of
fy, Es, Ec, andMs. Limited by the article length, the prediction
values of the other three structure seismic demand are no
longer listed.

As shown in Figure 7, the values of SVM importance
measure indexes obtained by the three kernel functions are
consistent. It is obvious that the influence of DA is largest on
the four seismic demand of the steel-reinforced concrete
frame structure, while the influence of the rest of the random
variables is relatively smaller compared to DA.

3.2.2. Comparison with the Importance Measure Indexes of
MC Method. MC importance analysis method has been
used widely and is usually considered the precise solution.
*erefore, the comparison of the importance measure
indexes obtained by MC is performed to verify the ac-
curacy and efficiency of the proposed method. *e im-
portance measure indexes obtained by SVM based on RBF
kernel function and MC are shown in Figure 8. It is
apparent that the importance measure indexes of the
random variables have little difference between RBF and
MC except for Ms, where there is a slightly big difference
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Figure 8: Comparison of importance measure indexes between SVM and MC: (a) top displacement demand, (b) maximum interstory drift
angle demand, (c) base shear demand, and (d) maximum floor acceleration demand.
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in the importance measure indexes of Ms obtained by
these two methods. However, the difference ofMs between
RBF and MC does not affect the overall consistency of the
results for random variables. In addition, it is worth
noting that the sample size of the SVM importance
analysis method proposed in this article is only 1/(n + 1)

of the MC method, where n is the number of random
variables and n � 10. *erefore, the computational effi-
ciency has been improved significantly.

3.2.3. 3e Results of Sensitive Analysis Obtained by Tornado
Graphic Method. As shown in Figure 9, the results of the
Tornado graphical sensitivity analysis method are variable.
*e influence level of each random variable on four different
seismic demands is not consistent. For example, the
damping coefficients of viscous dampers have a greater
influence on maximum interstory drift angle demand and

the top displacement demand, a moderate influence on the
maximum floor acceleration demand, and a smaller influ-
ence on the base shear demand.

4. Discussion

*ree importance analysis methods are adopted for struc-
tural seismic demand analysis in this study, and the im-
portance orderings of the importance measure indexes
obtained by these three methods are listed in Table 6. It
indicates that there are some differences in the orderings of
the importance measure indexes. For example, the impor-
tance orders of random variables obtained by these three
methods for the top displacement seismic requirement are
DA>Ms> c> fc> fys> Es>Ess> fy> k> Ec, DA>Ms> c> fc>
fys> Es>Ess> fy> k> Ec, and DA> fc>Ms> c> k> Ess>Es>
fys> Ec> fy, respectively, which are not exactly the same. *e
first two importance orderings are obtained by SVM based
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Figure 9: Importance ordering of random variables: (a) top displacement demand, (b) maximum interstory drift angle demand, (c) base
shear demand, and (d) maximum floor acceleration demand.
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on RBF kernel function and MC, respectively, and the third
importance ordering is obtained by Tornado graphic
method, where SVM importance analysis method and MC
importance analysis method are both GSA methods, while
the Tornado graphic method is a single factor LSA method.
*erefore, the results indicate that the importance measure
of structural parameters cannot be only analyzed by the
traditional Tornado graphic method. However, the random
variables with greater influence are basically the same, i.e.,
DA, Ms, c, and fc, and the random variables with smaller
influence are also consistent, i.e., Es, Ess, fy, and Ec.

It is well known that there are many uncertainties in the
design of engineering structures, such as material ran-
domness, manufacturing anomalies, and external loading,
which play an important role in reliability-based design
optimization (RBDO) [45]. In addition, the particle swarm
optimization algorithm (PSO) is a very classic intelligent
optimization algorithm, which has good results in parameter
optimization and is widely used in various fields [46]. Since
the current research in this study focuses on the actual
ground motion records, the follow-up research will be
carried out from the following aspects: first, study the in-
fluence of artificially synthesized groundmotion records and
fully consider the uncertainty of parameters and the ran-
domness of ground motions. Secondly, PSO will be used to
intelligently optimize the parameters of the SVM. Finally,
the influence of the uncertainty of each parameter on the
structural reliability index is analyzed to realize the prob-
abilistic earthquake safety assessment.

5. Conclusions

In this article, the dynamic nonlinear time history analysis of
SRC frame structures is performed based on three methods,
and four kinds of structural seismic demands have been
analyzed. *e importance measure indexes of several ran-
dom variables have been obtained by SVM based on the RBF
kernel function. For comparison, the Tornado graphics
method and MC method are also adopted to calculate the
importance measure indexes of those random variables. *e
conclusions are as follows:

(1) Compared with the results of the MC method, the
values of the importance measure indexes obtained
by the SVM method are basically consistent with
those obtained by MC, which indicates that the
proposed method is accurate and efficient. More-
over, the sample size of random variables based on
the proposed method is only 1/(n+ 1) of that of the
MC method, so the computational efficiency has
been improved significantly.

(2) *e importance measure indexes of DA and fc are
higher than those of Ec, fy , and k for the four
structural seismic demands analysis, and this char-
acteristic of importancemeasure indexes obtained by
SVM based on three kernel functions is approxi-
mately the same.

(3) *e importance measure indexes of the same ran-
dom variable are different for the four kinds of
structural seismic demands analysis. *at means the
influence of random variables on different seismic
demands is different.

(4) *e importance orderings of random variables ob-
tained by SVM based on the RBF kernel function
method and MC method are not exactly the same as
those obtained by the Tornado graph method.
However, the random variables with greater influ-
ence are basically the same.

In conclusion, the importance analysis method of SVM
based on RBF kernel function for the four structural seismic
demands has been proved to be effective and accurate. For
the importance measurement analysis of complex structures,
the results are very consistent with those obtained by other
methods, even under the case of a small sample size. *e
computational efficiency of the proposed method is obvi-
ously higher than that of the MC method. In addition, the
random variables with a larger importance index can be
adjusted to improve structural safety and engineering op-
timization in the actual engineering application. In the next
work, we will consider the uncertainty of parameters and the
randomness of ground motions, improve SVM using PSO to
investigate the influence of the uncertainty of each

Table 6: Importance ordering of random variables.

Parameters Top displacement demand Maximum interstory drift angle demand Base shear demand Maximum floor acceleration
demand

fy 8-8-10 6-9-9 9-7-8 8-7-6
Es 6-6-7 5-10-8 5-5-5 5-9-8
Ms 2-2-3 8-3-4 2-2-2 2-2-2
DA 1-1-1 1-1-1 3-3-3 1-1-1
fc 4-4-2 4-4-2 1-1-1 3-3-3
Ec 10-10-9 7-9-10 7-10-7 7-8-10
fys 5-5-8 3-5-6 6-6-6 6-5-4
Ess 7-7-6 10-7-7 4-4-4 9-6-7
c 3-3-4 2-2-3 10-8-10 4-4-5
k 9-9-5 9-6-5 8-9-9 10-10-9
Note: the first number is the importance ordering of the importance measure indexes obtained by SVM based on the RBF kernel function, the second number
is the importance ordering of the importance measure indexes obtained by MC, and the third number is the importance ordering of the importance measure
indexes obtained by Tornado graphic method.
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parameter on the structural reliability index, and finally
realize the probabilistic earthquake safety assessment.
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