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In this paper, we have examined a particular case of coherent states, de�ned so that their structure constants depend only on the
products of the energy eigenvalues of the examined systems. In this manner, we have built all three kinds of coherent states
(Barut–Girardello, Klauder–Perelomov, and Gazeau–Klauder). From the equation of the unitary operator decomposition, we
have highlighted and used a so-called fundamental integral, to obtain some new integrals involving Meijer’s and hypergeometric
functions. All calculations are made using the properties of the diagonal operator ordering technique.�is is implicitly proved that
the coherent state technique can be useful not only in di�erent branches of physics (quantum mechanics, quantum optics,
quantum information theory, and so on) but also in the deduction of new integrals involving generalized Meijer’s and
hypergeometric functions. �is approach can be considered as suitable “feedback” from physics to mathematics.

1. Introduction

�e special functions have been introduced and investigated
extensively duemainly to their applications in diverse areas in
mathematics, applied mathematics, physics, and engineering.
Most of the special functions, which have various physical and
technical applications, can be expressed in terms of gener-
alized hypergeometric functions. Srivastava and Karlsson [1]
introduced and analyzed the extension of the generalized
hypergeometric functions utilizing the extended Poch-
hammer symbol. Other new extensions of Pochhammer
symbol can be found in [2, 3]. Several interesting integral
representations of the Euler type and Laplace type for some
Gauss hypergeometric functions of three variables are given in
[4]. Another extension of the generalized hypergeometric
functions is de�ned in [5] where some of their properties are
presented such as integral representations, derivative for-
mulas, recurrence relations, and others [5, 6].

�e hypergeometric functions are used in a wide range of
applications, such as integral representations, generating
functions, recurrence relations, �nite and in�nite sums,

analytic continuation, asymptotic behaviour, and in per-
turbation theory or in quantum theory [5]. Today, it is a fact
that there exists a strong relation between hypergeometric
functions and some special integrals which appear in dif-
ferent branches of physics (quantum mechanics, quantum
optics, quantum information theory, and so on).

In the last decades, the coherent state (CS) formalism,
introduced almost a century ago by Schrödinger [7], as
quasi-classical state, has proven to be a useful approach for
several applications in quantummechanics, quantum optics,
and quantum information theory and practice. Over time,
these CSs, originally formulated only for the one-dimen-
sional quantum harmonic oscillator (HO-1D), have been
extended to other quantum systems. �us, CSs were de�ned
in the following manner: Barut–Girardello CSs (BG-CSs)
[8], Klauder–Perelomov CSs (KP-CSs) [9], and Gaz-
eau–Klauder CSs (GK-CSs) [10].

For the HO-1D, all three manners of de�ning the CSs
lead to the same results, i.e., to the same expression of CSs.
For this reason, these CSs are also named canonical or linear
coherent states.�e situation is di�erent if we consider other
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quantum systems (named nonlinear): the three manners of
building CSs lead to different expressions. Consequently, all
these CSs are named nonlinear.

Appl and Schiller [11] observed that all CSs (linear and
nonlinear) are in fact particular cases of generalized coherent
states, defined so that their normalizing function is a gen-
eralized hypergeometric function (G-HGF)
pFq( ai 

p
1 ; bj 

q

1; |z|2), where p and q are positive numbers.
)e sets a1, a2, . . . , ap,  ≡ ai 

p
1 and

b1, b2, . . . , bq,  ≡ bj 
q

1 are real (or complex) parameters.
Decades after their introduction, CSs seemed to be

neglected in terms of scientific interest. However, in the
second half of the twentieth century, there was a tendency to
“link” the definition of CSs to the theory of quantum groups
associated with the system under examination [8, 9, 12–15].
Unfortunately, there are just a few quantum systems for
which we are able to construct the associated group gen-
erators. )e impact situation can be easily avoided if we
consider a dimensionless Hamiltonian H, having only the
discrete energy spectrum with eigenvalues e(n):

H|n〉 � e(n)|n〉. (1)

We suppose that these energy eigenvalues are ascendant
and nondegenerate: e(0) � 1〈e(1)〈e(2)〈 . . . 〈e(n).

On the other hand, let us choose a pair of two Hermitian
operators, the creation E+ and the annihilation E− , whose
actions on the Fock vectors |n〉 are

E− |n〉 �
����
e(n)


|n − 1〉,

E+|n〉 �
�������
e(n + 1)


|n + 1〉,

E+
E− |n〉 � e(n)|n〉.

(2)

In other words, we have H � E+
E− , and we point out

here that the above pair of operators is not mandatory as the
group generators of the quantum group attached to the
examined quantum systems are not supersymmetric partners.

On the other hand, Hongyi [16] introduced a new cal-
culation technique, called the integration with ordered
products (IWOP), applicable only to HO-1D, which greatly
facilitates calculations and leads to a range of results, in-
cluding new mathematical results. In a series of previous
works, we have generalized the IWOP technique and applied
it to the pair of creation E+, and annihilation E− , operators
associated with any quantum system, linear or nonlinear.
)us, it was born the diagonal operator ordering technique
(DOOT) was born, with which we obtained a series of useful
results [17–19]. An additional result of using DOOTappears
in this paper: we obtain a series of new integration relations
involving Meijer's Gm,n

p,q (|z|2| . . .) and generalized

hypergeometric functions pFq(. . . ; . . . ; |z|2). )is is, in fact,
the main purpose of this paper.

)e paper is organized as follows. In Section 2, we
present some primary elements, necessary to define coherent
states, using elements of the diagonal operator ordering
technique (DOOT). Section 3 is dedicated to defining the
different types of coherent states (CSs) and revealing their
main properties. Special attention is paid to the relationship
of solving the unit operator, i.e., to its development (de-
composition) with respect to the projectors of the coherent
states. In Section 4, we use a DOOTrule, according to which,
inside the sign # #, the normally ordered operators can be
seen as simple numbers and, consequently, we can perform
all algebraic operations according to the usual rules. Con-
sequently, several general integrals are obtained in which the
generalized hypergeometric functions participate. )eir
verification is done by customizing the indices of these
functions, which leads to known results obtained by other
methods. In Section 5, some observations are made in
connection with the results obtained previously. Implicitly,
the results show that the formalism of coherent states
corroborated with the DOOT technique can be useful also
for deducing new integrals from complex or real space.

2. Preliminaries

Generally, the energy eigenvalues e(n) are dependent of a set
of real (or complex) parameters ai 

p

1 and bj 
q

1. Examining
the expression of energy eigenvalues, we can say that for each
quantum system, there exist a specific and unique set of
integers and positive numbers p and q, respectively, and a set
of parameters ai 

p
1 and bj 

q

1. Let us suppose that the di-
mensionless energy eigenvalues are nondegenerate and have
the general expression (this assertion will be implicitly
motivated by the following):

e(l) � Cl


q

j�1 bj − 1 + l 


p

i�1 ai − 1 + l( 
, l � 1, 2, 3, . . . , (3)

where C is a dimensionless real constant.
We use for their product the following notation:

ρp,q

b

a
|n  ≡

n

l�1
e(l) � C

n
n!


q
j�1 bj 

n


p
i�1 ai( n,

(4)

where (x)n � Γ(x + n)/Γ(x) is the Pochhammer symbol and
Γ(x) is Euler’s gamma function.

It is useful to write the positive constants ρp,q(b/a|n)

(called “structure constants,” when referring to coherent
states) also in the same manner:
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ρp,q

b

a
|n  � Γp,q

a

b
 C

nΓ(n + 1)


q
j�1Γ bj + n 


p
i�1Γ ai + n( 

,

Γp,q

a

b
  ≡


p
i�1Γ ai( 


q
j�1Γ bj 

.

(5)

)e repeated action of the creation operator E+ on the
vacuum (or ground) state |0〉 leads to the following result:

E+ 
n
|0〉 �

�������������������������



n

l�0
e(n)|n〉 �

���������

ρp,q

b

a
|n 



|n〉,




(6)

|n〉

〈n|
  �

1
���������
ρp,q(b/a|n)


E+ 

n
|0〉

〈0| E+ 
n

⎛⎝ ⎞⎠. (7)

)e completion relation (or the identity operator de-
composition) for Fock vectors, if we assume that the Fock
vector space can be finite or infinite dimensional, i.e., with
dimension nmax ≡M≤∞, is



M

n�0
|n〉〈n| � 1, (8)

and then it becomes



M

n�0

1
ρp,q(b/a|n)

E+ 
n
|0〉〈0| E− 

n
� 1. (9)

Due to a fruitful operator ordering technique—the di-
agonal operator ordering technique (DOOT) (see [17]
(which is a generalization of the integration with ordered
products (IWOP)) and [16]), the above relation can be
rearranged as follows:

|0〉〈0| 
M

n�0

1
ρp,q(b/a|n)

# E+
E− 

n
# � 1. (10)

)e above sum is just a generalized hypergeometric
function (G-HGF), if M⟶∞, or a generalized hyper-
geometric polynomial of the degree M (G-HGP), if M<∞,
with the ordered operator product #E+

E− # as argument,
generally defined as

pF
M
q ai 

p

1 ; bj 
q

1;
1
C

x  � 
M

n�0

1
ρp,q(b/a|n)

x
n

� 
M

n�0


p

i�1 ai( n


q
j�1 bj 

n

(x/C)
n

n !
.

(11)

Consequently, the vacuum projector is

|0〉〈0| �
1

#pF
M
q ai 

p

1 ; bj 
q

1;
E+

E− /C #
. (12)

Evidently, as we will see later, the vacuum projector is the
same for all three kinds of CSs, i.e., it is independent of the
definition of CSs.

)is G-HGF is characteristic for every quantum system.
At the same time, the definition of G-HGF is the motivation
for choosing the general expression of energy eigenvalues
(3). Consequently, the function #pFM

q ( ai 
p

1 ; bj 
q

1; x/C)#

can be called “characteristic generalized hypergeometric
functions or polynomials” or “associated hypergeometric
functions or polynomials” of the quantum system.

Generally, an arbitrary set of CSs |z〉 is labelled by a
complex number z � |z|exp(iϕ), |z|≤R≤∞, ϕ ∈ (0, 2π)

and can be developed in the Fock vector basis |n〉 as

|z〉 �
1

�������
N |z|

2
 

 

M

n�0

z
n

���������
ρp,q(b/a|n)

 |n〉. (13)

All CSs |z〉must satisfy some conditions, sometimes
named Klauder’s minimal prescriptions[10]: the continuity
of labelling, i.e., if z′ ⟶ z, then
compulsory ‖|z′〉 − |z〉‖⟶ 0; as well as the condition that
CSs must be normalized to unity and nonorthogonal:

〈z|z′〉 �
1, for z′ � z

≠ 0, for z′ ≠ z
.

⎧⎨

⎩ (14)

Moreover, the most important condition is the so-called
completion relation or the resolution of the unity operator of
the CS projectors:

 dμ(z)|z〉〈z| � 1, (15)

with such an integration measure

dμ(z) �
d
2
z

π
h(|z|) �

dϕ
2π

d |z|
2

 h(|z|), (16)

to ensure a positive weight function h(|z|) which must be
determined separately, for each examined quantum system
and each kind of CSs.

To find the weight function h(|z|), we must have


M

n,n′�0

|n〉〈n′


���������
ρp,q(b/a|n)

 ����������
ρp,q(b/a|n′)

 

R

0

d |z|
2

 
h(|z|)

N |z|
2

 


2π

0

dϕ
2π

z
∗

( 
n

z′( 
n′

� 1. (17)
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)e normalization function N(|z|2) is obtained from the
normalization condition of CSs 〈z|z〉 � 1, so that

N |z|
2

  � pF
M
q ai 

p
1 ; bj 

q

1;
1
C

|z|
2

 . (18)

)e angular integral is (|z|2)nδn n′
, and, if we put h(|z|)

≡ h(|z|)/N(|z|2), we have to solve an integral moment
problem (the so-called Stieltjes or Hausdorff moment,
depending on whether R⟶∞ or R<∞). Consequently,
the normalization function N(|z|2) is either a generalized
hypergeometric function (if R �∞ ) or a generalized
hypergeometric polynomial of the degree M, if R<∞.

Inserting the expression of the integration measure in
the completion relation, to leave at the completion relation
(or the identity operator decomposition) for Fock vectors,
after angular integration, we obtain



R

0

d |z|
2

 
h(|z|)

pF
M
q ai 

p

1 ; bj 
q

1; 1/C|z|
2

 
|z|

2
 

n
� ρp,q

b

a
|n .

(19)

)e convergence radii for any kind of CSs are deter-
mined by calculating the limits (see, e.g., [20]):

R �
1

lim
n⟶∞

���������

ρp,q

b

a
|n 

n



> 0, (20)

R � lim
n⟶∞

ρp,q(b/a|n)

ρp,q(b/a|n + 1)
�
1
C

lim
n⟶∞

n
p− q− 1 1

1 + 1/n
�

∞ , if p − q − 1> 0,

1
C
<∞ , if p − q − 1 � 0,

0 , if p − q − 1< 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

and the CSs exist (that is, they make physical sense) only if
R≠ 0.

3. Different Kinds of Coherent States

Generally, for a certain quantum system, there exist three
kinds or manners to define the CSs: (a) the Barut–Girardello
CSs (BG-CSs); (b) the Klauder–Perelomov CSs (KP-CSs);
and (c) the Gazeau–Klauder CSs (GK-CSs). )e corre-
sponding expressions for these three kinds of CSs are dif-
ferent or divergent, except the case of HO-1D where these
three definitions are convergent, i.e., their results are
identical.

To highlight, in turn, the most important characteristics
of the three types of CSs, we will retain the following:

(a) )e Barut–Girardello coherent states (BG-CSs) are
defined as the eigenfunctions of the lowering op-
erator E− (see [8]):

E− |z〉BG � z|z〉BG, (22)

and their expansion in the Fock vector basis is

|z〉BG �
1

���������
NBG |z|

2
 

 

∞

n�0

z
n

���������
ρp,q(b/a|n)

 |n〉. (23)

)e normalization function NBG(|z|2) is the fol-
lowing generalized hypergeometric function:

NBG |z|
2

  � 
∞

n�0

|z|
2

 
n

ρp,q(b/a|n)
� pFq ai 

p
1 ; bj 

q

1;
1
C

|z|
2

 .

(24)

To find the weight function hBG(|z|) of the inte-
gration measure, we appeal to the completion re-
lations for the CSs, as well as for the Fock vectors.
)en, we have



∞

n,n′�0

|n〉〈n′


�������������������
ρp,q(b/a|n)ρp,q b/a|n′( 

 

R

0

d |z|
2

  |z|
2

 
n hBG(|z|)

NBG |z|
2

 


2π

0

dϕ
2π

z
∗

( 
n′

z
n

� 1. (25)

)e angular integral is (|z|2)nδn n′
and if we put

hBG(|z|) ≡ hBG(|z|)/NBG(|z|2), we have to solve an
integral moment problem (Stieltjes or Hausdorff,
depending on whether R �∞ or R<∞) [9]:
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R

0

d |z|
2

  |z|
2

 
nhBG(|z|) � ρp,q

b

a
|n  � Γp,q

a

b
 C

nΓ(n + 1)


q
j�1 Γ bj + n 


p

i�1 Γ ai + n( 
. (26)

By changing the exponent n � s − 1, we get



R

0

d |z|
2

  |z|
2

 
s− 1hBG(|z|) �

1
C
Γp,q

a

b
 C

sΓ(s)


q
j�1 Γ bj − 1 + s 


p
i�1 Γ ai − 1 + s( 

. (27)

Using the general relation for the classical integral to
one Meijer’s G-function [21],



∞

0

dx x
s− 1

G
m,n
p,q ω x|

ai 
n
1; ai 

p
n+1

bj 
m

1 ; bj 
q

m+1

⎛⎜⎝ ⎞⎟⎠ �
1
ωs


m
j�1Γ bj + s 

n
i�1Γ 1 − ai − s( 


q
j�m+1Γ 1 − bj − s 

p
i�n+1Γ ai + s( 

, (28)

and identifying the constants, we obtain

hBG(|z|) �
1
C
Γp,q

a

d
 d |z|

2
 G

q+1,0
p,q+1

1
C

|z|
2
|

/; ai − 1 
p

1

0, bj − 1 
q

1; /

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (29)

so that finally the integration measure is

dμBG(z) �
1
C
Γp,q

a

b
 

dϕ
2π

d |z|
2

 NBG |z|
2

 G
q+1,0
p,q+1

1
C

|z|
2
|

/; ai − 1 
p

1

0, bj − 1 
q

1; /

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (30)

Replacing the expression of hBG(|z|) in (27), we
obtain an important integral of the real variable |z|2

(see [11]):



R

0

d |z|
2

  |z|
2

 
s− 1

G
q+1,0
p,q+1

1
C

|z|
2
|

/; ai − 1 
p
1

0, bj − 1 
q

1; /
⎛⎜⎝ ⎞⎟⎠ �

C

Γp,q(a/b)
ρp,q

b

a
|s − 1 . (31)

Due to their importance for the rest of this paper, we
will call this equation the fundamental Bar-
ut–Girardello integral (f-BG-int).

If we use (7) and (12) as well as the DOOTrules [17],
we can write the BG-CSs as

|z〉BG �
1

���������
NBG |z|

2
 

 

∞

n�0

zE+ 
n

ρp,q(b/a|n)
|0〉 �

1
���������
NBG |z|

2
 

 pFq ai 
p
1 ; bj 

q

1;
1
C

zE+ |0〉, (32)
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and the resolution of the unity operator (15) becomes


d
2
z

π
G

q+1,0
p,q+1

1
C

|z|
2
|

/; ai − 1 
p

1

0, bj − 1 
q

1; /

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠#pFq ai 
p

1 ; bj 
q

1;
1
C

zE+ ×

×pFq ai 
p
1 ; bj 

q

1;
1
C

z
∗E− # �

C

Γp,q(a/b)
#pFq ai 

p
1 ; bj 

q

1;
1
C

E+
E− #.

(33)

)is integral will be useful to calculate some real
integrals involving the hypergeometric functions.

If we perform the angular integral, we obtain



2π

0

dϕ
2π

#pFq ai 
p

1 ; bj 
q

1;
1
C

zE+ pFq ai 
p

1 ; bj 
q

1;
1
C

z
∗E− # � 

∞

n�0

# E+
E− 

n
#

ρp,q(b/a|n) 
2

1
C2|z|

2
 

n

� #2pF2q+1 ai 
p
1 , ai 

p
1 ; 1, bj 

q

1, bj 
q

1;
1

C
2|z|

2E+
E− #.

(34)

)en, it remains for us to perform the integral in the
real space, with variable |z|2. Since in the DOOT
formalism the operators (under the sign of

integration) are treated as numbers, we can also
replace, using DOOTrules, operators E+ and E− with
numbers A and B, so that in the end, we get



∞

0

d |z|
2

 G
q+1,0
p,q+1

1
C

|z|
2
|

/; ai − 1 
p

1

0, bj − 1 
q

1; /
⎛⎜⎝ ⎞⎟⎠2pF2q+1 ai 

p

1 , ai 
p

1 ; 1, bj 
q

1, bj 
q

1;
AB

C
2 |z|

2
 

�
C

Γp,q(a/b)
pFq ai 

p
1 ; bj 

q

1;
AB

C
 .

(35)

(b) )e Klauder–Perelomov coherent states (KP-CSs)
are defined as the result of the action of the

generalized displacement unitary operator
#exp(zE+ − z∗E− )# on the ground (or vacuum) state
|0〉 (see [9]):

|z〉KP �
1

���������
NKP |z|

2
 

 exp zE+ |0〉

�
1

���������
NKP |z|

2
 

 

M

n�0

zn

n!
E+ 

n
|0〉 �

1
���������
NKP |z|

2
 

 

M

n�0

���������
ρp,q(b/a|n)



n !
z

n
|n〉.

(36)

)e normalization function is then

NKP |z|
2

  � 
M

n�0

ρp,q(b/a|n)

(n!)
2 (|z|)

n
� 

M

n�0


q
j�1 bj 

n


p
i�1 ai( n

C|z|
2

 
n

n !
� qF

M
p bj 

q

1; ai 
p

1 ; C|z|
2

 . (37)

6 Mathematical Problems in Engineering



Comparing with the normalization func-
tionNBG(|z|2)of the BG-CSs, it is to observe the
interchanging of the sets of parameters ai 

p

1 and
bj 

q

1 as well as the inversion of the constant in front
of the real variable |z|2 of the generalized hyper-
geometric function.
We must determine the expression of the weight
function hKP(|z|) of the integration measure
dμKP(z) � (d2z/π)hKP(|z|) by the help of the res-
olution of the unity operator. Using the DOOT, this
relation becomes

|0〉〈0| 

R

0

d |z|
2

 
hKP(|z|)

NKP |z|
2

 


2π

0

dϕ
2π

#exp zE+  exp z
∗E− # � 1.

(38)

After separate expansion of exponentials into power
series, the angular integral becomes ([22])



2π

0

dϕ
2π

#exp z E+ exp z
∗E− # � 

∞

n�0

# E+
E− 

n
#

(n !)
2 |z|

2
 

n

� #0F1 ; 1; E+
E− |z|

2
 # � #I0 2|z|

�����
E+

E−



 #.

(39)

Following a successively similar path as in the case of
BG-CSs, we will have

1
#pF

M
q ai 

p
1 ; bj 

q

1; (1/C)E+
E−  #



∞

n�0

# E+
E− 

n
#

(n !)
2 

R

0

d |z|
2

  |z|
2

 
nhKP(|z|) � 1. (40)

Hence, it follows that the integral must be of the
moment problem type, with n � s − 1

:



R

0

d |z|
2

  |z|
2

 
s− 1hKP(|z|) �

[Γ(s)]
2

ρp,q(b/a|s − 1)
�

C

Γp,q(a/b)

1
C

sΓ(s)


p
i�1 Γ ai − 1 + s( 


q
j�1 Γ bj − 1 + s .

(41)

Identifying the constants, after obtaining the solu-
tion of the above integral equation [21], the inte-
gration measure is finally written as

dμKP(z) �
C

Γp,q(a/b)

dϕ
2π

d |z|
2

 NKP |z|
2

 G
p+1,0
q,p+1

1
C

|z|
2
|

/; bj − 1 
q

1

0, ai − 1 
p

1 ; /

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (42)

Consequently, the decomposition relation of the
unity operator turns into the following integral
equation:


d
2
z

π
G

p+1,0
q,p+1 C|z|

2
|

/; bj − 1 
q

1

0, ai − 1 
p
1 ; /

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠#exp zE+ exp z
∗E− #

�
1
C
Γp,q

a

b
 #pFq ai 

p

1 ; bj 
q

1;
1
C

E+
E− #.

(43)
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After performing the angular integral, we obtain the
integral in the real space, with variable |z|2 (similarly,
as for BG-CSs, we have used DOOT rules and
replaced the operators E+ and E− with scalars A and
B), so that in the end, we get



∞

0

d |z|
2

 G
p+1,0
q,p+1 C|z|

2
|

/; bj − 1 
q

1

0, ai − 1 
p

1 ; /
⎛⎜⎝ ⎞⎟⎠I0(2|z|

���
AB

√
)

�
Γp,q(a/b)

C
pFq ai 

p
1 ; bj 

q

1;
1
C

AB .

(44)

Finally, let us point out that for these CSs, the
fundamental Klauder–Perelomov integral (f-KP-int)
is then



R

0

d |z|
2

  π|z|
2

 
s− 1

G
p+1,0
q,p+1 C|z|

2
|

/; bj − 1 
q

1

0, ai − 1 
p
1 ; /

⎛⎜⎝ ⎞⎟⎠ �
Γp,q(a/b)

C

[Γ(s)]
2

ρp,q(b/a|s − 1)
. (45)

(c) )e Gazeau–Klauder coherent states (GK-CSs) were
introduced by Gazeau and Klauder [10] and have the
following expression:

|J, c〉 �
1

�������
NGK(J)

 

∞

n�0

(
�
J


)
n

���������
ρp, q(b/a|n)

 e
− i c e(n)

|n〉, (46)

where 0≤ J≤∞ is a real number labelling the GK-
CSs and − ∞≤ c≤ +∞ is a real characteristic pa-
rameter. )e normalization function NGK(J) is
obtained, as usual, from the normalization condition
〈J|J〉 � 1:

NGK(J) � 
∞

n�0

J
n

ρp,q(b/a|n)
� pFq ai 

p
1 ; bj 

q

1;
1
C

J .

(47)

We can see that they have the same mathematical
structure as NBG(|z|2).
)e integration measures

dμGK(J, c) �
dc

2R
dJ hGK(J) (48)

must be understood to satisfy the limit [10]

 dμGK(J, c) . . . � lim
R⟶∞



+R

− R

dc

2R
. . . 

∞

0

dJ hGK(J) . . . .

(49)

)eGK-CSs can be obtained if three steps are taken [19]:

(i) Firstly, let us define BG-CSs, but for the real variable
J, denoted by |J〉:

E− |J〉 � J|J〉. (50)

(ii) Secondly, let us develop |J〉 into the Fock vector
base, using the standard procedure:

|J〉 �
1

�������
NGK(J)

 

∞

n�0

(
�
J


)
n

���������
ρp, q(b/a|n)

 |n〉. (51)

(iii) )e third step is to act with the exponential operator
exp(− i c H) on the state |J〉 (the parameter c and
the Hamiltonian H are considered less
dimensional):

|J, c〉 � exp(− i c H)|J〉 �
1

�������
NGK(J)

 

M

n�0

(
�
J


)
n

���������
ρp, q(b/a|n)

 e
− i c e(n)

|n〉.

(52)

)e resolution of the unity operator:

 dμGK(J, c)|J, c〉〈J, c| � 1. (53)

After some similar calculations as before, we arrive at the
expression



∞

n, n′�0

|n〉〈n′


���������
ρp, q(b/a|n)

 ����������
ρp, q b/a|n′( 

 lim
R⟶∞



R

0

dJ
hGK(J)

NGK(J)
(

�
J


)
n
(

�
J


)
n′



+R

− R

dc

2R
e
i c e(n)− e n′( )[ ] � 1. (54)
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)e integral with respect to the variable c is δn, n′ and so
we must solve the following moment problem:



∞

0

dJ hGK(J)J
n

� ρp, q

b

a
|n , (55)

which is identical to that of BG-CSs (26). Consequently, the
integration measure is

dμKP(J, c) �
1
C
Γp, q

a

b
 

dc

2R
dJ NGK(J)G

q+1,0
p,q+1

1
C

J

/; ai − 1 
p

1

0, bj − 1 
m

1 ; /

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (56)

Let us replace this expression by the decomposition
relation of the unity operator:

1
C
Γp, q

a

b
  

M

n, n′�0

n> < n′



���������
ρp, q(b/a|n)

 ����������
ρp, q b/a|n′( 



× lim
R⟶∞



R

0

dJG
q+1,0
p,q+1

1
C

J

/; ai − 1 
p
1

0, bj − 1 
m

1 ; /

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠(
�
J


)
n+n′

lim
R⟶∞

1
2R



+R

− R

dcexp − i c e(n) − e n′(  (  � 1.

(57)

Performing the integral with respect to c and using (17),
finally we obtain



∞

0

dJJ
s− 1

G
q+1,0
p,q+1

1
C

J
/; ai − 1 

p

1

0, bj − 1 
q

1; /
⎛⎜⎝ ⎞⎟⎠ �

C

Γp, q(a/b)
ρp, q

b

a
|s − 1 , (58)

which is identical, from the mathematical point of view, to
(31).

An interesting situation arises in the case of quantum
systems with a linear energy spectrum, for which e(l) � C l, so
p � q, ai 

p

1 � bj 
q

1, and ρ0,0(/ |n) � Cn n !.
)e GK-CSs for these systems are

|J, c〉 �
1

�������
NGK(J)

 

M

n�0

(
�
J


)
n

���������
ρp, q(b/a|n)

 e
− i c C n

|n〉 �
1

�������
NGK(J)

 

M

n�0

E+e
− i c C

�
J


 

n

�������
ρ0,0(/ |n)

 |0〉

�
1

�������
NGK(J)

 0F0 ; ;
1
��
C

√ E+e
− i c C

�
J


 |0〉 �

1
�������
NGK(J)

 exp
1
��
C

√ E+e
− i c C

�
J


 |0〉,

(59)

where the normalization function is
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NGK(J) � exp
1
C

J |0〉〈0| �
1

#0F0 ; ; (1/C)E+
E−  #

� # e
−
1
C

E+
E− #.

(60)

Let us check if the integral resulting from the decom-
position of the unit operator is true:

lim
R⟶∞



R

0

dJG
1,0
0,1

1
C

J |0 ; /  

+R

− R

dc

2R
# exp

1
��
C

√ E+e
− i c C

�
J


 |0〉〈0|exp

1
��
C

√ E− e
+ i c C

�
J


 # � 1. (61)

Assuming that [23]

G
1,0
0,1

1
C

J |0 ; /  � exp
1
C

J  (62)

and developing in series the complex exponentials, after
integration with respect to c, it is easy to show that the above
integral is true.

By the way, linear energy spectrum systems also satisfy
the conditions of temporal stability and action identity [10].

4. Results and Discussion

Let us turn our attention to the integrals which are called the
fundamental CS integrals.i.e., equations (31), (45), and (58)
are identical from a mathematical point of view. What differ
are only the indices of Meijer’s G functions. Because f-BG-

int and f-GK-int are the same, consequently, we will pay
attention only to f-BG-int and f-KP-int. We will use these
integrals to obtain some new generalized integrals involving
Meijer’s and hypergeometric functions.

First, let us consider a new hypergeometric function

rFs ci 
r
1; dj 

s

1; A|z|
2

  � 

∞

m�0

1
ρr, s(d/c|m)

A|z|
2

 
m

, (63)

with the structure constants

ρr,s

d

c
|m  �

1
A

m m!


s
j�1 dj 

m


r
i�1 ci( m.

(64)

Let us calculate the integral

I GBG ∗F(  ≡ 

∞

0

d |z|
2

 G
q+1,0
p,q+1

1
C

|z|
2

/ ; ai − 1 
p
1

0 , bj − 1 
q

1 ; /
⎛⎜⎝ ⎞⎟⎠

rFs ci 
r
1 ; dj 

s

1; A|z|
2

 . (65)

If we write the function rFs( ci 
r

1; dj 
s

1; A|z|2) as a
power series, we obtain successively

I GBG ∗F(  � 
∞

m�0

A
m

ρr, s(d/c|m)


∞

0

d |z|
2

  |z|
2

 
m

G
q+1,0
p,q+1

1
C

|z|
2

/; ai − 1 
p

1

0, bj − 1 
q

1; /

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

�
C

Γp, q(a/b)


∞

m�0

ρp, q(b/a|m)

ρr, s(d/c|m)
A

m
�

C

Γp, q(a/b)


∞

m�0


q
j�1 bj 

m


r
i�1 ci( m(1)m


p

i�1 ai( m
s
j�1 dj 

m

(CA)
m

m !
.

(66)

Finally, we obtain a new integral, which is one of the
goals of the present article:



∞

0

d |z|
2

 G
q+1,0
p,q+1

1
C

|z|
2

/ ; ai − 1 
p

1

0 , bj − 1 
q

1 ; /
⎛⎜⎝ ⎞⎟⎠

rFs ci 
r
1; dj 

s

1; A|z|
2

 

�
C

Γp, q(a/b)
q + r + 1Fp+s bj 

q

1, ci 
r

1, 1; ai 
p

1 , dj 
s

1; CA .

(67)
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To verify the correctness of this result, firstly we express
the hypergeometric function through Meijer’s function (see
[21]):

rFs ci 
r

1; dj 
s

1; A|z|
2

  �
1
Γr, s(c/d)

G
1,r
r,s+1 − A|z|

2
|

1 − ci 
r

1; /

0 ; 1 − dj 
s

1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (68)

and then we use classical Meijer’s integral for two G
functions [15]:



∞

0

d |z|
2

  |z|
2

 
α− 1

G
m,n
p,q

1
C

|z|
2
|

ai 
n

1; ai 
p

n+1

bj 
m

1 ; bj 
q

m+1

⎛⎜⎝ ⎞⎟⎠G
s,t
u,v − A|z|

2
|

ci 
t
1; ci 

u
t+1

dj 
s

1; dj 
v

s+1

⎛⎜⎜⎝ ⎞⎟⎟⎠

�
1

(− A)
αG

m+t,n+s
p+v,q+u −

1
CA

ai 
n
1,

bj 
m

1 ,

1 − α − dj 
s

1; 1 − α − dj 
v

s+1, ai 
p
n+1

1 − α − ci 
t

1; 1 − α − ci 
u

t+1, bj 
q

m+1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(69)

as well as the following transformations and argument
simplifications of Meijer’s functions:

G
m,n
p,q

1
|z|

2 |

ai 
p
1

bj 
q

1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ � G
n,m
q,p |z|

2
1 − bj 

q

1

1 − ai 
p

1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (70)

G
m,n
p,q |z|

2
|
α + ai 

p
1

α + bj 
q

1

⎛⎝ ⎞⎠ � |z|
2

 
α
G

m,n
p,q |z|

2 ai 
p
1

bj 
q

1

⎛⎝ ⎞⎠. (71)

Let us we calculate the same kind of integrals, but using
f-KP-int, i.e.,

I GKP ∗F(  ≡ 

∞

0

d |z|
2

 G
p+1,0
q,p+1

1
C

|z|
2

/ ; bj − 1 
q

1

0 , ai − 1 
p

1 ; /
⎛⎜⎝ ⎞⎟⎠

rFs ci 
r

1 ; dj 
s

1 ; A |z|
2

 . (72)

Following the same procedure and steps after straight-
forward calculations, we obtain



∞

0

d |z|
2

 G
p+1,0
q,p+1

1
C

|z|
2

/ ; bj − 1 
q

1

0 , ai − 1 
p

1 ; /
⎛⎜⎝ ⎞⎟⎠

rFs ci 
r

1 ; dj 
s

1 ; A|z|
2

 

�
Γp, q(a/b)

C
p + r + 1Fq+s ai 

p
1 , ci 

r
1 , 1 ; bj 

q

1 , dj 
s

1 ; CA .

(73)

To these new kinds of integrals, we can also add the
integrals previously obtained, which can be considered as a
particular case of the previous:
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∞

0

d |z|
2

 G
q+1,0
p,q+1

1
C

|z|
2

/ ; ai − 1 
p

1

0 , bj − 1 
q

1 ; /
⎛⎜⎝ ⎞⎟⎠2pF2q+1 ai 

p

1 , ai 
p

1 ; 1, bj 
q

1 , bj 
q

1;
AB

C
2 |z|

2
 

�
C

Γp, q(a/b)
pFq ai 

p
1 ; bj 

q

1 ;
AB

C
 .

(74)

Let us examine some examples, to confirm the cor-
rectness of the obtained integrals.

Example 1. Let us consider the coefficients p � 1 and q � 1,
as well as a1 � 1, so we have

G
2,0
1,2

1
C

|z|
2

/; a1 − 1

0, b1 − 1; /
⎛⎝ ⎞⎠ � G

1,0
0,1

1
C

|z|
2
b1 − 1  �

1
C

b1− 1 |z|
2

 
b1− 1

e
− (1/C)|z|2

. (75)

Integral (67) is then



∞

0

d |z|
2

 G
2,0
1,2

1
C

|z|
2

/; a1 − 1

0, b1 − 1; /
⎛⎝ ⎞⎠

rFs ci 
r

1; dj 
s

1; A|z|
2

 

� C Γ b1( r+1Fs b1, ci 
r

1; dj 
s

1; CA .

(76)

)is result is in accordance with the integral 7.525.5, pp.
814 of Gradshteyn and Ryshik’s book [24]:



∞

0

dxe
− x

x
s− 1

pFq a1, a2, . . . , ap; b1, b2, . . . , bq; a|z|
2

 

� Γ(s)p+1Fq s, a1, a2, . . . , ap; b1, b2, . . . , bq; a .

(77)

On the other hand, this equation can be regarded as the
Laplace transform of the generalized hypergeometric
function [25].

Example 2. Let us choose p � 1, q � 1, m � 2, n � 0, C � 1,
and a1, b1 ≠ 0. )en,

G
2,0
1,2 |z|

2 /; a1 − 1

0, b1 − 1; /
  � e

− |z|2
U a1 − b1, 2 − b1; |z|

2
 , (78)

where U(a1 − b1, 2 − b1; |z|2) is the Tricomi confluent
hypergeometric function.

According to equation (4), we have



∞

0

d |z|
2

 G
2,0
1,2 |z|

2 /; a1 − 1
0, b1 − 1; /

 rFs ci 
r

1; dj 
s

1; A|z|
2

 

� Γ b1( r+2Fs+1 b1, ci 
r

1, 1; a1, dj 
s

1; A ,

(79)

which can be verified using the integral calculus [26]:



∞

0

d |z|
2

  |z|
2

 
α− 1

e
− |z|2

U a, b, |z|
2

  �
Γ(1 − b + α)Γ(α)

Γ(a − b + α + 1)
,max(0,Re(b) − 1)<Re(α). (80)

Generally, by particularizing all coefficients p, q, r, and s,
as well as the set of parameters ai 

p
1 , bj 

q

1, ci 
r
1, and dj 

s

1,
it is possible to obtain a lot of new integrals (some of them
unknown yet).

5. Conclusions

In the present paper, we try to show that, apart from the role
that the formalism of coherent states plays in different
branches of physics (quantum mechanics, quantum optics,
and quantum information theory), the formalism of co-
herent states can also be useful in mathematics, in the field of
special functions. Namely, to solve the equation of the de-
composition of the unity operator (which constitutes the
fundamental property of coherent states), we arrive at a new

type of integrals. Beginning from these integrals, we have
deduced a set of new integrals involving Meijer’s and
generalized hypergeometric functions. After the particula-
rization of their coefficients p, q, r, and s, as well as the set of
parameters ai 

p

1 , bj 
q

1, ci 
r

1, and dj 
s

1, it is possible, on the
one hand, to recover a lot of known integrals and, on the
other hand, to obtain some new unknown integrals. )e
above calculation was possible because we used the diagonal
operator ordering technique (DOOT). From the attached
examples, it is to observe that, from the integration point of
view, the creation E+ and the annihilation E− operators that
appear under the integral’s sign can be treated as numbers,
and consequently they can be replaced by simple numerical
constants. )is is another consequence of using the DOOT
formalism.
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