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As for recognizing Zhuang minority pattern symbols, current recognition models often cause high computational overhead and low
accuracy since Zhuang minority pattern symbols have large feature vectors and some complex features. In this paper, we present the
efficient attention receptive field you only look once (Earf-YOLO), a new scheme to address those problems. Firstly, a global-local-
transformer (GLocalT) structure is proposed, through which other control systems are introduced into the axial self-attention module,
and global-local training strategies are also designed. 4e structure can use other control systems to compensate for the lost feature
information along the height, width, and channel axes. 4e global-local training strategy can encode long-term dependencies between
features and reduce local information loss, fully illustrating that the structure has high feature expression ability. Besides, strength
receptive field block (SRFB) is suggested to use the dilated convolution to control the receptive field’s eccentricity and enrich the feature
information of the receptive field during its training. With more branches, it can better extract multiscale features, enrich the feature
space of the convolution block, and reparametrize multibranch during prediction to fuse them into the main branch, all of which
contribute to the improvement of the model performance. Finally, some advanced training techniques are adopted to enhance the
detection effect further. In the end, comparative experiments are conducted on the datasets of Zhuang pattern symbols and PASCAL
VOC, whose results indicate that the AP and FPS of the suggested model reach their highest values, manifesting its high efficiency.

1. Introduction

Ethnic minorities integrate their religious culture and totem
culture into the pattern symbols of clothing and architec-
tural decoration, usually with profound connotations. 4ey
are the basis for classifying national images [1]. As the
minority patterns often feature their exquisite colors and
structural and artistic styles, they are significant in retrieving
the origin, distribution, and development of ethnic groups.
With globalization and modernization, ethnic pattern cul-
ture is disappearing gradually. How to inherit, protect,
spread, and utilize the traditional ethnic culture of pattern

symbols in China should be valued. 4erefore, correctly and
efficiently recognizing the symbols of minority patterns is
vital in realizing digital protection and in inheriting ethnic
culture.

Different from the modern symbols, the minority
symbols have the following characteristics: (1) complex
pattern structures; (2) bright colors; (3) rich accessories with
different visual styles; and (4) rich connotations, especially
texture details, often with rich ethnic characteristics. For
example, the symbols of Zhuang patterns are bright in color,
evident in color gradation, and different in components.
Besides, different branches of the same nationality have
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different pattern symbols. Let us take Zhuang patterns as an
example: different pattern symbols in different branches
reflect their unique esthetics and styles.

Object detection, an essential branch of AI and pattern
recognition, has been successfully applied to many areas,
such as transportation [2, 3], rescue [4, 5], and the demand
in these areas is still growing. Without object detection,
symbol extraction will fail to obtain all features in images as
they often contain many totems, patterns, and designs that
serve as the basis for extracting and detecting features from
minority patterns.

Recently, Huo et al. [6] classified ethnic costumes in
natural settings into 11 representative ethnic pattern sym-
bols, including Miao, Mongolian, and Korean, based on the
component detection and the feature fusion of the costume
pattern symbols. Sun et al. [7] classified the ethnic costumes
by using Faster R-CNN to extract attribute features from
symbols of costume patterns. However, the large feature
vector of the pattern symbols extracted from ethnic cos-
tumes will increase data storage and computational over-
head. Besides, the semantic gap between low-level features
and high-level attributes presents the following difficulties:
(1) the symbols of ethnic patterns have distinct colors,
various styles, and distinctive texture patterns. How to di-
vide the visual style of ethnic pattern symbols and bridge the
semantic gap between high-level visual attributes and geo-
metric features is critical to improving recognition accuracy.
(2) Some small ethnic symbols with small coverage, low
resolution, and inconspicuous features decrease the detec-
tion efficiency. (3) 4e current object detection models such
as the YOLO series [8–11] often need high computational
overhead.

4e YOLO series [8–11] plays a vital role in object
detection tasks in the single-stage detector. We propose an
improved model, Earf-YOLO, based on YOLOv4 [11] to
solve the above three problems. Earf-YOLO can extract
global and local features and increase the model’s receptive
field, improving the detection accuracy at a relatively fast
detection speed. 4e overview of Earf-YOLO is shown in
Figure 1.

(1) A new transformer architecture is designed to better
describe the feature information of the pattern
symbols. It adopts a gating self-attention mechanism
to better converge features from height, width, and
channel axes. It divides the feature map into patches
and inputs them and the original feature map into
the transformer to learn long-distance dependencies
between features and reduce local information loss
between features.

(2) To increase the receptive field of pattern symbol
extraction, enhance the ability of complex pattern
symbols, and reduce the computational overhead of
pattern symbol recognition model, the strength re-
ceptive field block (SRFB) structure is designed to
replace the redundant convolution layer in the
feature pyramid of the model. It not only improves
the ability of the convolutional neural network to
extract deeper features but also reduces the

computational overhead of the model, accelerating
the model training and recognition speed.

(3) Some advanced techniques, including the Soft-NMS
[12], GIoU Loss [13], and Focal Loss [14], are in-
tegrated into Earf-YOLO, and their effects during
training are verified. Experiment results demonstrate
that these advanced techniques can improve detec-
tion performance.

(4) 4e frames per second (FPS) and average precision
(AP) of previous models and the proposed model are
compared on the Zhuang pattern symbol datasets, as
shown in Figure 2. 4e final result illustrates that
Earf-YOLO achieves high performance in detecting
pattern symbols.

2. Related Work

2.1.TraditionalObjectDetectionModel. 4edetection task of
Zhuang pattern symbols is to extract the style element
features of Zhuang pattern symbols through the model to
realize the positioning and classification of Zhuang pattern
symbols. In recent years, many researchers have researched
the object recognitionmodels. Ribeiro et al. [15] proposed an
end-to-end dual neural network architecture to recognize
expiration dates in snack packaging. 4ey used neural
networks to fuse global and local features to recognize
features. In recognizing Zhuang pattern symbols, we should
focus on the classification and shape of multiple pattern
symbols. Symbol classification and object positioning are
different in detecting, so a new detection network is needed.
4e network of our model shows that the object classifi-
cation focuses on judging local features, and the object
positioning focuses on judging the global feature region.
Nguyen et al. [16] demonstrated an object frame generation
method based on a deep convolutional neural network
(DCNN), which trained an object positioning detector to
learn deep feature information from the bounding candidate
frame detected in the image. When recognizing pattern
symbols, there are color overlaps between geometric features
and background features, making the model unable to ex-
plore the deep feature information of the relevant graph
primitives and background. Erhan et al. [17] focused on
processing similar instance objects in an image and pro-
posed a display-inspired neural network to detect objects of
an unknown category. Although the pattern symbol image of
Zhuang nationality contains multiple similar objects and is
also detected for multiple objects, the detection accuracy of
the model is low due to the complex background of the
Zhuang patterns.

2.2. Two-Stage Object Detection Model. Because of the low
accuracy of traditional object detection algorithms, Girshick
et al. [18] proposed a two-stage detection model based on
R-CNN. Firstly, R-CNN uses a selective search algorithm to
extract 2000 candidate frames from the images to be de-
tected. 4en, R-CNN scales 2000 candidate frames into
227× 227 and uses a convolutional neural network to extract
features from candidate frames to obtain feature vectors.
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Finally, the model inputs feature vectors into the support
vector machine and the fully connected network. 4e
support vector machine can classify feature vectors to get
category information, and the fully connected network
performs regression operations on feature vectors to obtain
corresponding coordinates. Although R-CNN is cleverly
designed, the model detection is divided into multiple stages,
resulting in a significant decrease in detection efficiency.
4erefore, Girshick [19] proposed a Fast RCNN. It does not
need to input all the candidate frames into the deep learning
model. Instead, it only needs to select all candidate frames,
input the selected candidate frames into the network for
feature mapping, and obtain the prediction category and the
position of the prediction frame. 4e model performs a
selective search to improve detection speed but spends a lot

of time selectively searching for candidate frames. To solve
this problem, Faster RCNN [20] and Mask RCNN [21]
added a region proposal network based on Fast RCNN. It
extracts candidate frames by setting anchors of different
scales and replaces the traditional candidate frame gener-
ation methods, such as the selective search method, which
improves the computing speed of the network. With the
development of deep learning, affected by the complexity of
the primary network, the number of candidate frames,
classification, and the complexity of the regression sub-
network among other factors, the above techniques require
high computation overhead, which seriously influences the
model prediction and training performance.

2.3. One-Stage Object Detection Model. As for the low effi-
ciency of the two-stage object detection algorithm, YOLOv1
[8] removes the candidate frame extraction branch of the
two-stage algorithm and directly implements feature ex-
traction, candidate frame classification, and regression in the
same deep convolutional network, making a single network
complete classification determination and locate regression.
YOLOv1 abandons the candidate frame stage and speeds up
the detection speed. However, it is not accurate enough in
locating objects and has a low recall rate, resulting in low
detection accuracy. Farhadi et al. [9] proposed the YOLOv2
model to address this problem, mainly using a multiscale
classifier and multiscale object frame position detector to
improve the model accuracy. Although the accuracy of
YOLOv2 improves a lot, its accuracy is still not ideal in
subsequent industrial applications. YOLOv3 [10] designs a
Darknet53 residual network and feature pyramid network
by learning the residual network and the RPN of Faster
RCNN to improve network depth and network space rep-
resentational ability. 4erefore, a large number of scholars
have made relevant studies on YOLOv3. Based on the
YOLOv3 model, Li et al. [22] conducted rapid detection of
cracks in the fuselage or engine blade of an aircraft structure
by depthwise separable convolution and feature pyramid.
Shi et al. [4] optimized the YOLOv3 model by reducing its
parameters, improving its detection speed for underwater
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Figure 1: An overview of Earf-YOLO. Transformer and SRFB are used to optimize YOLOv4.4en, some advanced techniques such as data
augmentation, GIoU Loss, Focal Loss, and Soft-NMS were employed to improve the Earf-YOLO detection efficiency on Zhuang pattern
symbol datasets. It is worth noting that the feature map in the figure can obtain three prediction results through the gating axial transformer.
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objects, optimizing the residual network, and strengthening
its feature extraction ability. Although the methods men-
tioned above based on YOLOv3 can identify large objects
well, it is easy to neglect hard-detected and overlapping
features. Bochkovskiy et al. [11] proposed the YOLOv4
model to solve those problems by applying advanced bag of
freebies and bag of specials methods to achieve better de-
tection results. However, the model is difficult to deploy on
the platform with few resources because of its large number
of network parameters and its large computation overhead.
As for the massive overhead of neural networks that limited
the model’s detection and inference on mobile devices, Zhou
et al. [23] proposed the RSANET model, which introduced
lightweight convolution (LCNet) and attentional pyramid
networks with residual as the prediction head. 4eir ex-
periments proved that the model could reduce computa-
tional overhead effectively. John and Mita [24] proposed a
residual semantic-guided attention feature pyramid net-
work, including input and output branches. 4e model used
the input branch to extract the features of a single sensor and
then used the residual connection to integrate the extracted
features into the output perception branch. Although both
models can perform well on certain experimental datasets,
they have low detection accuracy, high detection error, and a
high neglected detection rate for detecting small specific
objects in Zhuang patterns. Based on the previous research,
we present an improved Earf-YOLO model in this paper to
optimize the YOLOv4 to address the above problems.

3. Methods

4is section details the Earf-YOLO, the proposed Zhuang
pattern symbol recognition model, including the intro-
duction of its structure and its contributions.

3.1. Network Structure. Accuracy and computational over-
head are essential indexes to determine the performance of
an object detection model. YOLOv4, one of the classical
models for detecting an object, requires a high computa-
tional overhead to ensure accuracy. 4erefore, we focus on
detecting symbols of Zhuang patterns accurately with
minimal computational overhead. Based on the previous
studies, we propose the Earf-YOLO model based on the
YOLOv4, as shown in Figure 3, mainly composed of the
BackBone, neck, and transformer predict. First of all,
BackBone mainly uses the CSPDarkNet53 featured by in-
troducing the CSPNet structure [25] to reduce the com-
putational overhead, eliminate the redundant gradient
information when the network is optimized reversely, en-
hance the convolutional network’s learning ability, and
ensure accuracy while making the network lightweight.
Secondly, Neck network adopts the structure of strength
receptive field block (SRFB), global-local-transformer
(GLocalT), and path aggregation network (PANet) [26]. 4e
SRFB structure can effectively improve the receptive field of
the network and extract important context features. GLocalT
can extract the local and global features of Zhuang pattern
symbols. PANet is the improved version of feature pyramid

network (FPN) [27], to which a bottom-up path augmen-
tation structure is added to avoid losing shallow feature
information during transmission, improving prediction
accuracy. Finally, transformer predict is used for regression
and classification. Unlike YOLOv4, the Earf-YOLO uses the
global transformer to predict three feature maps of different
sizes to detect small, medium, and large objects. 4e size of
the prior frame is obtained by clustering the sample objects
through the k-means algorithm, based on which the size and
position of the prediction frame can be calculated by relative
offset.

3.2. Global-Local-Transformer. With the wide application of
transformer [28] in natural language, transformer [29] is
also used for computer vision tasks. Recent studies show that
transformer-based models can achieve good detection re-
sults only by training datasets with rich features. It is
challenging for models to learn the position-coding of the
image if traditional transformer architecture is used because
there are various pattern symbols and small textures in
datasets of Zhuang pattern symbols. 4erefore, according to
the gating attention mechanism of medical segmentation
proposed by Valanarasu et al. [30], we designed a global-
local-transformer (GLocalT) structure to detect symbols of
Zhuang patterns. It inputs global and local features into the
transformer for extracting and fusing features, respectively.
In addition, it adopts a gating axial attention layer to serve as
the basic structure block of the transformer.4e architecture
of GLocalT is shown in Figure 4(a).

Gating axial attention layer. In traditional transformers,
softmax(qTk) is often used to calculate the global affinity,
and the value matrix v is aggregated together, where q � WQ,
k � WK, and v � WV represent query matrix, key-value
matrix, and value matrix, respectively. 4ey all calculate the
mapping matrix by inputting x. 4e mapping matrix
WQ, WK, WV ∈ RCin×Cout can be obtained through the
model’s learning. 4is approach enables the model to
capture nonlocal information from the global feature
mapping. However, this calculation requires a large amount
of computational overhead, and its computation overhead
will increase when the feature map size increases. 4e self-
attention layer of this method is not conducive to extracting
any position feature information when calculating nonlocal
context feature information. 4e positional feature infor-
mation is crucial in recognizing symbols of Zhuang patterns
and is usually used to locate objects. Researchers [30–32]
decompose the self-attention module into two self-attention
modules to make the computional affinity less complex. 4e
first module performs self-attention on the height axis, and
the secondmodule performs self-attention on the width axis.
Adding axial attention to the height and width axis can
effectively simulate the original self-attention mechanism
and better calculate efficiency. In addition, to make the self-
attention mechanismmore sensitive to position information
when calculating affinity, they attached position bias items
and gating mechanism to all q, k, and v, thus enabling the
model to capture remote interactions with precise positional
information. 4erefore, based on the above discussions, for
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any given input feature mapping x ∈ RCin×H×W with height
H, width W, and channel Cin, a gating attention mechanism
with position encoding of height, width, and channel is used
to improve the model’s ability to compute the affinity be-
tween features. To promote the model’s computational ef-
ficiency, we simultaneously adopt three parallel gating
attention mechanisms. 4e gating attention mechanism is
computed as shown in Figure 4(b), and the computation can
be expressed by the following equations:
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where rq, rk, rv ∈ RH×H represents the additional position
codes for all q, k, and v, respectively. GQ, GK, GV, GI, GJ ∈ R

represents the weight calculated by the gating mechanism
and they are learnable parameters. 4e information amount
of key, query, and value can be controlled by controlling the
position embedding code of the feature map. Generally, the
value of GQ, GK, GV, GI, GJ will be high if the model accu-
rately learns relative position coding. Finally, the feature
maps obtained from the width, height and channel axes are

added and performed convolution operations on the gating
axial transformer, as shown in Figure 4(c). 4e calculation
method is

y � yheight + ywidth + ychannel. (4)

Global-local training. 4e image is divided into multiple
patches for training, making the transformer accelerate its
convergence speed and helping the model extract finer
texture details. However, as for recognizing Zhuang pattern
symbols, when the image is divided into multiple patches to
train the model, the object frame may be larger than the
image block, limiting the information dependence between
pixels. In order to improve the overall understanding of
image features, we input feature maps into the global branch
and local branch to process feature maps, as shown in
Figure 4(a). Global branches can use transformer to learn
long-distance dependencies between features, while local
branches can use transformer to make up for local lost detail
features caused by patches. In the global branch, we input the
whole feature map into GLocalT to simulate the dependence
of long-distance correlation and extract the global feature of
the pattern symbol. In the local branch, the feature map is
divided into 16 patches with the size of I/4 × I/4. I refers to
the size of the original image. 4en the 16 patches are input
into GLocalT, which focuses on the local features’ finer
details. 4e feature maps output by the two branches are
finally added and passed through the 1× 1 convolution layer
to produce the final output.

3.3. StrengthReceptive Field Block. 4e research of Ren. et al.
[33] and Chen et al. [34] proved that expanding the receptive
field of the model could improve accuracy. He et al. [35]
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proposed spatial pyramid pooling (SPP) block, which used
max pooling of multiple parallel k× k convolution kernels to
obtain receptive fields and extract feature information. 4e
SPP structure can increase the receptive field of the model
and get multiscale feature information of Zhuang pattern
symbols. However, it fails to consider the effect of the ec-
centricity of the model’s receptive field in the recognition
process of Zhuang pattern symbols, which makes the effect
of each pattern symbol image pixel in the perception field of
the model is the same, and the vital information in the
receptive field is not emphasized. It also makes the model
increase inference time when the model conducts predic-
tion. Based on the above discussion, we put forward the
strength receptive field block (SRFB) structure, which not
only adopts multiple convolutional kernels of different sizes
to carry out multibranch pooling. In the branches, the SRFB
structure uses the convolutional layer’s void rate to control
the receptive field’s eccentricity and transforms various
matrices into a single convolution during prediction to
optimize the network structure of YOLOv4 [11]. Compared
with the SPP structure, the SRFB structure has more “mi-
crostructures” with rich feature information, increasing the
receptive field of the model’s feature extraction. Each feature
extracted by convolution contains extensive feature infor-
mation that reduces the computational overhead during
prediction.4e SRFB structure, as shown in Figure 5(a), uses
parallel layers with kernel sizes of 3× 3, 1× 3, 1× 1, and 3×1,
each of which will be batch normalized.

During training, the SRFB structure uses parallel con-
volution layers with kernels of 3× 3, 1× 3, 1× 1, and 3×1 to
increase the receptive field of the structure, enhance the
model’s feature aggregation ability, and deepen the net-
work’s expression ability of the nonlinear layer. 4e SRFB
involves batch normalization to reduce network overfitting
and speed up training. 4e batch normalization formula is
shown in (5).

O:,:,j � 􏽘
C

k�1
M:,k ∗ F

(j)

:,:,k − μj
⎛⎝ ⎞⎠

cj

σj

+ βj, (5)

where M:,k is the input k-th channel feature map. F(j)

:,: ,k

represents the input k-th channel convolution kernel, and
O:,:,j represents the mapping channel of output features
corresponding to the j-th convolution kernel. cj, σj, βj de-
note learnable parameters, which can be obtained by the
gradient descent algorithm.

4e additivity of convolution proves that two-dimen-
sional convolution kernels with different sizes operate at the
same step to produce the same resolution, whose outputs can
be added. 4e additivity of convolution can be considered
the addition of the corresponding positions of the convo-
lution kernels to produce an equivalent kernel with the same
output, as shown in (6). During prediction, the SRFB uses
the additivity of convolution to convert 3× 3, 1× 3, 1× 1,
and 3×1 convolution kernel into a new 3× 3 convolution
kernel to enrich the convolution feature information, as
shown in Figure 6.
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where I signifies the feature matrix, K(1) and K(2) represent
two-dimensional convolution kernels with compatible sizes.
⊕ represents the sum of the corresponding positions, and ∗
represents the two-dimensional convolution operator.
Compatibility means that the smaller kernel can be patched
to the larger kernel.

4e homogeneity of convolution proves that batch
normalization of the feature space of the neural network can
be equivalently integrated into convolution during the
prediction. According to the homogeneity of the convolu-
tion, a new kernel cj/σjF(j) plus bias μjcj/σj + βj can be
constructed on each branch, as shown in the following
equations:
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By adding the parallel convolution kernel to the
asymmetric convolution kernel, the three normalized 3× 3,
1× 1, 1× 3, and 3×1 convolutional branches aremerged into
the standard convolutional layer. 4is new structure can
obtain rich feature information without the additional
computational overhead. 4e result after the merging is
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:,i,j represents the output re-
sults of 3× 3, 1× 3, 3×1, and 1× 1 convolutional layer,
respectively.

However, the kernel of the SRFB structure can be
equivalently converted when it implements inference, as
shown in Figure 5(b). 4e kernel uses different calculations
to obtain the gradient because the SRFB structures are
randomly initialized during training, so they cannot be
converted equivalently.

3.4. Bag of Freebies. Generally, strategies that only increases
training cost but does not increase inference loss are called
“bag of freebies” in the object detection field. Bag of freebies
mainly optimizes the loss function to make the model better
fit the data. An image may have thousands of objects in the
object detection field, but only a small part needs to be
detected. Compared with the two-stage detector, the one-
stage detector does not use a region proposal network, which
will result in imbalanced distribution of positive and neg-
ative samples during training, and the loss value of the object
detection susceptible to the loss value of the negative
samples. Lin et al. [14] proposed that focal loss could be
obtained by modifying the cross-entropy loss function to
reduce the negative sample influence. In this paper, focal loss
optimized the classification loss function of YOLOv4 to
decrease the background influence when recognizing
Zhuang pattern symbols. Focal loss decides the total loss
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function by setting weights to the cross-entropy loss func-
tion, as shown in (10), thus solving the unbalanced distri-
bution of positive and negative samples and easy and
complex samples. Focal loss defines a weight factor α ∈ [0, 1]

and then takes it to the cross-entropy loss function to solve
the imbalance of negative and positive samples. When the
number of positive samples is small, the value of α will be
large, and the loss value of positive samples will increase.

Focal loss suggests an adjustment factor c to reduce the
weight of easy samples andmake themodel focus on training
complex samples to solve the imbalance between easy and
complex samples.

Focal loss(p, y) �
− α(1 − p)

clogap, y � 1,

− (1 − α)p
cloga(1 − p), y � 0,

􏼨 (10)

where p ∈ [0, 1] represents the classification probability of
predicted samples and y indicates the label of positive and
negative samples. If y is 0, it is negative sample, and y is 1, it
is positive sample.

At present, many object detection models [36, 37]
generally use L1 and L2 norms to calculate the loss value.4e
L1 and L2 norms independently calculate the loss value of
the four coordinate variables of the prediction frame. 4e
coordinate variables are irrelevant, but there is some cor-
relation among the coordinate variables in real situations.
When the model’s performance is evaluated, IoU is used to
detect whether there is an object. If the norm regression of
L1 and L2 is directly used to calculate the coordinate frame,
the values of the evaluation indexes will also be affected. Yu
et al. [38] proposed that IoU as a regression loss function
could calculate the coordinate frame, which solved the above
problems. However, if IoU is directly used as the boundary
loss when the prediction frame and the ground-truth frame
do not overlap, both IoU and the gradient will become 0, and
the boundary loss cannot be optimized. Rezatofighi et al. [13]
proposed the GIoU loss as a boundary loss. It retained the
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Figure 5: (a) is the SRFB during training and (b) the SRFB during prediction. According to the additivity of convolution, the SRFB can treat
1× 1, 3 ×1, and 3×1 convolution (consisting of a large number of zeros in the convolution kernel) as a special 3× 3 convolution.

equal

Figure 6: 4e sliding window shows the additivity of convolution.
4ere are four convolutional kernels of 3× 3, 1× 1, 1× 3, and 3×1,
respectively, sharing the sliding windows based on the additivity of
convolution.
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scale invariance of IoU as a loss function and added the
distance between two frames to optimize the loss value,
which solved the problem that the gradient was 0 because the
prediction frame and the ground-truth frame did not
overlap. 4e calculation of GIoU is

GIoU �
|A∩B|

|A∪B|
−

|C/(A∪B)|

|C|
, (11)

where A and B are the prediction frame and the ground-
truth frame, respectively, and C is the smallest closed frame
containing both. When GIoU becomes larger, the GIoU loss
will become smaller, and the network will be optimized to
make the prediction frame and the ground-truth frame
highly overlap. 4e boundary loss function of YOLOv4
optimized by GIoU is shown in the following formula:

bbox_loss � 􏽘
S2

i�0
􏽘

B

j�0
I
obj
ij (1 − GIoU) × 2 − 􏽢w

j
i × 􏽢h

j

i􏼒 􏼓􏼔 􏼕, (12)

where 􏽢w and 􏽢h represent the width and height of the
boundary frame, respectively. Iobj represents the probability
of the object inside the current boundary frame.

In the Earf-YOLO model, the prediction results include the
prediction category, confidence, and position of each prediction
frame. 4erefore, the model’s loss function in this paper is

Loss� λcoordb box loss

+ 􏽘

S2

i�0
􏽘

B

j�0
I
obj
ij

􏽢C
j

i loga C
j

i􏼐 􏼑 + 1 − 􏽢C
j

i􏼒 􏼓loga 1 − C
j

i􏼐 􏼑􏼔 􏼕

− λnoobj 􏽘
S2

i�0
􏽘

B

j�0
I
noobj
ij

􏽢C
j

i loga C
j

i􏼐 􏼑 + 1 − 􏽢C
j

i􏼒 􏼓loga 1 − C
j

i􏼐 􏼑􏼔 􏼕

− 􏽘
S2

i�0
I
obj
ij 􏽘

c∈classes
(1 − α)P

jc

i loga 1 − P
j

i􏼐 􏼑 +α 1 − P
j

i􏼐 􏼑
c
logaP

j

i􏽨 􏽩􏼐 ,

(13)

where S2 indicate S × S grids, B indicates that each grid has a
B prediction frame. If the IoU of the j-th prediction frame
and truth-ground frame in the i-th grid is greater than the
threshold, then I

obj
ij � 1, otherwise I

obj
ij � 0. If the IoU of the

j-th prediction frame and truth-ground frame in the i-th grid
is less than the threshold, then I

noobj
ij � 1, otherwise

I
noobj
ij � 0. If the IoU of the j-th prediction frame and truth-

ground frame in the i-th grid is the greatest, then 􏽢C
j

i � 1,
otherwise 􏽢C

j

i � 0. C
j
i is the confidence score of the existing

object in the j-th prediction frame of the current i-th grid.
λcoord and λnoobj represent the penalty weights of the loss
function.

3.5. Bag of Specials. Postprocessing is a method to screen the
prediction results ofmodels, which belongs to the bag of specials.
It can significantly improve themodel’s prediction accuracy only
by adding a small prediction overhead. 4e postprocessing
method uses the NMS algorithm on the output result to delete
the wrong prediction frame and find the most appropriate

position for the prediction frame. 4e Hard-NMS algorithm
sorts the prediction frames fromhigh scores to low scores, selects
the prediction frame with the highest scores, sets a threshold,
deletes the prediction frames whose overlap rates with the
highest-scored prediction frames exceed the threshold, and
repeats the steps mentioned above with the left prediction
frames until the last one.When the overlap rate of two objects in
the image is larger than the fixed threshold, the Hard-NMS will
set the score of the prediction frame as 0 and then delete it, which
may lead to the low-scored objects not being detected and loss of
accuracy.

4e Soft-NMS [12] addresses the problem that the Hard-
NMS mistakenly deletes the prediction frame when two
objects overlap from a new perspective. As formula (14)
indicates, the Soft-NMS does not delete low-scored pre-
diction frames directly. It will lower their scores further and
then set a threshold to delete low-scored prediction frames.
4e Soft-NMS will also use the Gaussian weight function (as
shown in formula (15)) to multiply the scores of the current
prediction frame with a weight function. 4is function will
attenuate the scores of adjacent prediction frames that
overlap the highest-scored prediction frame M. 4e more
overlapping the prediction frame is with the highest-scored
one, the more serious the attenuation of the prediction frame
will be.

si �
si, IoU M, bi( 􏼁<Nt,

si 1 − iou M, bi( 􏼁( 􏼁, IoU M, bi( 􏼁≥Nt,
􏼨 (14)

si � sie
− iou M,bi( )

2/σ( 􏼁
, (15)

where si is the score of the current prediction frame, Nt is the
threshold, and M is the prediction frame with the highest
scores. bi is the score of each prediction frame.

4. Experimental Results and Analysis

In this section, we introduce the experimental datasets and
the parameters of the experimental settings, and then verify
the performance of Earf-YOLO in experiments.

4.1. Zhuang Pattern Symbol Datasets. 4e datasets used in
the experiment are symbols of Zhuang patterns. 4e Zhuang
people have incorporated their wisdom and culture into
Zhuang patterns, usually reflecting their yearning for a better
life. For example, the delicate and beautiful flowers on
Zhuang patterns are believed to represent natural beauty and
colorful life; the birds on Zhuang patterns can arouse
people’s longing for a happy life, as birds usually lead happy
and free lives in the forest.

So far, there are no specific dataset composed of symbols
of Zhuang patterns. 4e datasets used in this research are
images taken by researchers in the Zhuang tribes. 4ere are
about 19,199 images of Zhuang patterns in the datasets,
divided into 20 classifications. To ensure the justice of the
model when it gets trained, we try to balance the number of
images in each classification. We selected 10,592 images as
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training samples and 8,607 images as testing samples. 4e
sample distribution is shown in Figure 7.

4.2. Experimental Settings. Experimental data are trained on
Python 3.6, Keras 2.3.1, GTX 2070 8G, andWindows 10.4e
number of training iterations is 500. 4e image input size is
fixed as 416× 416. 4e optimizer is Adam. 4e attenuation
strategy of the learning rate is the Cosine annealing atten-
uation strategy, whose initial learning rate is set as 0.001, the
highest learning rate as 0.01, and the lowest learning rate as
0.0001. In the first 400 experiments, the first 170 convolution
layers of the network are frozen; then, the remaining con-
volution layers are trained. In the last 100 experiments, all
convolution layers are opened and trained. Average preci-
sion (AP), frames per second (FPS), and Param are taken as
evaluation indexes to evaluate the model’s performance. AP
stands for the average accuracy of IoU from 0.5 to 0.95, with
the threshold increasing at intervals of 0.05. AP50 indicates
the average accuracy when the IoU threshold is 0.5, and AP75
indicates the average accuracy when the IoU threshold is
0.75. APS, APM, and APL represent the average accuracy of
small, medium, and large objects, respectively. 4e AP is
proportional to the model detection effect. 4e larger the AP
is, the better the detection effect will be.4e larger the FPS is,
the higher the detection efficiency will be. 4e smaller the
Param is, the lower the network memory consumption will
be.

4.3. ZhuangNationalityPattern SymbolsContrast Experiment
and Result Visualization. In this section, the suggested Earf-
YOLO is evaluated on the datasets of Zhuang pattern
symbols. In order to simplify the comparison results on the
datasets of Zhuang pattern symbols, we compare the im-
proved Earf-YOLOmodel with the latest one-stage and two-
stage models on the network with ResNet101 and
CSPDarkNet53 as backbones, respectively, as shown in
Table 1. Table 1 indicates that the AP of Earf-YOLO on
ResNet101 and CSPDarkNet53 reached 39.1% and 41.0%,

respectively. Figure 1 and Table 1 show that the Earf-YOLO
model achieves the best results in both speed and accuracy
compared to other models.

In addition, in the testing set of Zhuang pattern symbols,
the experiment was conducted between Earf-YOLO (with
CSPDarkNet53 as the backbone) and the original YOLOv4
model to compare classification accuracy, whose results are
shown in Figure 8 demonstrate that the average classification
accuracy of Earf-YOLO is higher than that of YOLOv4.
Besides, for some small and complex pattern symbols such as
the Zhuang two lions pattern, the Zhuang copper coin
pattern, and the Zhuang bird pattern, the average classifi-
cation accuracy of Earf-YOLO remains high.

Meanwhile, some images are randomly selected from the
datasets of Zhuang pattern symbols for visualization. 4is
paper selects four pairs of representative detection results for
comparison. Figure 9(a) shows the visualized result of
YOLOv4, and Figure 9(b) shows the visualized result of Earf-
YOLO (with CSPDarknet as the backbone). 4e visualized
results suggest that Earf-YOLO is more accurate in detecting
complex and small pattern symbol frames.

4.4. Contrast Experiments on PASCAL VOC Dataset. In the
previous section, the evaluation indexes of the Earf-YOLO
model were acquired on the Zhuang pattern symbol dataset,
which does not prove the general efficiency of the model.
4erefore, we conduct experiments on PASCAL VOC2007
and VOC2012, the public dataset, to further verify the
model’s efficiency. 4e VOC dataset is composed of 20
categories. 4e dataset is annotated with the actual label
position and the corresponding category information for
each image. On PASCAL VOC2007 and VOC2012, we
compared the proposed model with other advanced object
detection models. 4e experimental results are shown in
Table 2. Compared with YOLOv1, YOLOv2, YOLOv3, and
YOLOv4, the AP of Earf-YOLO increases by 25.3%, 13.1%,
12.4%, and 2.8%, respectively. Compared with Faster RCNN,
RefineDet512, and R-FCN-3000, the AP of Earf-YOLO
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Figure 7: Datasets of Zhuang pattern symbols; (a) represents the training samples and (b) represents the testing samples.
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Table 1: Comparison of AP of Earf-YOLO with that of other latest models on the datasets of Zhuang pattern symbols.

Methods 4e backbone network AP(%) AP50(%) AP75(%) APS(%) APM(%) APL(%)
YOLOv4 640(baseline) [11] ResNet-101 36.8 56.2 39.2 20.4 39.8 46.4
YOLOv5s8 ResNet-101 37.7 56.8 40.4 21.1 40.8 47.6
Libra RetinaNet [39] ResNet-101 36.5 55.7 39.1 21.0 40.6 46.3
RetinaNet w/AugFPN [40] ResNet-101 37.2 55.4 40.2 20.2 40.3 47.1
Our model ResNet-101 39.1 58.5 41.7 22.3 42.3 48.9
RetinaNet w/SABL [41] CSPDarkNet53 36.3 59.2 39.1 18.3 39.1 48.3
LRF [42] CSPDarkNet53 38.3 60.4 41.8 20.2 41.2 50.3
Faster RCNN [43] CSPDarkNet53 37.4 58.6 39.8 19.8 41.9 50.2
YOLOv4 640 [11] CSPDarkNet53 38.2 58.6 40.9 21.3 42.6 48.3
RDSNet [44] CSPDarkNet53 40.6 59.4 41.9 21.1 41.7 50.4
YOLOX [45] CSPDarkNet53 40.7 59.9 42.5 22.5 43.2 51.6
Our model CSPDarkNet53 41.0 61.7 43.8 24.3 44.4 51.8
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Figure 8: Comparison of the average classification accuracy of Earf-YOLO and the baseline model for 20 types of objects in the Zhuang
pattern symbol datasets.
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Figure 9: Visualized results of YOLOv4 and Earf-YOLO; (a) of YOLOv4 and (b) Earf-YOLO.
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increases by 15.3%, 11.6%, and 11.2%, respectively. Com-
pared with DES512, DSSD, and ASSD, the AP of Earf-YOLO
increases by 11.4%, 10.2%, and 8.7%, respectively. It can be
seen from Table 2 that Earf-YOLO has the best performance,
which illustrates the general efficiency of Earf-YOLO on
other datasets.

4.5. Ablation Experiments. All ablation experiments in this
section are first conducted on the Zhuang pattern symbol
dataset. 4e experimental results are compared with the
baseline, the YOLOv4 algorithm, with the backbone network
of CSPDarkNet53. Finally, we integrate GLocalT and SRFB,
the main contribution points of this article, into YOLOv3,
YOLOv4, and YOLOv5 for comparative experiments on
PASCAL VOC2007 and VOC2012.

4e performance analysis of global-local-transformer
(GLocalT) and strength receptive field block (SRFB) are
discussed.

4.5.1. Baseline +GLocalT. As shown in line 2 of Table 3,
compared with the baseline model, though FPS of YOLOv4
with GLocalT decreases by 2 and its Param increases by
2.093M, its AP increases by 1.6%, demonstrating that
YOLOv4 with GLocalT can better extract features with
complex and small pattern symbols.

4.5.2. Baseline + SRFB. As illustrated in line 3 of Table 3,
compared with the baseline model, the AP of YOLOv4 with
SRFB increases 0.7%, its Param decreases by 6.148M, and its
FPS increases by 10, which proves that replacing redundant
convolution with SRFB can improve the recognition accu-
racy, significantly reduce the computational overhead, and
improve computational efficiency.

4.5.3. Baseline + SRFB+GLocalT. As illustrated in line 4 of
Table 3, the AP, Param, and FBS of YOLOv4 with SRFB and
GLocalT reach 40.1%, 57.623M, and 27, respectively. 4e
results demonstrate that YOLOv4 with SRFB and GLocalT
reaches the highest performance, as the combination can
address the problem that it is difficult to extract and fuse

multilayer features thoroughly with less computational
overhead.

4en the detection results of YOLOv4 integrated with
some techniques are compared, shown in Table 4. When
soft-NMS is involved, AP increases by 0.2% compared with
YOLOv4 because when two object frames are close to each
other, soft-NMS will not directly delete the frame with a
large overlap area between the prediction frame and the
ground-truth frame but decrease the score of the prediction
frame. When focal loss is involved, AP increases by 0.6%
compared with YOLOv4, which alleviates the imbalance of
positive and negative samples and that of simple and
complex samples. When GIoU loss as boundary loss is
involved, AP reaches 38.7%. Finally, the model achieves the
highest AP when the bag of freebies and the bag of specials
are combined.

To prove the general efficiency of our main contribu-
tions, we incorporate GLocalT and SRFB into YOLOv3,
YOLOv4, and YOLOv5 on the VOC dataset. Table 5 shows
that with GLocalT and SRFB, the AP values of YOLOv3 and
YOLOv5 increase. With GLocalT and SRFB, the AP value of
YOLOv4 reaches the highest, indicating that the optimi-
zation based on YOLOv4 can detect more complex scenes.

5. Conclusions

Since present object detection models cannot fully extract
features in different stages, and their computational over-
heads are too high in recognizing symbols of the Zhuang
patterns, an object detection model, Earf-YOLO, is

Table 2: Experimental results of different models on the VOC2007
and VOC2012 testing sets.
Methods 4e backbone network AP(%)
YOLOv1 448 VGG16 66.4
YOLOv2 544 Darknet19 78.6
YOLOv3 416 Darknet53 79.3
YOLOv4 640 CSPDarknet53 88.9
YOLOv5s CSPDarknet53 85.7
Faster RCNN ResNet-101 76.4
RefineDet512 [46] VGfotG-16 80.1
R-FCN-3000 [47] ResNet-101 80.5
DES512 [48] VGG-16 80.3
DSSD [49] ResNet-101 81.5
ASSD [50] ResNet-101 83.0
Earf-YOLO CSPDarknet53 91.7

Table 3: Comparative results of models with different additional
structures.
Methods AP(%) Param(M) FPS
Baseline 38.2 61.678 20
Baseline +GLocalT 39.8 63.771 18
Baseline + SRFB 38.9 55.53 30
Baseline +GLocalT + SRFB 40.1 57.623 27

Table 4: Comparison of the results of YOLOv4 with different
techniques.
Hard-NMS Soft-NMS Focal loss GIoU loss AP(%)

38.2
√ 38.4

√ √ 38.8
√ √ 38.7

√ √ √ 39.1

Table 5: In VOC dataset, the comparative results of YOLOv3,
YOLOv4, and YOLOv5 with the main contributions of the pro-
posed model are shown.
Methods AP(%)
YOLOv3 416 79.3
YOLOv4 640 88.9
YOLOv5s 86.8
YOLOv3+GLocalT + SRFB 82.5
YOLOv4+GLocalT + SRFB 90.1
YOLOv5+GLocalT + SRFB 88.4
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suggested in this paper. To be specific, first we propose the
global-local-transformer structure. 4is structure uses gat-
ing axial attention layer to make the model better collect
features on height, width, and channel axes, and more
sensitive to the position information. It also uses the global-
local training strategy to help the model focus on the global
dependence between features and reduce local information
loss. 4en we design the strength receptive field block
(SRFB), which uses the dilated convolution of multiscale
branches to enhance the model’s feature extraction ability
and fuses the convolution branches to reduce the inference
time. Finally, we incorporate some advanced techniques to
optimize the model. 4e structures and techniques men-
tioned above effectively address the problems YOLOv4 faces
and improve its detection performance in recognizing
Zhuang pattern symbols. However, Earf-YOLO has not been
widely applied to the two-stage object detection models. Its
detection effect on other datasets has not been discussed,
either. 4erefore, further improvement of the proposed
structures and techniques will be the future focus, making
them applicable to other two-stage object detection models
and available to various datasets.
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