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Toward solving the slow convergence and low prediction accuracy problems associated with XGBoost in COVID-19-based
transmission prediction, a novel algorithm based on guided aggregation is presented to optimize the XGBoost prediction model.
In this study, we collect the early COVID-19 propagation data using web crawling techniques and use the Lasso algorithm to select
the important attributes to simplify the attribute set. Moreover, to improve the global exploration and local mining capability of
the grey wolf optimization (GWO) algorithm, a backward learning strategy has been introduced, and a chaotic search operator has
been designed to improve GWO. In the end, the hyperparameters of XGBoost are continuously optimized using COLGWO in an
iterative process, and Bagging is employed as a method of integrating the prediction e�ect of the COLGWO-XGBoost model
optimization. �e experiments, �rstly, compared the search means and standard deviations of four search algorithms for eight
standard test functions, and then, they compared and analyzed the prediction e�ects of fourteen models based on the COVID-19
web search data collected in China. Results show that the improved grey wolf algorithm has excellent performance bene�ts and
that the combined model with integrated learning has good prediction ability. It demonstrates that the use of network search data
in the early spread of COVID-19 can complement the historical information, and the combined model can be further extended to
be applied to other prevention and control early warning tasks of public emergencies.

1. Introduction

According to the World Health Organization, the new
Coronavirus pneumonia outbreak constitutes a global public
health emergency as of January 31, 2020 [1]. China has
su�ered great economic and social harm following the
outbreak of Corona Virus Disease 2019 (COVID-19), in late
December 2019 in Wuhan, China [2]. Considering that
COVID-19 is highly infectious [3], its origin, transmission
routes, and pathogenesis have remained unclear at the be-
ginning of the outbreak, and the government’s prevention
and control strategy have been gradually and dynamically
adapted to the epidemic’s development. Scienti�c fore-
casting can help prevent major outbreaks by establishing a

proactive and anticipatory safeguard system to prevent the
continuous spread of epidemics [4]. �e early identi�cation
of the epidemiological trend of COVID-19 will assist in
controlling the spread and progression of the disease,
thereby reducing its social burden. �erefore, it is important
to examine a fast and e¥cient prediction model for major
public emergencies to develop reasonable prevention and
control measures.

In COVID-19 epidemic prediction, scholars around the
world used public data of the epidemic to conduct a variety
of data analyses and tested a variety of prediction methods
and prediction models. In combining and analyzing the
categories and mechanisms of these models, it has been
found that existing prediction methods can be broadly

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 1314459, 13 pages
https://doi.org/10.1155/2022/1314459

mailto:728115479@qq.com
https://orcid.org/0000-0003-3092-2834
https://orcid.org/0000-0003-1791-3909
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1314459


classified into three categories: curve-fitting methods, kinetic
methods, and machine learning methods. Zhao et al. [5]
were the first to make this prediction.-ey used curve-fitting
based on exponential growth trends to predict the number of
cases at the beginning of the outbreak and determined that
the early transmission capacity of the novel coronavirus was
similar to or slightly greater than the early transmission
capacity of SARS. -e traditional curve-fitting prediction
methods are very different from reality because they do not
consider the characteristics of infectious diseases. A kinetic
model describes the speed, spatial extent, transmission
pathways, and kinetic mechanisms of infectious diseases [6].
It is worth noting that the majority of kinetic models for the
current epidemic are based on SEIR models. -e authors of
Geng et al. [7] created an SEIR model to evaluate the efficacy
of current prevention and control strategies using the
characteristics of COVID-19. To predict COVID-19 with
reference to the spread of SARS in the absence of data, Wu
et al. [8] added crowd flow rate to the traditional SEIR
model. Nevertheless, although kinetic methods are good
predictors of early trends in epidemics, they are insufficient
to estimate the spread of disease in open mobile settings or
allow the assumed constants of disease transmission capacity
and cure probability to match reality. Hence, an analysis of
epidemic trends based on these methods will be inaccurate
over the long term [9]. Since the emergence of COVID-19,
with the continual increase in data samples and the advent of
big data, the superiority of technologies, such as artificial
intelligence, has been fully apparent. Researchers Peng et al.
[10] employed four machine learning models for the pre-
diction of clinical outcomes: artificial neural networks
(ANN), naive Bayesian models (NBM), logistic regression
(LR), and random forest (RF) models. -e study by Liu et al.
[11] constructed LR, k-nearest neighbor (KNN), decision
tree (DT), multilayer perceptron (MLP), random forest (RF),
support vector machines (SVM), and explainable boosting
machine (EBM), a total of seven COVID-19 diagnostics, and
evaluated the accuracy of each model for COVID-19. Ji et al.
[12] developed a new particle swarm algorithm (ADVPSO)
to optimize the parameters of ANN and applied it to pre-
dicting the spread trend of COVID-19. Using RF and ANN,
Balerjee et al. [13] developed a predictive model for neo-
coronavirus pneumonia based on the results of complete
blood counts in admitted patients. -e model was able to
identify 85% of community neo-coronavirus-positive pa-
tients without considering patient symptoms or medical
history. Using daily data from the IranianMinistry of Health
between February 19 and March 30, 2020, Moftakhar et al.
[14] built ARIMA and ANNmodels, respectively, to forecast
the number of confirmed patients to be confirmed in Iran
within the next month. A study by Almazroi et al. [15]
demonstrated that popular machine learning algorithms,
such as ANN and DT, have high variance and bias in
prediction and used four integrated models of gradient
boosting decision tree (GBDT), RF, extreme gradient
boosting (XGBoost), and voting regressors (VR) to predict
the number of new coronary pneumonia cases in Saudi
Arabia each day. -e XGBoost model was found to be the
strongest predictor. It is the advantage of machine learning

methods that they can learn and train from historic data to
construct an intelligent prediction model for the develop-
ment of the epidemic. Not only does the prediction effect
depend on the quality of the predictionmodel but also on the
data used for the prediction. Online public opinion [16] is an
important vehicle for the dissemination of emergency in-
formation in the context of big data. Following the outbreak
of an emergency, internet users often learn about the event
through search engines or portals. Ginsberg et al. [17] be-
came the first to propose such a study.-ey utilized Google’s
extensive user search data to accurately predict the trend of
the proportion of influenza-like cases in the United States
one week in advance using the “Google Flu Trends” software
developed by Google in 2008. A subsequent study was
conducted by some scholars as a follow up to this. Signorini
et al. [18] calculated a real-time tracking prediction model
for the proportion of influenza-like illnesses across the U.S.
and in specific regions using the percentage of U.S. Twitter
volume containing influenza-related keywords published
within the U.S. as a predictor variable. Li et al. [19] noted that
the web searches of historical data can better predict in-
fluenza trends, while the web searches of current data can
ensure the accuracy of predictions of new changes. A few
scholars have also utilized internet search data in the analysis
and study of the current epidemic. In some parts of the
United States, Kurian et al. [20] found a strong correlation
between searches on Google Trends and outbreaks of new
corona infections.

Overall, different attempts have been made to address
the prediction problem of COVID-19 in the existing liter-
ature, however, some limitations remain. Firstly, traditional
methods of curve-fitting and kinetic analysis have the
shortcomings of having low prediction accuracy and poor
generalization properties. Secondly, most of the data used in
the existing literature are traditional statistical data, which
present problems associated with long acquisition periods
and poor timeliness, affecting prediction models’ timeliness.
-irdly, although machine learning techniques are widely
employed in COVID-19 prediction, most scholarly studies
apply them to predicting COVID-19 diagnosis, whereas
there is little literature specifically addressing the prediction
of the new corona epidemic trend.

-is paper attempts to address the shortcomings listed
above by focusing on the following three aspects of COVID-
19 epidemic transmission prediction problem.

In the first step, the COVID-19 network opinion keyword
database is developed using relevant references, the Baidu
search index keyword time series data is crawled, and keywords
that have high correlation are screened out as input features of
the machine learning model using the LASSO algorithm.

Next, the final keywords are input into the XGBoost
model. To increase the accuracy of the prediction, a chaotic
search factor is designed, and a backward learning strategy is
introduced to create an improved grey wolf evolutionary
algorithm (COLGWO). Using the algorithm, the hyper-
parameters of the XGBoost model are determined, and then
the COLGWO-XGBoost model as a prediction study of the
change in the cumulative number of confirmed COVID-19
cases in China is performed.
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-e third point is that, to further improve the gener-
alization performance of COLGWO-XGBoost, a combined
Bagging-COLGWO-XGBoost early warning model is pro-
posed based on Bagging’s idea of integrated learning. Such a
model includes multiple benchmark models and perfor-
mance evaluation metrics to provide a more scientific and
comprehensive assessment of the proposed model.

2. Web Search Data

2.1. Data Collection. We used the cumulative number of
confirmed diagnoses nationwide as the prediction label here,
which was obtained using the DXY website’s (https://www.
dxy.cn) interface (excluding Hong Kong, Macau, and Tai-
wan). Data began with the first national notification on the
official website of the National Health and Wellness
Commission of the People’s Republic of China. As of Jan-
uary 20, 2020, to May 7, 2020, the period ranged from the
time the national prevention and control work was mostly in
the normalization stage [21], with a total of 110 valid
observations.

-e internet generates more data with greater timeliness
with the development of information technology and the
penetration of networks. During an outbreak, people will
turn to search engines, such as Baidu and Google, to seek
information about the outbreak’s cause and the corre-
sponding preventive measures. Utilizing open-source web
search data to monitor the new corona epidemic in China is
a powerful addition to traditional surveillance tools and can
serve as an early warning system, guide medical treatment,
and improve prevention and control strategies during the
incipient stages of the epidemic. China’s most frequently
used search engine Baidu has a feature called Baidu search
index that counts the daily search volume figures for various
keywords. It can effectively reflect a keyword’s media and
user attention at a specific point in time and reflect the
network public opinion change in an emergency situation
[22]. According to the Baidu index, daily statistics are
published for the previous day, while the main variable used
as an early warning model must be at least two days ahead of
time to have practical application [23]. As such, in the
present study, we select the number of searches for Baidu
index keywords related to the emergency state during the
epidemic outbreak two days prior to the outbreak, as an
input feature. -is information is also gathered by web
crawler technology on the official Baidu index web interface
(https://index.baidu.com). -e time period is from January
18, 2020, to May 5, 2020.

2.2. Data Preprocessing. As a keyword, it is a term that
summarizes what the user is seeking most concisely. -e
effectiveness of this prediction depends on selecting effective
web search terms relevant to this COVID-19 outbreak.-ere
are three primary types of initial keyword selection methods:
direct word selection method, technical word selection
method, and range word selection method [24]. -e analysis
of the advantages and disadvantages of these three types of
initial keyword selection methods and the review of relevant

literature have led this study to adopt range word selection in
combination with the direct word selection method to select
42 keyword libraries. High-dimensional data often cause
problems, such as high computational complexity and long
running times for models, which is why this study employs
the Lasso method to reduce the dimensionality of the ini-
tially established index system and eliminate the features of
no significant significance. Basically, the Lasso method is to
add a penalty function to the sum of squared residuals and
compress the coefficients in estimating the parameters to
produce feature selection: the larger the parameter λ, the
fewer the features selected. Our paper utilized a 10-fold
cross-validation method to determine the best value for λ.
-e seven keywords with zero coefficients were removed,
and a total of 35 keywords were found as predictive factors
across four categories of prevention, symptoms, treatment,
and common COVID-19 terms, as shown in Table 1.

-e web search keywords in the table were used as input
features, and the national cumulative number of confirmed
diagnoses was used as a predictor label. Also, all prediction
data have been normalized to eliminate prediction errors
caused by different data magnitudes. Normalization is de-
termined by the following mathematical principle:

x∗ �
x − xmin

xmax − xmin
. (1)

Here, x∗ is the normalized data value, x is the original
data value before normalization, and xmin and xmax are the
minimum and maximum values of the original data. -is
normalized value falls within the range of [0, 1], which is
then randomly divided into a training set and a test set
(where the training set represents 80% of the data samples
and the test set represents 20%), and once the model has
been trained, the prediction results are back-normalized to
obtain the predicted values.

2.3. Correlation Analysis of Sample Data. Spearman’s cor-
relation coefficients were calculated between the final key-
word data in Table 1 and the predicted variable (cumulative
number of confirmed diagnoses). -e results are shown in
Table 2. It can be seen that the Baidu index of 33 of the 35
keywords selected in the sample data showed a statistically
significant correlation with the cumulative number of
confirmed cases of COVID-19 (P< 0.01). Among them, the
correlations of “fever,” “malaise,” “respiratory infection,”
and “cold” were high in the classification of symptom words,
with absolute values above 0.8. Although these four
symptoms are not specific to COVID-19, they are easy to
identify and are of great concern to the general population
and are the best indicators of possible COVID-19 infection.
It also indicates that the general population is aware of the
basic knowledge of the symptoms of COVID-19. In addition,
the absolute values of the correlation coefficients of “N95
mask,” “medical surgical mask,” and “84 disinfectant” also
reached above 0.8. It indicates that with the further spread of
the epidemic and the escalation of prevention and control
measures, residents’ demand for personal protection
knowledge tends to be stronger.
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3. Algorithm Analysis

3.1. Grey Wolf Optimizer. Mirjalili et al. [25] developed a
pack intelligence optimization algorithm in 2014 that em-
ulates the predatory behavior of grey wolf packs by simu-
lating behaviors characteristic of grey wolf packs. During the
optimization phase of GWO, α, β, and δ wolves, the highest
social level of the population in each generation, led the
bottom ω wolves through encirclements and searching.
GWO has a simple structure, few parameters to be adjusted,
and is thus easily implemented, which makes it applicable to
several fields. It has been widely used for optimization.

To begin, we can describe mathematically the process by
which a wolf pack searches for and slowly surrounds its prey.

D � C · Xp(t) − X(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (2)

X(t + 1) � Xp(t) − A · D, (3)

a � 2 −
2I

M
, (4)

A � 2a · r1 − a, (5)

C � 2 · r2. (6)

Here, X(t) is the position of the prey after the tth it-
eration, Xp(t) is the position of the grey wolf at the t th

iteration, D denotes the distance between the grey wolf and
the prey, X(t + 1) denotes the update of the position of the
grey wolf, A and C are the coefficient vectors, a is the
convergence factor whose value decreases linearly from 2 to
0 with the number of iterations, I is the number of previous
iterations, and M is the maximum number of iterations. r1
and r2 are the random numbers between [0, 1].

Secondly, the position of the three optimal wolves α, β,
and δ is constantly updated to determine the prey. -e
following is a mathematical description of the hunting
process of a wolf pack:

Da � C1 · Xα(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (7)

Dβ � C2 · Xβ(t) − X(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (8)

Dδ � C3 · Xδ(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (9)

X1(t + 1) � Xα(t) − A1 · Dα, (10)

Table 1: Web search keyword phrase database.

Category Web search keywords
Common
words New Coronavirus (X1), New Coronary Pneumonia (X2), Respiratory diseases (X3), COVID-19 (X4)

Prevention

N95 mask (X5), medical surgical mask (X6), nucleic acid detection (X7), epidemic prevention and control (X8), hand
washing (X9), seven-step hand washing technique (X10), hand sanitizer (X11), hand sanitizer (X12), disinfection (X13), 84
disinfectant (X14), disinfectant brand (X15), chlorine dioxide (X16), thermometer (X17), forehead temperature gun (X18),

infrared thermometer (X19)

Symptoms Fever (X20), malaise (X21), respiratory infection (X22), cold (X23), headache (X24), diarrhoea (X25), virus mutation (X26),
asymptomatic infected person (X27), aerosol transmission (X28), contact transmission (X29), incubation period (X30)

Treatment Fever clinic (X31), cold medicine (X32), fever-reducing medicine (X33), new crown vaccine (X34), ventilator (X35)

Table 2: Correlation analysis of predictor and predicted variables in sample data.

Predicted variable: cumulative number of confirmed cases in China
Predictor variable Correlation coefficient P value Predictor variable Correlation coefficient P value
X1 0.034 ＞0.05 X2 0.139 >0.05
X3 −0.592 <0.01 X4 0.538 <0.01
X5 −0.929 <0.01 X6 −0.874 <0.01
X7 0.536 <0.01 X8 −0.366 <0.01
X9 −0.591 <0.01 X10 0.485 <0.01
X11 −0.564 <0.01 X12 −0.536 <0.01
X13 −0.762 <0.01 X14 −0.815 <0.01
X15 −0.724 <0.01 X16 −0.574 <0.01
X17 −0.789 <0.01 X18 −0.353 <0.01
X19 −0.651 <0.01 X20 −0.820 <0.01
X21 −0.825 <0.01 X22 −0.969 <0.01
X23 −0.956 <0.01 X24 −0.726 <0.01
X25 −0.727 <0.01 X26 −0.583 <0.01
X27 0.692 <0.01 X28 −0.216 <0.01
X29 −0.474 <0.01 X30 −0.727 <0.01
X31 −0.882 <0.01 X32 −0.917 <0.01
X33 −0.915 <0.01 X34 0.715 <0.01
X35 0.596 <0.01
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X2(t + 1) � Xβ(t) − A2 · Dβ, (11)

X3(t + 1) � Xδ(t) − A3 · Dδ, (12)

X(t + 1) �
X1(t + 1) + X2(t + 1) + X3(t + 1)

3
. (13)

Here, Xα(t), Xβ(t), and Xδ(t) are the positions of α, β,
and δ wolves when the population is iterated to the tth

generation. X(t) is the position of individual grey wolves in
the tth generation. A1 and C1, A2 and C2, A3 and C3 are the
coefficient vectors of α, β, and δ wolves, respectively.
X1(t + 1), X2(t + 1), and X3(t + 1) indicate the positions of
α, β, and δ wolves after (t + 1) iterations, respectively. X(t +

1) is the position of the next generation of grey wolves.

3.2. Improving Grey Wolf Optimizer. -ough the standard
GWO provides better performance than most intelligent
optimization methods, it is not suitable for dealing with
complex functions. Hence, there is a need to improve the
balance between global search and local convergence to
improve the performance of the grey wolf algorithm [26]. In
the standard GWO, the prey direction and distance between
preys are continuously adjusted by employing the equations
from (7) through (13) until the prey is caught after many
iterations, and by analyzing this process, it was found that
grey wolves move to the same region as the number of it-
erations increases, which makes the whole pack converge
seriously, making the wolf pack easily fall into local opti-
mum. -e chaos opposition learning grey wolf optimizer
(COLGWO) is proposed in this study as a method to en-
hance the defects of standard GWO.-e details are provided
below.

3.2.1. Opposition-Based Learning. If the grey wolves of the
initialized population are near the optimal solution, the
convergence is quicker, and if the grey wolves of the ini-
tialized population deviate from the optimal solution, the
algorithm is slower or fails to converge. Opposition-based
learning (OBL) was implemented by Tizhoosh et al. [27] to
help expand the individual search space, enhance the global
exploration capability, and overcome the algorithm falling
into local optimum. Below is its mathematical definition.

Initially, setting the inverse point serves as the pop-
ulation initialization for the grey wolf optimizer. For a point
x � (x1, x2, . . . , xD) in the D-dimensional space, its reverse
point 􏽥x � (􏽥x1, 􏽥x2, . . . , 􏽥xD) is calculated as follows:

􏽥xi � ai + bi − xi. (14)

Here, xi ∈ [ai, bi], and ai and bi are the value boundaries
of the point x in the ith dimension.

Secondly, the grey wolf algorithm is iteratively op-
timized using backward learning and jump probabilities
to best achieve its global optimization objectives. Let Jr be
the jump probability, and if rand[0, 1]≤ Jr, then the re-
verse learning population is generated. Setting as one of
the grey wolf individuals in the Dth dimension,

x
→

i � (xi,1, xi,2, . . . , xi,D), xi,j ∈ [aj, bj], the corresponding
inverse solution 􏽥xi � (xi,1, xi,2, . . . , xi,D) for that individ-
ual is calculated as follows:

􏽥xi,j � k · daj + dbj􏼐 􏼑 − xi,j. (15)

Here, k takes the value of any random number between
[0, 1], and [daj, dbj] is the dynamic boundary of the particle
in the Jth dimension, which is calculated as follows:

daj � min xi,j􏼐 􏼑, dbj � max xi,j􏼐 􏼑. (16)

Within the dynamic boundary, a point is generated at
random if the reverse solution jumps out of it.

􏽥xi,j � rand daj, dbj􏼐 􏼑, if 􏽥xi,j <dajor􏽥xi,j >dbj. (17)

3.2.2. Chaotic Search Factor. By utilizing the randomness,
ergodicity, and regularity of the logistic chaotic sequence, a
chaotic search input is added to the grey wolf optimizer,
and a local search is performed in the vicinity of the
optimal α-wolf in each iteration. In addition, a shrinkage
strategy is introduced to achieve a large search range at the
beginning of the iteration and a smaller search range at the
end, which enhances the local mining capability of the
standard GWO algorithm, allowing the algorithm to
perform both global and local searches equally well while
improving its accuracy. -e following is a mathematical
description.

-e first step is to generate the chaotic variables ci.

ci+1 � 4 · ci · 1 − ci( 􏼁. (18)

Here, the range of the values of i is [1, K], the range of the
values of ci is (0, 1), and ci ≠ 0.25, 0.5, and 0.75. K is the
length of the chaotic sequence.

A second step is the mapping of the chaotic variable ci

generated by equation (18) to a chaotic vector Ci in the
definition domain [LB, UB].

Ci � LB + ci · (UB − LB). (19)

Here, i takes values within the range [1, K]. LB and UB
represent the lower and upper limits, respectively.

In addition, the chaotic vector Ci and optimal α-wolf are
linearly combined to generate the chaotic wolf Vi.

Vi � (1 − λ) · α + λ · Ci, (20)

λ �
M − I + 1

M
. (21)

where i belongs to the range [1, K]. λ is the contraction
factor, M is the maximum number of iterations in the al-
gorithm, and I is the current number of iterations.

To be able to better understand the chaos search factor,
the following is a brief example of a one-dimensional
function sphere, from which higher dimensions can be
extended. Suppose the function is defined in the domain
[−100, 100], the current optimal α wolf is 10, the current
iteration number is 2, and the maximum iteration number
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is 100. If the random number c1 � 0.1, then according to
equation (18), we have c2 � 0.36 and c3 � 0.9216. In turn,
according to equation (19), we have C1 � −80, C2 � −28,
and C3 � 84.32. From equation (21), we can get λ � 0.99 at
this time. -en, the chaos vector Ci is linearly combined
with the head wolf α at this time by equation (20) to get the
chaos wolf V1 � −79.1, V2 � −27.62, and V3 � 83.5768.
However, if the generated Vi fitness value is better than
that of the α wolf, then the new α wolf is replaced as Vi. It
should be noted that if the current iteration number is 1,
then λ � 1 and Vi � Ci, i.e., V1 � 80, V2 � −28, and
V3 � 84.32. -e chaotic wolves at this point are randomly
generated from the chaotic vectors, independent of the
head wolf. It can be observed from the above example that
λ gradually becomes smaller with the increase of evolu-
tionary generations, and the generated chaotic wolf is
smaller at this time, which indicates that the scope of local
search becomes smaller with the continuous iteration of
the grey wolf optimizer.

3.3. Bagging-Integrated Learning Strategy. For integrated
learning methods to improve model generalization and
prediction accuracy, a combination of prediction results
from multiple homogeneous or heterogeneous models is
often used [28]. Bootstrap aggregating (Bagging) aims to
combine the predictions of multiple homogeneous base
learners, and the combination of this strategy can achieve
a significant improvement in prediction model general-
ization capabilities and avoid the phenomenon of
overfitting.

In Bagging-integrated learning strategy, data are ran-
domly selected from a data set using a put-back sampling
methodology (Bootstrap) and then N subtraining sets of
equal size are produced. Following that, each subtraining set
is separately trained to obtain N base learners, and finally,
the final prediction results of each base learner are arith-
metically averaged together. -is process is illustrated in
Figure 1.

3.4. Bagging-COLGWO-XGBoost Model. XGBsoost is a
boosting class model that has been developed by Chen
et al. [29] in 2016, which is a combination of a linear scale
solver and a categorical regression tree. -e basic idea
behind this model is to combine multiple tree models that
have low prediction accuracy through various method-
ologies to construct a combined model with a higher
prediction accuracy. After the combinatorial model is
constructed, it is iterated through gradient boosting, with
each iteration producing a new tree to fit the residuals
generated by the previous tree until the optimal model is
obtained. -e XGBoost method is based upon a second-
order Taylor expansion of the loss function. Furthermore,
to mitigate the decline of the objective function and the
complexity of the model, a regular term is added in
addition to the objective function to arrive at the optimal
solution, thereby avoiding the overfitting problem. A
number of studies in recent years have demonstrated

good performance of the XGBoost model for predictions
in biology, medicine, and economics. -e mathematical
principles of the model are as follows:

-e integration model of the definition tree is as follows:

􏽢yi � 􏽘
M

m�1
fm xi( 􏼁, fm ∈ F. (22)

In this equation, 􏽢yi is the prediction value, M is the
number of trees, F is the range of tree selections, and xi is the
ith input feature.

-e loss function for the XGBoost model is shown below.

L � 􏽘
n

i�1
l yi, 􏽢yi( 􏼁 + 􏽘

M

m�1
θ fm( 􏼁. (23)

Here, the first part of the function is the error between
the predicted and the actual training values of the XGBoost
model, while the second is used to represent the complexity
of the tree, which is important when controlling the regu-
larization of the complexity of the model.

θ(f) � cT +
1
2
τω2

. (24)

Here, c and τ represent penalty factors.
It is minimized by adding the incremental function

ft(xi) to equation (23) to minimize the value of the loss
function. -us, the objective function for the tth time be-
comes as follows:

L
(t)

� 􏽘
n

i�1
l yi, 􏽢yi( 􏼁 + 􏽘

M

m�1
θ fm( 􏼁 � 􏽘

n

i�1
l yi, 􏽢yi

t−1
+ ft xi( 􏼁􏼐 􏼑

+θ ft( 􏼁.

(25)

A second-order Taylor expansion of equation (25) is
used to approximate the objective function at this point.
Define the set of samples in each subleaf of the jth tree as
Ij � i|q(xi � j)􏼈 􏼉. At this point, we can approximate L(t) as
follows:

Input

Bootstrap Sampling

Sub-training 
set 1

Sub-training 
set 2 … Sub-training 

set N

Base 
Learner 1

Base 
Learner 2

Base 
Learner N…

Arithmetic Average

Output

Figure 1: Bagging integration model.
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L
(t)

� 􏽘
n

i�1
gift xi( 􏼁 +

1
2

􏼒 􏼓hif
2
t xi( 􏼁􏼔 􏼕 + θ ft( 􏼁

� 􏽘
n

i�1
gift xi( 􏼁 +

1
2

􏼒 􏼓hif
2
t xi( 􏼁􏼔 􏼕 + cT +

1
2
τω2

� 􏽘

T

j�1
􏽘
i∈Ij

gi
⎛⎜⎝ ⎞⎟⎠ωj +

1
2

􏼒 􏼓 􏽘
i∈Ij

hi + τ⎛⎜⎝ ⎞⎟⎠ω2
j

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ + cT.

(26)

Here, gi � z􏽢yi

t−1l(yi, 􏽢yi
t− 1) is the first-order derivative of

the loss function. hi � z2
􏽢yi

t− 1 l(yi, 􏽢yi
t− 1) is the second-order

derivative.-e subsequent equation is calculated by defining
Gj � 􏽐i∈Ij

gi, Hj � 􏽐i∈Ij
hi.

L
(t)

� 􏽘
T

j�1
Gjωj +

1
2

􏼒 􏼓 Hj + τ􏼐 􏼑ω2
j􏼔 􏼕 + cT. (27)

-e following equation is obtained by taking the partial
derivatives of ω.

ωj � −
Gj

Hj + τ
. (28)

-e following equation can be obtained by substituting
the weights into the objective function.

L
(t)

� −
1
2

􏽘

T

j�1

G
2
j

Hj + τ
+ cT. (29)

Training the XGBoost model is heavily dependent on the
choice of parameters as different parameter selections have a
significant effect on the prediction results. Within the
XGBoost algorithm, there are 23 hyperparameters, which
can be classified into three types: general parameters for the
control of macrofunctions, booster parameters to control
booster details, and learning target parameters to control the
training target parameters. COLGWO-XGBoost takes the
three hyperparameters of learning_rate, n_estimators, and
max_depth, which have the greatest impact on the

Table 3: Brief information on the 8 standard test functions.

Function name Function form Search interval Minimum value
f1(x)

Discus f1(x) � 106x2
1 + 􏽐

D
i�2 x2

i [−100, 100] 0

f2(x)

Bent Cigar f2(x) � x2
1 + 106 􏽐

D
i�2 x2

i [−100, 100] 0

f3(x)

Zakharov f3(x) � 􏽐
D
i�1 x2

i + (􏽐
D
i�1 0.5xi)

2 + (􏽐
D
i�1 0.5xi)

4 [−100, 100] 0

f4(x)

Sphere f4(x) � 􏽐
D
i�1 x2

i [−100, 100] 0

f5(x)

Rastrigin f5(x) � 􏽐
D
i�1(x2

i − 10 cos(2πxi) + 10) [−100, 100] 0

f6(x)

Griewank f6(x) � 􏽐
D
i�1 x2

i /4000 − 􏽑
D
i�1 cos(xi/

�
i

√
) + 1 [−100, 100] 0

f7(x)

Rosenbrock f7(x) � 􏽐
D−1
i�1 (100(x2

i − xi+1)
2 + (xi − 1)2) [−100, 100] 0

f8(x)

Ackley f8(x) � −20 exp(−0.2
����������

1/D 􏽐
D
i�1 x2

i

􏽱

) − exp(1/D 􏽐
D
i�1 cos(2πxi)) + 20 + e [−100, 100] 0

Table 4: Optimization search results of four algorithms for standard test functions.

DE PSO GWO COLGWO

f1(x)
Average value 0.00716952881962376 4.58E− 07 1.74E− 27 0

Standard deviation 0.00892434320906037 9.67E− 07 2.64E− 27 0

f2(x)
Average value 2459.11866144729 4 483153344 4.98E− 22 0

Standard deviation 2438.72294203683 15.26685017 9.28E− 22 0

f3(x)
Average value 0.254499657312407 3.41E− 05 9.27E− 24 0

Standard deviation 0.681425676307518 7.64E− 05 1.25E− 23 0

f4(x)
Average value 0.00440696961956876 1.15E− 07 6.60E− 28 0

Standard deviation 0.00489054323509337 1.96E− 07 8.25E− 28 0

f5(x)
Average value 211.342901198991 1129.880979 3.216822796 0

Standard deviation 21.4117756082338 421.9713817 4.907623241 0

f6(x)
Average value 0.00407161054793563 0.033167593 0.003456494 0

Standard deviation 0.00636993045210643 0.033820478 0.007518388 0

f7(x)
Average value 34.9908955808477 0.034919137 2.485701732 0

Standard deviation 22.3283305576275 0.035951133 12.08406381 0

f8(x)
Average value 20.9805740011391 20.47832934 9.932619146 4.44E− 16

Standard deviation 0.106398593367519 0.618180325 10.41113601 0
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performance of XGBoost, and uses them in the calculation of
the position vector of the head wolf α in COLGWO. -e
COLGWO algorithm is iterated until the position vector
corresponding to the global optimal position is returned to
the XGBoost model. Furthermore, to enhance the gener-
alization characteristics of the prediction model, the Bagging
integration strategy is employed to directly integrate the
COLGWO-XGBoost model into the integrated learning
process to construct the final early warning model in this
paper. -e combined use of this strategy can reduce the
variance of the COLGWO-XGBoost model and prevent
overfitting.-e following are specific steps for implementing
the model.

Step 1. Initialize the parameters by setting the maximum
number of iterations M, the number of populations N, the
upper bound UB, and the lower bound LB of the parameters
to be searched for COLGWO.

Step 2. Randomly initialize the populations and generate
equal numbers of reverse populations based on equation
(14), use equation (29), select the individual positions that
correspond to the optimal fitness values among the two
populations to be put into the final initial population, and
then select the individual positions that correspond to the
optimal three fitness values as α, β, and δ wolves.

Step 3. -e chaotic search factor is called to generate the
chaotic wolf Vi according to equations 18 through (21), and
if the fitness value of Vi is greater than α wolf, then Vi is
replaced with α wolf, and the local search ends. Otherwise, if
the chaotic sequence length isK, then the local search ends as
well.

Step 4. -e convergence coefficient a and the coefficient
vectors A and C were updated for α, β, and δ wolves, re-
spectively, according to equations (4) to (6).
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Figure 2: Algorithm adaptation evolution curve.
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Step 5. It is necessary to calculate the distances between α, β,
and δ wolves and their prey, and update the positions of
these wolves according to equations (7) to (12), respectively.

Step 6. Update wolf locations based on equation (13) to
produce a new generation of grey wolf populations.

Step 7. Follow Steps 3 to 6. If the maximum number of
COLGWO iterations M is reached, then stop the iteration.
Determine the position of α wolf at this point as a parameter
of the sought-after XGBoost model, and construct the
COLGWO-XGBoost prediction model.

Step 8. Using bootstrap sampling, input data are divided
into N subtraining sets of equal sample size, and then the
COLGWO-XGBoost model is used to fit each subtraining set
separately to generate N base learners.

Step 9. Using N base learners, the prediction data are
predicted separately, and their predicted results are arith-
metically averaged, resulting in the final prediction result of
the Bagging-COLGWO-XGBoost model.

4. Experimental Results and Discussion

4.1. Improved Algorithm Performance Testing

4.1.1. Standard Test Functions. We have selected eight
typical standard test functions from the global optimization
benchmark functionality library to test the optimization-
seeking capability of the COLGWO algorithm, whose
names, functions, search intervals, and theoretical minimum
values are shown in Table 3. f1(x)∼f4(x) are continuous
single-peaked functions, which are typically used to test the
local mining abilities of algorithms. f5(x)∼f8(x) are
complex nonlinear multipeaked functions with a large
number of local extremes, which are generally used to test
the global pioneering abilities of algorithms, and their results
provide guidance to algorithms.

4.1.2. Experimental Analysis. A comparison of the optimi-
zation performance of DE (differential evolution), PSO
(particle swarm optimization), GWO, and COLGWO in eight
typical benchmark test functions was conducted in the same
runtime environment using Python version 3.7 as the sim-
ulation program. -e primary parameters of the four algo-
rithms were the same, namely 30 populations, a maximum
number of iterations of 500, and a dimension of 30. -e
algorithms were run independently 30 times, and the mean
and standard deviation of the search results were calculated.
Table 4 shows the experimental results. On the basis of Ta-
ble 4, it can be observed that the optimization results of GWO
outperform those of the two classical evolutionary algorithms,
DE and PSO, for continuous single-peak functions and
complex nonlinear multipeak functions. Even though the
improved COLGWO algorithm does not achieve the theo-
retically optimal solution for the f8(x) function, it improves
significantly compared to before the improvement, and it has
the best solution accuracy among the four algorithms. It
indicates that the modification of the standard GWO algo-
rithm in this study is very effective, can well-balance the global
search ability and local search ability, and improve the sta-
bility of the algorithm. For the eight standard test functions,
Table 4 only displays the optimal values determined by the
four algorithms. A comparison graph of the convergence of
the four algorithms for the test functions is shown in Figure 2
for the purpose of visualizing the convergence of the

Table 6: Single model prediction accuracy comparison.

Algorithm name RMSE MAE MAPE
XGBoost 3965.725 1469.406 9.785
GBDT 3095.005 1356.619 10.753
SVR 8591.444 7199.914 223.206
MLP 8551.856 6216.566 86.296
LR 4683.808 3406.161 116.283
LSTM 4854.758 3522.867 12.967
RNN 6506.414 4936.082 32.877
CNN 5862.456 4442.039 27.082
Bold font indicates the best prediction accuracy among all models.

Table 5: Algorithm-related parameters.

Model Parameter setting
Bagging-COLGWO-XGBoost n_estimators� 21
Bagging-COLGWO-GBDT n_estimators� 21
COLGWO-XGBoost n_estimators� 18; learning_rate� 0.8561; max_depth� 7
COLGWO- GBDT n_estimators� 22; learning_rate� 0.3208; max_depth� 4
GWO-XGBoost n_estimators� 46; learning_rate� 0.8563; max_depth� 6
GWO-GBDT n_estimators� 38; learning_rate� 0.5996; max_depth� 4
XGBoost Default parameter
GBDT Default parameter
LSTM Optimizer�Adam; loss�mse; epochs� 100
RNN Optimizer�Adam; loss�mse; epochs� 100
CNN Optimizer�Adam; loss�mse; epochs� 100
SVR Default parameter
MLP Default parameter
LR Default parameter
COLGWO Iteration number: 100; Population size: 30
GWO Iteration number: 100; Population size: 30
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algorithms. Based on Figure 2, the speed of convergence of
COLGWO algorithm has been significantly accelerated. Be-
cause of this, the improved algorithm presented in this paper
takes into account the convergence speed, global exploration
ability, and local fine search ability of the algorithm at the
same time, which is a very powerful improvement.

4.2. Comparison of Prediction Effects

4.2.1. Evaluation Functions. As evaluation functions for the
forecasting models, we select root mean squared error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE).-emodel’s smaller RMSE, MAE,

and MAPE values indicate better prediction performance,
and the actual formula is as follows:

RMSE �

������������

1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

, MAE �
1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,MAPE �

100%
n

􏽘

n

i�1

yi − 􏽢yi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (30)

Here, n is the number of samples, i is the sample number,
yi stands for the true value, and 􏽢yi stands for the predicted
value of the model.

4.2.2. Experimental Analysis. -e present study employs
multiple algorithms as comparison models to evaluate the
predictive ability of the Bagging-COLGWO-XGBoost model

in the COVID-19 cumulative number of confirmations data.
For single-model prediction, in addition to four traditional
machine learning models of SVR, LR, MLP, and GDBT,
convolutional neural networks (CNN) [30], recurrent neural
network (RNN) [31], and long short-term memory (LSTM)
[32], which are three classical deep learning models, were
also selected to compare and analyze the prediction effect of
XGBoost. In the combined algorithm prediction, the GWO-
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Figure 3: Single model prediction effect.

Table 7: Comparison of prediction accuracy of combined
algorithms.

Algorithm name RMSE MAE MAPE
Bagging-COLGWO-XGBoost 904.515 539.551 2.759
Bagging-COLGWO-GBDT 2273.204 819.237 2.851
COLGWO-XGBoost 1211.977 579.778 3.235
COLGWO-GBDT 2419.836 1086.354 5.179
GWO-XGBoost 1230.206 620.652 4.823
GWO-GBDT 3084.185 1260.101 10.627
Bold font indicates the best prediction accuracy among all models.
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optimized XGBoost model (GWO-XGBoost), GWO-opti-
mized GBDT model (GWO-GBDT), COLGWO-optimized
GBDT (COLGWO-GBDT), COLGWO-optimized XGBoost
(COLGWO-XGBoost), and Bagging-COLGWO-GBDT are
selected to compare and analyze the prediction effects of the
Bagging-COLGWO-XGBoost model proposed in this study.
Table 5 contains the parameters of each algorithm model.

-e main model and the comparison model proposed in
this paper are fitted to each prediction model in the training
dataset, and the predictions are performed on the test
dataset. -e prediction accuracy of the single model in the
three indexes is given in Table 6, and Figure 3 shows the
prediction effect of the single model. It can be observed that
the prediction performance of XGBoost and GBDT in single
model is significantly better than SVR, MLP, LR, CNN,
RNN, and LSTM. XGBoost ranked first in MAPE, and
GBDT ranked first in RMSE and MAE. Both models out-
performed several other comparative models in three
metrics, RMSE, MAE, and MAPE, and this result indicates
that the selection of a suitable regression model plays a key
role in improving the prediction performance under the
same data premise.

To further observe the difference in prediction perfor-
mance between GBDT and XGBoost, in the combined al-
gorithm, the GWO-seeking algorithm is first proposed to
optimize the hyperparameters of these two models sepa-
rately, and then the COLGWO proposed in this paper is
used to compare the optimization results. Finally, the

Bagging strategy is used to integrate the learning of these two
models. Table 7 and Figure 4 show the experimental results
of the combined algorithm. After using the GWO optimi-
zation algorithm, the prediction accuracy of GBDTis slightly
improved, however, it significantly lags behind that of
XGBoost, Using COLGWO for the parameter optimization
of both models achieves better optimization results than
GWO. Using the Bagging integration strategy can further
reduce the generalization error of the combined algorithm,
and this strategy has the best prediction effect when com-
bined with XGBoost using COLGWO algorithm. It shows
that the improvement of XGBoost on GBDT is successful.
Since the model adds a regular term in the loss function for
controlling the complexity of the model, it reduces the
variance of the model in terms of the trade-off variance bias
and makes the trained model simpler, thus effectively pre-
venting overfitting. In addition, although the prediction
performance of XGBoost is excellent, the model is very
sensitive to parameters, and the use of an efficient parameter
selection method is crucial to the prediction effect, and the
experimental results confirm the superiority of the improved
algorithm (COLGWO) proposed in this study in terms of
hyperparameter selection.

In summary, the overall prediction accuracy of the
model optimized by the combined algorithm is better than
that of the single model prediction.-e Bagging-COLGWO-
XGBoost model with the integrated strategy ranked first in
all three evaluation metrics of all algorithms, improving
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77.19%, 63.28%, and 71.8%, respectively, compared to
XGBoost, and 60.21%, 34.14%, and 3.23%, respectively,
compared to Bagging-COLGWO-GBDT. It indicates that
the COLGWO algorithm proposed in this paper is very
effective in the application of hyperparameter selection for
the XGBoost model in the early warning problem of
COVID-19. Combining with the Bagging integration
strategy will further enhance the prediction effect.

5. Conclusions

-is work analyses the initial web search data associated with
COVID-19 at the time of its outbreak and then uses the
LASSO method to select features for input into the model of
XGBoost for prediction. A new grey wolf algorithm is
proposed to optimize the hyperparameters of XGBoost to
improve prediction accuracy. We built a Bagging-
COLGWO-XGBoost early warningmodel, which utilizes the
Bagging integration strategy, to enhance the generalizability
of the combined algorithm. After analyzing the comparison
of these early warning models, the subsequent conclusions
were drawn.

Firstly, the data source affects the accuracy and timeli-
ness of the prediction model. Web search data has many
advantages over traditional statistics, and it is convenient,
timely, and sensitive to user needs, which can effectively
supplement traditional statistics.

Secondly, to address the shortcomings of the standard
GWO algorithm, such as low solution accuracy, slow con-
vergence speed, and it being easy to fall into the local op-
timum and impossible to jump out, it was proposed in this
paper that COLGWO initially employed a mechanism based
on backward learning to initialize the population. Adding
jump probabilities makes the algorithm jump out of the local
optimal solution. Additionally, to enhance the mining ability
of the standard GWO algorithm, a chaotic search operator
was developed, which uses chaotic sequences to carry out
local searches around the current optimal solution. Exper-
imental results demonstrate that the improved grey wolf
algorithm satisfies the purpose of balancing the global and
local search for optimal solutions of the algorithm and that
the optimization results in all eight standard test functions
are vastly superior to those of the grey wolf algorithm. Also,
the results demonstrate that the optimization of hyper-
parameters of the XGBoost model using it can significantly
improve prediction accuracy.

-irdly, in terms of prediction performance, the use of
Bagging-integrated learning can result in a reduction in the
variance of the predictive model and enhance generalization
capability. -e Bagging-COLGWO-XGBoost model pre-
sented in this paper performs significantly better than the
thirteen other models in the prediction problem of the
cumulative number of confirmed COVID-19 cases in China,
indicating that the model is a good and reliable one.

Overall, the combined predictive model Bagging-
COLGWO-XGBoost developed in this study combined with
web search data can predict the cumulative number of
confirmed cases of COVID-19 in China under this emer-
gency situation. In addition, this model may be continuously

updated and optimized according to the latest data to
provide real-time prediction, which will serve as a reliable
source of data for the Chinese government to formulate
reasonable and effective health policy. Furthermore, the
model constructed in this study can also be used for the
prediction of similar major public emergencies and can be
extended to other public emergencies related to early
warning.
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