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is article presents a fuzzy SVIRS disease system with Holling type-II saturated incidence rate and saturated treatment, in which
all parameters related to population dynamics have been considered as fuzzy numbers. en, the existence condition and
permanence of the SVIRSmodel have been discussed and we derived disease-free and endemic equilibrium points of the proposed
fuzzy system.e local stability conditions of the fuzzy system around these equilibrium points using Routh–Hurwitz criteria are
discussed. We also veri�ed global stability around the interior steady state using Lozinskii measure. Computer simulations are
provided to understand the dynamics of the proposed system. Parameter analysis is carried out with the help of computer
simulation. Fuzzy provides better solution for any disease modeling in many ways like disease detection and transmission,
di�erent stages of disease, risk analysis (through parameter analysis), and optimal recovery solutions. Earlier literature acts as
background to startup this disease modeling and optimal solutions provided by fuzzy logic is one of the motivational key element
behind this fuzzy SVIRS model with Holling type-II and its analysis by both analytical and computer simulation.

1. Introduction

Epidemiology, which studies the stealing and determinants
of contamination hazard in individual communities, is
sometimes referred to as the nucleus discipline of com-
munity wellbeing. Mathematical epidemic models aid in the
understanding of infectious disease transmission and
spread, the recognition of factors leading the transmission
procedure in order to discover �ourishing organize tactics,
and the evaluation of observation strategies and interference
procedures. Kermack and McKendrick [1] systematically
introduced deterministic models for communicable dis-
eases. In their concept, three epidemiological classes are
regarded the fundamental aspects describing infectious
diseases [2]: the vulnerable group S(t), the infective class I(t)
[3], and the recovered class R(t) [4]. In order to better

recognize the process of communicable disease transmission
[5], some authors have investigated several types of epidemic
systems by taking into account dissimilar compartment
models such as SI [6], SIS [7], SIR [8], SIRS [9], SEIR [10],
SVEIR [11], and others [12].

In recent years, controlling infectious diseases has be-
come a more di£cult task [13]. Vaccination is one approach
for controlling infectious diseases [14]. Vaccination is an
important component of health treatments aiming at
avoiding the spread of transferable diseases because of its
wellbeing and rate e£ciency [15]. Certainly, high vaccina-
tion rates have resulted in dramatic reductions or even
eradication of various vaccine-preventable transferable
diseases, as seen in the case of smallpox [16]. Nonetheless,
one of the most important aspects of vaccination is its level
of safety, both in terms of its capacity to prevent sickness and
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the longevity of the generated immunity. Some vaccines,
such as measles [17], are quite successful, whereas others,
such as varicella, are not [18]. Due to medical circumstances,
as well as the variation and progress of communicable
diseases, the efficacy and levels of fortification offered by a
vaccine may gradually reduce with time since the flu virus
[19] can evolve quickly. Last year’s influenza vaccine is
improbable to protect people from this year’s viral strains.
,e measles syndrome [20], which is protected by the
measles-mumps-rubella vaccine, does not change substan-
tially from time to time, representative that it is just as
probable to defend people now as it was 10 years ago. A
quantity of vaccines reduces the risk of infection [21], but
they do not prevent the disease from forming and spreading
in someone who has been vaccinated [22]. Although these
flawed vaccines may not completely avoid contagion [23],
they may reduce the likelihood of infection or the severity of
infection, hence reducing the burden of infectious disease
[24]. Many researchers in the mathematical epidemiology
literature have looked at epidemic models with poor im-
munization [25].

,e incidence rate plays an imperative function in de-
termining the dynamics of epidemicmodels inmathematical
modeling of communicable diseases. Kermack and
Mckendrick proposed the prevalence rate in its traditional
mass action version in 1927. ,e interaction term in this
incidence rate is a linearly rising function of the numeral of
infective, which is not optimal for large inhabitants. Anu-
pama et al. [26] postulated a nonlinear prevalence rate for
various psychological impacts as a result of this. Anupama
et al. were motivated by behavioural changes: during periods
of high frequency the apparent threat of disease might
become quite high, leading to drastic changes in people’s
behaviour and, as a result, lowering the real risk of infection.
Only a few authors have emphasised the importance of
nonlinear frequency rates in the study of infectious disease
spread dynamics [27]: Anderson and May [28], Wei and
Chen [29], Zhang et al. [30], Li et al. [31], Kumar [32, 33],
and Goel [34, 35]. A nonlinear incidence rate SIR model was
proposed by Zhou and Fan [36]. At this frequency rate, the
quantity of effective interactions between infective and
susceptible individuals may oversupply due to an over-
population of infective individuals. Despite the fact that the
dynamics of SIR or SIS diseases models with the saturated
incidence rate have been extensively studied in the literature
[37], few investigations on the saturated treatment function,
even in SEIR epidemic models, have been published [38]. In
this article, we will investigate the SEIR model with the
saturated incidence rate and saturated treatment function in
order to better understand the effects of these points on the
spread of infectious diseases [39]. We believe that virus-
infected hosts are unable to infect other hosts during the
incubation period, and that recovered people and vacci-
nated-treated people have established eternal resistance and
are no longer susceptible to infection [36].

In recent literature, disease models with fuzzy analysis
are trending and inspiring many scientists; likewise, we also
studied disease models with risk analysis using fuzzy logic,
which is the motivation for our work also [40]. Literature on

disease modeling with fuzzy system is also little less in
number, so we proposed the fuzzy SVIRS disease system
with Holling type-II functional response. ,e current model
is studied under fuzzy system and studied analytically and
numerically using mathematical and computer software
tools, respectively [41]. ,is work focused on parameter
analysis also to analyze all parameters numerically to
identify, which parameter influences and effects the system
strongly [42]. ,e current work focused on the fuzzy system
for the SVIRS disease model with Holling type-II functional
response. All disease models are driven from the basic
disease model SIR and SIER [43]. ,ese models are very
basic in nature. To capture disease detection, disease
transmission, and risk analysis, we need to study the model
with little complex constraints which may be interactions
(like functional responses) which are complex in nature [44].
To serve an optimal solution for disease detection, disease
transmission and its stages and recovery status and its stages
can be achieved greatly by fuzzy systems. ,e fuzzy system
works greatly when the scenario is complex in nature,
uncertainty in scenario, and vague data are involved.

,e parameters used to mathematically express biological
events are typically assumed to be accurate. Researchers have
onlymade a few attempts to include environmental uncertainty
into their research. ,e application of diverse mathematical
approaches and concepts aids in the better understanding of
biological and physical processes. In biological modeling, in-
terval parameters or fuzzy parameters should be employed
more frequently than recent attempts due to the realistic
scenario. ,e fuzzy set theory, proposed by Zadeh [40], can be
used to account for uncertainty in biological data. ,e ap-
plication of fuzzy logic and fuzzy sets in biological systems
offers a lot of potential, but there are not many of them.
Reference [45] has several examples of fuzzy mathematics
applications. Angalaeswari et al. describe some epidemic
models that take into account parameter uncertainty and
population heterogeneity [45]. We investigated a fuzzy SVIRS
diseases system with Holling type-II incidence rate and satu-
rated therapy based on the motivation of [30–36, 46], in which
all parameters linked to population dynamics were considered
as fuzzy numbers. ,e current work is definitely different
previous works in view of parameter analysis, which says the
control parameters for disease transmission and recovery
greatly. Fuzzy analysis definitely added strength to the current
work which shapes it as a novel innovative and informative
study. Certainly, this work can contribute qualitative infor-
mation and notable conclusions to the literature.

2. Preliminaries of Fuzzy Analysis

A fuzzy set is a collection of things in which there is no clear
distinction between those that belong to the group and those
that do not. We will go over some basic notations for fuzzy
sets in this section [46]. We recommend Natrayan [47] and
Klir and Yuan [48] for further information on fuzzy sets.

Definition 1. ζ-cut of a fuzzy number: a nonempty set P, a
fuzzy set in P is a map f: P⟶ [0, 1]. A ζ-cut of a fuzzy
number f in P is denoted by fζ � [fl(ζ), fu(ζ)], where
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f1(ζ)andfu(ζ) are the lower and upper bounds of the
closed interval in that order and is defined as the following
fuzzy set [49]:

fζ �
p

Ξf
(p)≥ ζ, p ∈ P

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
where ζ ∈ [0, 1]. (1)

Figure 1 shows the ζ-cut of a triangular fuzzy number.
Figure 2 shows the triangular fuzzy number.

Definition 2. Triangular fuzzy number.
A triangular fuzzy number is a continuous membership

function Ξf(p): P⟶ [0, 1] and is denoted by f.

Definition 3. Utility function method.
,e utility function is defined as the weighted sum of the

objectives:

U � 
n

k�1
σifi, σi ≥ 0, (2)

where σi is a scalar that represents the relative importance of
the objectives fi and subject to the condition 

n
k�1 fi � 1.

3. Fuzzy Model

Let S(t), V(t), I(t), and R(t) denote the population densities
of fuzzy susceptible, vaccinated, infected, and recovered
human in the environment at time t, respectively. By using
the concept on the fuzzy initial value problem [1] and
differentials of fuzzy functions [2] and considering a set of
fuzzy differential equations regarding the following SVIRS
model [50], Table 1 shows the physical description of the
symbols. Figure 3 shows the schematic diagram of the SVIRS
fuzzy model.

DS � Δ − ΩS −
αSI

1 + βI
− cS � ϕR,

DV � ΩS −
χSI

1 + βI
− cV,

DI �
αSI

1 + βI
+

χSI

1 + βI
− (c + η + ψ)I −

mI

1 + nI
,

DR � ψI +
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1 + nI
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(3)

where D ≡ d/dt.
Let the solution of the fuzzy system (1) can be defined as

[DZ]σ � [(DZ)σl , (DZ)σu], then the deterministic system of
the fuzzy model (1) is given by

[DS]
σ
l � Δl 

σ
− δu( 

σ
+ cu( 

σ
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σ
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σ
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Figure 1: ζ-cut of a triangular fuzzy number.
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Figure 2: Triangular fuzzy number.
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,e above system of differential equations can be solved
using the UFM principle as follows [51]:

DS � σ1[DS]
σ
l + σ2[DS]

σ
u,

DV � σ1[DS]
σ
l + σ2[DS]

σ
u,

DI � σ1[DS]
σ
l + σ2[DS]

σ
u,

DR � σ1[DS]
σ
l + σ2[DS]

σ
u,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where σ1 and σ2 are two weight functions such that σ1 + σ2 �

1 and σ1 + σ2 ≥ 0; then, (5) can be written as

DS � u11 − u12SI − u13S + u14R,

DV � u21S − u22VI − u23V,

DI � u31SI − u32VI − u13I + u34I,

DR � u41I − u42I − u43R,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where

u11 � σ1 Δl( 
σ

+ σ2 Δu( 
σ
; u12 � σ1
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σ
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σ
I

+ σ2
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σ
I
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σ
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σ
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σ

+ cu( 
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σ

+ cu( 
σ
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,

u33 � σ1 cu( 
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  + σ2 cl( 
σ
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σ
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σ

+ σ2 ψu( 
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,
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σ

1 + nu( 
σ + σ2
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σ

1 + nl( 
σ ; u43 � σ1 ϕu( 

σ
+ σ2 ϕl( 

σ
; u44 � σ1 cu( 

σ
+ σ2 cl( 

σ
.

(7)

Table 1: Physical description of the symbols.

Fuzzy parameters Description of the symbols
Δ ,e recruitment rate of susceptible
α ,e vigor of infection
β ,e reticence actions taken by the infected
χ ,e rate at which vaccinated persons become infected
Ω ,e transmission rate from susceptible individuals to vaccinated ones
ϕ ,e transmission rate from recovered individuals to susceptible ones
ψ ,e transmission rate from infected individuals to recovered ones
c ,e natural fatality rate of all the individuals
η ,e death rate due to disease
m ,e treatment rate
n ,e rate of limitation in medical resource

∆~
S~ V~ I~ R~

γ~ γ~ γ~

Ω~

ϕ
~

m~
1 + n~I

Ψ
~

γ~+η~

α~I
1 + β~I

χ~I
1 + β~I

Figure 3: A schematic diagram of the SVIRS fuzzy model.
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4. Positivity and Boundedness of the SVIRS
Fuzzy Model

In this section, all solutions of the proposed system (3) have
been bounded [52]. First, we use Lemma 1 to verify the
positivity of system (3).

Lemma 1. If u13 − u21 > 0, u43 − u14 > 0, u34 − u33− u41−

u42 > 0, u31 − u12 > 0, u32 − u22 > 0 provided that (δl)
σ+

(cl)
σ > (δu)σ , (ϕl)

σ > (ϕu)σ , (ml)
σ/1 + (nu)σ+ (cl)

σ+ (ηl)
σ +

(φl)
σ > (φu)σ + (mu)σ/1 + (nl)

σ , (αu)σ/1+ (βl)
σ > (δu)σ ,

then the solutions S(t), V(t),I(t), and R(t) of system (3) are
positives.

Proof. Consider

u13 − u21 � σ1 δu( 
σ

+ cu( 
σ

  + σ2 δl( 
σ

+ cl( 
σ

 

− σ1 δl( 
σ

− σ2 δu( 
σ

� σ1 2 δu( 
σ

+ cu( 
σ

− 2 δl( 
σ

+ cl( 
σ

 

+ δl( 
σ

+ cl( 
σ

− σ2 δu( 
σ
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Now, σ1 � 0, we have u31 − u21 � (δl)
σ + (cl)

σ − (δu)σ ;
then, u13 − u21 will be positive for σ1 � 0 if

δl( 
σ

+ cl( 
σ > δu( 

σ
. (9)

,erefore, from equation (8), it is obtained that
d

dσ1
u13 − u21(  � 2 δu( 

σ
+ cu( 

σ
− 2 δl( 

σ
+ cl( 

σ
 > 0,

∀σ1 ∈ [0, 1].

(10)

So, u13 − u21 is an increasing function with respect to σ1,
and it will be positive if condition (9) holds. In the similar
way, it can be proved that u43 − u14, u33 + u34 − u41 − u42 is
an increasing function with respect to σ1, and it will be
positive if the condition (ϕl)

σ > (ϕu)σ + (ψ1)
σ > (ml)

σ/1+

(nu)σ + (cl)
σ + (ηl)

σ + (ψl)
σ > (ψu)σ+ (mu)σ/1 + (nl)

σ ,

(αu)σ/1 + (βl)
σ > (δu)σ , (χu)σ/1 + (βl)

σ > (χl)
σ/1 + (βu)σ

holds. □

Theorem 1. All solutions of system (3) are bounded in the
region R4

+ provided that

u31 > u12, u32 > u22,

μ � min u23, u13 − u21, u43 − u14, u33 + u34 − u41 − u42 .
(11)

Proof. Let us define a function G � S + V + I + R.
Now, by separating and simplifying with regard to time t,

we have

DG � DS + DV + DI + DR ,

DG � u11 − u23V + u21 − u13( S

+ u41 + u42 − u34 − u33( I

+ u14 − u43( R + u31 − u12( SI

+ u32 − u22( VI.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

For a positive real number μ,

DG + μG � u11 + μ − u23 V + μ − u13 − u21(  S

+ μ − u34 + u33 − u41 − u42(  I

+ μ − u43 − u14(  R

+ u31 − u21( SI + u32 − u22( VI.

(13)

Now, according to Lemma 1, if μ � min u23,

u13 − u21, u43 − u14, u34 + u33 − u41 − u42}, then the above
equation becomes DG + μG≤ u11. Solving this, we get
G≤ u11/μ + ke− μt. As t⟶∞, we have G≤ u11/μ. So, it can
show S(t)≤ u11/μ, V(t)≤ u11/μ, I(t)≤ u11/μ, R(t)≤ u11/μ.
,is establishes that the system’s solution is bounded.

,e solutions of system (3) are bounded in the region R4
+

provided that a31 > a12, a32 > a22 and μ � min u23,

u13 − u21, u43 − u14, u33 + u34 − u41 − u42}σ1 � 0. □

5. Existence and Stability Analysis

In this section, we look at the presence and stability of the
fuzzy system’s nonnegative equilibrium point (3). In a fuzzy
system (3), there are two nonnegative equilibrium points.
,e following are the existence and stability conditions for
them [53]:

(i) Disease free equilibrium point P1(S0, 0, 0, 0) �

(u11/u13, 0, 0, 0)

(ii) Endemic equilibrium point P2(S∗, V∗, I∗, R∗)

Here, S∗ � u11u43 + u14u11 + u14u42/u43u13 + u43u12I
∗,

V∗ � u21u11u43 + u21u14u41+ u21u14u42/u43u12u22I
∗+

u43u13u22I
∗+ u43u12u23I

∗ + u43u13u23,

R
∗

�
u41 + u42

u43
I
∗
,

Γ1I
∗2

+ Γ2I
∗

+ Γ3 � 0,

(14)

where

Γ1 � u12u22u33u43 + u12u22u34u43,

Γ2 � u13u22u33u43 + u13u22u34u43 + u12u23u33u43

+ u12u23u34u43 − u11u22u31u43

− u22u31u14u41 − u14u22u31u42,

Γ3 � u13u23u33u43 + u13u23u34u43 − u11u31u23u43

− u14u31u23u41 − u14u31u23u42 − u11u21u32u43

− u14u21u32u41 − u14u21u32u42.

(15)

Theorem 2. Fuzzy system (3) is locally asymptotically stable
at disease free equilibrium point P1(S0, 0, 0, 0) if
u2
13 − u11u13 > 0 and u13u44 − u11u31 > 0; otherwise, it is

unstable.

Proof. ,e characteristic equation of the fuzzy system (3) at
disease free equilibrium point P1(S0, 0, 0, 0) is
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λ4 + 
1
λ3 + 

2
λ2 + 

3
λ +  4 � 0, (16)

where

 1 � u13 + u23 + u33 + u43 + u44 − u31S
0
,

 2 � u13u43 + u13u33 + u13u44 + u23u43 + u23u33

+ u23u44 + u13u23 − u31u13S
0

− u23u31S
0
,

 3 � u13u33u43 + u13u43u44 + u23u33u43 + u23u43u44

+ u23u43u13 + u23u33u13 + u23u13u44

− u23u31u43S
0

− u23u31u13S
0
,

 4 � u13u33 + u13u44 − u31u13S
0
.

(17)

,e required and sufficient requirements for local sta-
bility of a disease-free equilibrium point p1(S0, 0, 0, 0)

according to Routh–Hurwitz criteria if  1> 0,  3> 0,
 4> 0,  3( 1 2 −  3)> 

2
1  4, and 4(123−


2
1 4 − 

2
3)> 0. It is evident that u2

13 − u11u13 > 0 and
u13u44 − u11u31 > 0. □

Theorem 3. Fuzzy system (3) is locally asymptotically stable
at endemic equilibrium point p2(S∗, V∗, I∗, R∗)if S∗ <
max u13/u31, u33/u31 , V∗ <max u23/u32, u34/u32 , u33−

u31 > 0, u22 − u12 > 0, u12u23u33 > u14u31(u41 + u42),

u12u23u33u43 > u14u22u31(u41 + u42); otherwise, it is unstable
[54].

Proof. ,e characteristic equation of fuzzy system (3) at the
endemic equilibrium point p2(S∗, V∗, I∗, R∗) is

λ4 +Θ1λ
3

+ Θ2λ
2

+ Θ3λ + Θ4 � 0, (18)

where

Θ1 � u13 + u23 + u33 + u34 + u43 + u12I
∗

+ u22I
∗

− u31S
∗

− u32V
∗
,

Θ2 � u13u23 + u13u33 + u13u34 + u23u43 + u23u34

+ u23u43 + u33u43 + u34u43 + u12u23I
∗

+ u12u33I
∗

+ u12u34I
∗

+ u12u43I
∗

+ u13u22I
∗

+ u22u33I
∗

+ u22u34I
∗

+ u22u43I
∗

− u13u31S
∗

− u23u31S
∗

− u31u43S
∗

− u13u32V
∗

− u23u32V
∗

− u32u43V
∗
I
∗

− u22u31S
∗
I
∗
,

Θ3 � u13u23u33 + u13u23u34 + u13u23u43 + u13u33u43 + u13u43u34

+ u33u23u43 + u43u23u34 − u31u14u42I
∗

− u14u31u41I
∗

+ u22u34u43I
∗

+ u22u33u43I
∗

+ u13u22u43I
∗

+ u13u22u34I
∗

+ u13u33u22I
∗

+ +u22u34u43I
∗

+ u22u33u43I
∗

+ u13u22u43I
∗

+ u13u22u34I
∗

+ u13u33u22I
∗

+ u13u33u22I
∗

+ u12u34u43I
∗

+ u12u33u43I
∗

+ u12u23u33I
∗

− u31u23u43S
∗

− u23u43u32V
∗

+ u22u34u43I
∗

− u13u23u31S
∗

− u13u23u32V
∗

− u13u31u43S
∗

− u13u43u32V
∗

+ u12u22u34I
∗2

+ u12u22u43I
∗2

− u12u23u32V
∗
I
∗

− u12u31u43S
∗
I
∗

− u31u22u43S
∗
I
∗

+ u12u23u32VI
∗2

+ u21u12u32S
∗
I
∗

+ u12u22u33S
∗
I
∗2

+ u12u31u43S
∗
I
∗

− u12u22u31S
∗
I
∗2

,

Θ4 � u13u23u33u43 + u13u23u33u43 + u13u23u34u43 + u12u23u34u43I
∗

− u14u23u31u41I
∗

− u14u23u31u42I
∗

+ u13u22u33u43I
∗

+ u13u22u34u43I
∗

− u14u21u32u41I
∗

− u14u23u32u42I
∗

− u13u23u31u43S
∗

− u13u23u32u43V
∗

+ u13u23u33u43I
∗

− u13u23u31u43S
∗

− u13u23u32u43V
∗

+ u12u22u32u43V
∗
I
∗2

− u13u22u31u43S
∗
I
∗

− u12u23u32u43V
∗
I
∗

+ u12u22u33u43I
∗2

+ u12u32u22u43V
∗
I
∗2

+ u12u22u34u43I
∗2

+ u12u21u32u43S
∗
I
∗

− u14u22u31u41I
∗2

− u14u22u31u42I
∗2

.

(19)

,e required and sufficient requirements for local sta-
bility of a disease-free equilibrium point p1(S0, 0, 0, 0)

according to the Routh–Hurwitz criteria if Θ1 > 0,Θ3 > 0,

Θ4 > 0, Θ3(Θ1Θ2 − Θ3)>Θ21Θ4 and Θ4(Θ1Θ2Θ3−
Θ21Θ4 − Θ23)> 0.

It is evident that

6 Mathematical Problems in Engineering



S
∗ <MAX

u13

u31
,
u33

u31
 , V

∗ <MAX
u23

u32
,
u34

u32
 ,

u33 − u31 > 0, u22 − u12 > 0,

u12u23u33 > u14u31 u41 + u42( ,

u12u23u33 > u14u31 u41 + u42( .

(20)

□

Theorem 4. Fuzzy system (3) is globally asymptotically
stable at the endemic equilibrium point p2(S∗, V∗, I∗, R∗). If
ℵ1 > 0, where

ℵ1 � u31ℵ + u32ℵ − u33 − u34 + min
u12ℵ − u13 − u22ℵ − u23 − max u22ℵ, u12ℵ  , − u21 − u31ℵ

+min u22ℵ + u23, − u32,ℵ u22 − u32(  + u33 + u34 
 . (21)

Proof. Let us consider the subsystem of fuzzy system (3):

DS � u11 − u12SI − u13S + u14R,

DV � u21S − u22VI − u23V,

DI � u31SI + u33VI − u33I − u34I.

⎧⎪⎪⎨

⎪⎪⎩
(22)

Let N be the variation matrix of the system (8) is

N �

− u12I
∗

− u13 0 − u12S
∗

u21 − u22I
∗

− u23 − u22V
∗

u13I
∗

u32 u31S
∗

+ u32V
∗

− u33 − u34

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(23)

Let N[2] be the second additive compound matrix of N,
we have

N �

− u12I
∗

− u13 − u22I
∗

− u23 − u22V
∗

− u12S
∗

u32 − u22I
∗

− u23u31S
∗

+ u32V
∗

− u33 − u34 0

u13I
∗

u21 − u22I
∗

− u23u31S
∗

+ u32V
∗

− u33 − u34

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (24)

Let us consider the function x � z  /zx �

diag(S
•

/I − SI
•

/I2, S
•

/I − SI
•

/I2, S
•

/I − SI
•

/I2).
,us, we have x

− 1
� diag(S

•

/I − SI
•

/I, S
•

/S−

I
•

/I2, S
•

/I − I
•

/I) and  N[2]
− 1

� N[2], so that

Ξ � 
x



1

+  N
[2]



− 1

�
Ξ11 Ξ12
Ξ21 Ξ22

 , (25)

where Ξ11 � S
•

/S − I
•

/I − u12I
∗ − u13− u22I

∗ − u23;Ξ12 �

[− u22V
∗u12S
∗]; Ξ21 � [u21u13I

∗]T.

Ξ22 �

S
•

S
−

I
•

I
− u22I

∗
− u23 − u22V

∗

u32
S
•

S
−

I
•

I
+ u31S

∗
− u32V

∗
− u33 − u34

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

We consideredR as the Lozinskii measure by Martin [7]
with respect to the norm defined in three-dimensional space
|(x, y, z)| � max |x|, |y + z| , where (x, y, z) is any vector in
R3. Hence,R P{ }≤ sup P1, P1 , where Pi � R Ξii  + |Ξij| for
i� 1, 2 and i≠ j and R1 denotes the Lozinskii measure with

respect to the Γ1 vector norm. ,e Lozinskii measure for the
matrix Ξ is given by

R1 Ξ11(  �
S
•

S
−

I
•

I
− − u12I

∗
− u13 − u22I

∗
− u23; Ξ12




� max u22V
∗
, u12S
∗

 

Ξ21 � u21u13I
∗

 
T
;R1 Ξ22(  �

S
•

S
−

I
•

I

− MIN u22I
∗

+ u23, V
∗

u22 − u32(  + u33 + u34 .

(27)

Here, P1 � R1(Ξ11) + |Ξ12| � S
•

/S − I
•

/I − u12I
∗− u13−

u22I
∗ − u23 + MAX u22V

∗ + u12S
∗  and

P2 � R1 Ξ22(  + Ξ21


 �
S
•

S
−

I
•

I
− u21I

∗

− min u22I
&lowast;

+ u23, − u32, V u22 − u32(  + u33 + u34 .

(28)

,us, we have I
•

/I � u31S + u32V − u33 − u34, so that

R1(Ξ)≤
S
•

S
− u31ℵ − u32ℵ + u34 − min

u12ℵ − u13 − u22ℵ − u23 − max u22ℵ, u12ℵ  , − u21 − u31ℵ

+min u22ℵ + u12, − u32,ℵ u22 − u32(  + u33 + u34 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (29)
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Since ℵ � min infS∗(t), infV∗(t), infI∗(t){ }, and hence
R1 Ξ{ }≤ S

•

/S − ℵ1, where

ℵ1 � u31ℵ + u32ℵ − u33 − u34 + min
u12ℵ − u13 − u22ℵ − u23 − max u22ℵ, u12ℵ  , − u21 − u31ℵ

+min u22ℵ + u23, − u23,ℵ u22 − u32(  + u33 + u34 
 . (30)

Now, integratingR1 Ξ{ }w.r.t t’ on both sides between the
limits 0 to t and on letting t⟶∞, we obtain


t

0 R(Ξ)dt � logS(t)/S(0) − ℵt⇒ lim
t⟶∞

supsup1/t 
t

0 R1

(Ξ)dt< − ℵ1, if ℵ1 > 0. ,erefore, the interior equilibrium
point p2(S∗, V∗, I∗, R∗) will be globally asymptotically
stable. □
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Figure 5: Time series evaluation of susceptible population for the recruitment rates (Δ) � 8, 12, 16.
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Figure 4: Solution curves of the SVIRS disease system with the attributes in Example 1.
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6. Numerical Simulation

In this numerical section, the dynamical behavior of the
fuzzy SVIRS system is investigated.

Example 1. ,e case of endemic equilibrium is illustrated
for the following numerical data.

Δ � [6, 15]; α � [0.01, 0.09]; β � [0.01, 0.3]; χ � [0.005, 0.02]; Ω � [0.3, 0.6]; Φ � [0.1, 0.5];

Ψ � [0.1, 0.6]; c � [0.05, 0.15]; η � [0.01, 0.03]; m � [1, 8]; n � [1, 12].
(31)

Figure 4 shows solution curves of the SVIRS disease
system with the attributes in Example 1. Figure 5 shows time
series evaluation of susceptible population for the recruit-
ment rates (Δ) � 8, 12, 16. Figure 6 shows time series
evaluation of susceptible population for α � 0.01; 0.03;

0.05; 0.07; 0.09. Figure 7 shows time series evaluation of
infected population for χ � 0.007, 0.009, 0.01, 0.02, 0.03.

Figure 8 shows time series evaluation of susceptible
population for β � 0.05; 0.10; 0.15; 0.20; 0.25. Figure 9 shows
time series evaluation of vaccinated population for
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Figure 7: Time series evaluation of infected population for α � 0.01; 0.03; 0.05; 0.07; 0.09.
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Figure 6: Time series evaluation of susceptible population for α � 0.01; 0.03; 0.05; 0.07; 0.09.
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Figure 9: Time series evaluation of vaccinated population for β � 0.05; 0.10; 0.15; 0.20; 0.25.
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Figure 10: Time series evaluation of infected population for β � 0.05; 0.10; 0.15; 0.20; 0.25.
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Figure 8: Time series evaluation of susceptible population for β � 0.05; 0.10; 0.15; 0.20; 0.25.
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Figure 11: Time series evaluation of vaccinated population for χ � 0.007, 0.009, 0.01, 0.02, 0.03.
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Figure 12: Time series evaluation of infected population for χ � 0.007, 0.009, 0.01, 0.02, 0.03.
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Figure 13: Time series evaluation of infected population for η � 0.002, 0.006, 0.01, 0.02, 0.03.
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Figure 14: Time series evaluation of recovered population for ψ � 0.10, 0.15, 0.20, 0.25, 0.30.
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Figure 15: Time series evaluation of susceptible population for Ω � 0.3, 0.5, 0.7.
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Figure 16: Time series evaluation of vaccinated population for Ω � 0.3, 0.5, 0.7.
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β � 0.05; 0.10; 0.15; 0.20; 0.25. Figure 10 shows time series
evaluation of infected population for β � 0.05; 0.10; 0.15;

0.20; 0.25. Figure 11 shows time series evaluation of vac-
cinated population for χ � 0.007, 0.009, 0.01, 0.02, 0.03.
Figure 12 shows time series evaluation of infected pop-
ulation χ � 0.007, 0.009, 0.01, 0.02, 0.03. Figure 13 shows
time series evaluation of infected population for
η � 0.002, 0.006, 0.01, 0.02, 0.03.

Figure 14 shows time series evaluation of recovered
population for ψ � 0.10, 0.15, 0.20, 0.25, 0.30. Figure 15
shows time series evaluation of susceptible population for
Ω � 0.3, 0.5, 0.7. Figure 16 shows time series evaluation of
vaccinated population for Ω � 0.3, 0.5, 0.7. Figure 17 shows
time series evaluation of susceptible population for
c � 0.05; 0.08; 0.1; 0.3; 0.5.

Figure 18 shows time series evaluation of vaccinated
population for c � 0.05; 0.08; 0.1; 0.3; 0.5. Figure 19 shows
time series evaluation of infected population for
c � 0.05; 0.08; 0.1; 0.3; 0.5. Figure 20 shows time series
evaluation of recovered population for c � 0.05; 0.08;

0.1; 0.3; 0.5.
Figure 21 shows time series evaluation of susceptible

population for ϕ � 0.04; 0.08; 0.2; 0.4; 0.6. Figure 22 shows
time series evaluation of vaccinated population for
ϕ � 0.04; 0.08; 0.2; 0.4; 0.6. Figure 23 shows time series
evaluation of recovered population ϕ � 0.04; 0.08; 0.2;

0.4; 0.6. Figure 24 shows time series evaluation of infected
population for m � 0.5, 3.5, 6.5, 9.5, 12.5. Figure 25 shows
time series evaluation of Recovered population for
m � 0.5, 3.5, 6.5, 9.5, 12.5. Figure 26 shows time series
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Figure 17: Time series evaluation of susceptible population for c � 0.05; 0.08; 0.1; 0.3; 0.5.
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Figure 18: Time series evaluation of vaccinated population for c � 0.05; 0.08; 0.1; 0.3; 0.5.
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Figure 20: Time series evaluation of recovered population for c � 0.05; 0.08; 0.1; 0.3; 0.5.
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Figure 21: Time series evaluation of susceptible population for ϕ � 0.04; 0.08; 0.2; 0.4; 0.6.
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Figure 19: Time series evaluation of infected population for c � 0.05; 0.08; 0.1; 0.3; 0.5.
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Figure 23: Time series evaluation of recovered population for ϕ � 0.04; 0.08; 0.2; 0.4; 0.6.
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Figure 24: Time series evaluation of infected population for m � 0.5, 3.5, 6.5, 9.5, 12.5.
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Figure 22: Time series evaluation of vaccinated population for ϕ � 0.04; 0.08; 0.2; 0.4; 0.6.

Mathematical Problems in Engineering 15



38

In
fe

ct
ed

36

34

32

30

22

28

24

26

0 10 20 30 40
Time in days

50 60 70 80

n = 2
n = 5
n = 8

n = 14
n = 11

Figure 26: Time series evaluation of recovered population for n � 2, 5, 8, 10, 14.
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Figure 27: Time series evaluation of recovered population for n � 2, 5, 8, 10, 14.
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Figure 25: Time series evaluation of recovered population for m � 0.5, 3.5, 6.5, 9.5, 12.5.
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evaluation of recovered population for n � 2, 5, 8, 10, 14.
Figure 27 shows time series evaluation of recovered pop-
ulation for n � 2, 5, 8, 10, 14.

7. Conclusions and Remarks

In this study, we provide a fuzzy SVIRS epidemic model with
a Holling type-II incidence rate and saturating treatment, in
which all population dynamics parameters are handled as
fuzzy integers. ,e SVIRS model’s existence and durability
were next investigated, and the disease-free and endemic
equilibrium points of the proposed fuzzy system were
computed. ,e Routh–Hurwitz criteria are used to talk
about the fuzzy system’s local stability conditions around
these equilibrium locations. Using the Lozinskii metric,
global stability surrounding the internal steady state was also
verified. To further understand the dynamics of the sug-
gested model, numerical simulations are provided. ,e
following interpretations are based on the numerical sim-
ulations of Section 6:

(i) Figure 4 shows how the population of solution
curves (population) changes over time.

(ii) Figure 5 depicts how vulnerable populations
change over time at various recruitment rates.

(iii) Figures 6 and 7 show the variations in susceptible
and infected populations respectively for various
levels of infection force.

(iv) Figures 8, 9, and 10 show how sensitive, vaccinated
populations behave over time in days for various
inhibitory tactics implemented by the infected.
Also, as the sick person’s inhibitory measures
become more effective, the number of vulnerable
and vaccinated people grows. However, as seen in
Figure 10, the number of infection individuals is
decreasing as the population grows.

(v) ,e number of people who have been vaccinated
has decreased as the values of χ have risen (Fig-
ure 11), whereas the number of people who have
been infected has increased (Figure 12).

(vi) When the death rate from disease (η) rises, the
number of sick people decreases (Figure 13).

(vii) Figure 14 illustrates that the number of recovered
individuals grows as the transmission rate from
infected persons to recovered individuals (ψ)
increases.

(viii) When the transmission rate from susceptible to
vaccinated (Ω) is growing, the number of sus-
ceptible and vaccinated persons is falling and in-
creasing, respectively (Figures 15 and 16).

(ix) ,e number of vulnerable (Figure 17), vaccinated
(Figure 18), infected (Figure 19), and recovered
(Figure 20) persons decreases as the natural death
rate (c) rises.

(x) ,e number of susceptible (Figure 21) and vac-
cinated (Figure 22) individuals increases when the
transmission rate from recovered individuals to

susceptible (ϕ) increases, while the number of
recovered individuals (Figure 23) decreases.

(xi) When the treatment rate (m) rises, the number of
infected people (Figure 24) falls while the number
of recovered people (Figure 25) rises.

(xii) In addition, whenever the rate of medical resource
scarcity (m) rises, the number of infected (Fig-
ure 26) and recovered (Figure 27) individuals rises
and falls, respectively.

(xiii) All parameters play major role in the proposed
fuzzy SVIRS, which means the current system can
be treated as one of the better solutions for any type
of disease models. Previous works focused on
stability analysis analytically and numerically, and
some are focused on delay dynamics. Delay-in-
duced mathematical model and its analysis also
greatly helps us in detecting disease controlling
parameters and to detect parameters which allows
us to reduce disease transmission.

(xiv) ,e current work is mainly focused on deter-
ministic (without randomness) approach both
analytically and numerically. We can extend this
model to capture rich dynamics of system (sto-
chastic model) under noise (randomness, envi-
ronmental factors around us) by both analytically
(using Fourier transform tool) and numerically
(using MATLAB software tool). We can extend
this model to study the spatio-temporal analysis by
constructing a diffusive model using partial dif-
ferential equations. ,ese can be considered as one
of our future projects [51].
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