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To improve the seeker optimization algorithm (SOA), an elastic collision seeker optimization algorithm (ECSOA) was proposed.
)e ECSOA evolves some individuals in three situations: completely elastic collision, completely inelastic collision, and non-
completely elastic collision. )ese strategies enhance the individuals’ diversity and avert falling into the local optimum. )e
ECSOA is compared with the particle swarm optimization (PSO), the simulated annealing and genetic algorithm (SA_GA), the
gravitational search algorithm (GSA), the sine cosine algorithm (SCA), the multiverse optimizer (MVO), and the seeker op-
timization algorithm (SOA); then, fifteen benchmark functions, four PID control parameter models, and six constrained en-
gineering optimization problems were selected for the experiment. According to the experimental results, the ECSOA can be used
in the benchmark functions, the PID control parameter optimization, and the optimization constrained engineering problems.
)e optimization ability and robustness of ECSOA are better.

1. Introduction

Recently, the heuristic algorithm has received a lot of attention.
Such algorithms create random methods for many optimiza-
tion problems. Since the “no free lunch” (NFL) theorem, no
one optimization solution can optimize overall questions [1].
)erefore, researchers pose new algorithms or enhance the
current algorithms to deal with optimization problems. )e
current algorithms are the genetic algorithm (GA) [2], the
particle swarmoptimization (PSO) [3], the simulated annealing
(SA) [4], the harmony search (HS) [5], the gravitational search
algorithm (GSA) [6], the moth-flame optimization (MFO) [7],
the sine cosine algorithm (SCA) [8], the multiverse optimizer
(MVO) [9], the seeker optimization algorithm (SOA) [10], the
artificial bee colony (ABC) algorithm [11], the krill herd (KH)
[12], the monarch butterfly optimization (MBO) [13], the el-
ephant herding optimization (EHO) [14], the moth search
(MS) algorithm [15], the slime mould algorithm (SMA) [16],
and the Harris hawks optimization (HHO) [17].

However, some optimization algorithms are still not very
successful in optimization problems. )e optimization
problems include issues with low optimization precision,

being premature, having only a local optimal solution, slow
convergence speed, and insufficient robustness. To better
overcome the issues of optimization precision, prematurity,
having only a local optimal solution, slow convergence rate,
and poor robustness, some improved algorithms have proven
to be feasible optimization algorithms and have been used in
practical engineering. For instance, the Harris hawks opti-
mization algorithm, salp swarm algorithm, grasshopper op-
timization algorithm, and dragonfly algorithm are used for
the structural design optimization of vehicle components [18].
)e adaptive inertia weight factor in the traditional PSO
optimizes path planning [19].)e PSObased onGaussian and
quantum behavior optimizes constrained engineering prob-
lems [20].)e least squares support vector machines based on
Gaussian are proposed [21]. A Levy flights discrete bat al-
gorithm is adopted to solve the Euclidean traveling salesman
problem [22]. )e cuckoo optimization algorithm in reverse
logistics is used to design a network for COVID-19 waste
management [23]. A chaotic cuckoo optimization algorithm
based on a Levy flight, backward learning, and interfere
operator is used to classify the optimal feature subspace [24].
An elite symbiotic organisms search algorithm with mutually
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beneficial factor is adopted to optimize the functions [25]. An
artificial bee colony with dynamic Cauchy mutation is
adopted to solve feature selection [26]. A new elastic collision
optimization algorithm is applied in sensor cloud resource
scheduling [27].

Dai et al. proposed the SOA in 2006 [28]; the goal is to
mimic the seekers’ behavior and the way they exchange
information and solve practical application optimization
problems. In the recent decade, the SOA has been used in
many fields, such as unconstrained optimization problems
[29], optimal reactive power dispatch [30], challenging set of
benchmark problems [31], design of a digital filter [32],
optimizing parameters of artificial neural networks [33],
optimizing model and structures of fuel cell [34], novel
human group optimizer algorithm [35], and several practical
applications [36]. However, in the initial stage of dealing
with optimization problems, SOA converges faster than
others. When all individuals are near the best individual for
solving the optimization problem, the individuals will lose
diversity and fall into prematurity.

In this article, we propose an elastic collision seeker
optimization algorithm (ECSOA), which evolves some in-
dividuals in three situations: complete elastic collision,
complete inelastic collision, and incomplete elastic collision.
)ese strategies enhance the individuals’ diversity and avert
premature convergence. )e ECSOA is compared to seven
improved SOAs, such as the changing algorithm parameters,
the adaptive transformation of empirical value parameters,
the Levy motion of some individuals, the reverse learning,
the addition of mutual benefit factor, and the Cauchy
mutation. )is article chose fifteen benchmark functions to
test. According to the experimental results, the convergence
speed and accuracy of ECSOA are higher. )e improved
strategy enables the SOA to maintain the individuals’ di-
versity, avert falling into the local optimum, andmake up for
the shortcomings of SOA in the aspect of easy precocity.
Finally, compared with PSO, SA_GA, GSA, SCA, MVO, and
SOA, the ECSOA has been implemented and tested on a
complete set of well-known fifteen benchmark functions,
four PID control parameter optimization models, and six
optimization constrained engineering problems taken from
literature. According to the experimental results, ECSOA is
feasible in the benchmark functions, the PID parameter
optimization problems, and the constrained engineering
optimization problems. )e ECSOA can find better values
for solving the questions. )e improved SOA successfully
overcomes its tendency to prematurely converge to local
optima for problems. )e ECSOA has better optimization
performance and robustness. )e algorithm also has an
improvement over the original SOA. )e advantages of the
ECSOA are summed up as follows:

(1) An ECSOA is raised to enhance the precision and
robustness of the optimization process.

(2) )e elastic collision strategies, the completely elastic
collision, the completely inelastic collision, and the
non-complete elastic collision, can improve the di-
versity of individuals, enhance local search, and avert
premature convergence.

)e rest of the article structure is as follows. Section 2
presents the SOA and the algorithm improvement strategies.
Section 3 describes the ECSOA. Section 4 shows the algo-
rithm optimization experiments, the results, and the ana-
lyses. Lastly, Section 5 gives some conclusions.

2. Basic SOA and Algorithm
Improvement Strategies

)e SOA carries out in-depth search mimicking human
search behavior. It considers optimization as a search for an
optimal solution by a search team in search space, taking the
search team as population and the site of the searcher as task
method. Using “experience gradient” to determine the
search direction, we use uncertain reasoning to resolve the
search step measurement, through the scout direction and
search step size to complete the searchers’ position in the
search interspace update, to attain the optimization of the
solution.

2.1. Key Update Points for SOA. SOAs have three main
updating steps.

2.1.1. Search Direction. )e forward orientation of search is
defined by the experience gradient obtained from the in-
dividuals’ movement and the evaluation of other individuals’
search historical position. )e egoistic direction f

→
i,e(t),

altruistic direction f
→

i,a(t), and preemptive direction f
→

i,p(t)

of the ith individual in any dimension can be obtained.

f
→

i,e(t) � p
→

i,best − x
→

i(t),

f
→

i,a(t) � g
→

i,best − x
→

i(t),

f
→

i,p(t) � x
→

i t1( 􏼁 − x
→

i t2( 􏼁.

(1)

)e searcher uses the method of a random weighted
average to obtain the search orientation.

f
→

i(t) � sign ωf
→

i,p(t) + φ1 f
→

i,e(t) + φ2 f
→

i,a(t)􏼒 􏼓, (2)

where t1, t2 ∈ {t, t − 1, t − 2}; x
→

i(t1) and x
→

i(t2) are the best
advantages of x

→
i(t − 2), x

→
i(t − 1), x

→
i(t)􏼈 􏼉 separately; gi,best

is the historical optimal location in the neighborhood where
the ith search factor is located; pi,bestp is the optimal locality
from the ith search factor to the current locality; ψ1 and ψ1
are random numbers in [0, 1]; and ω is the weight of inertia.

2.1.2. Search Step Size. )e SOA refers to the reasoning of
the fuzzy approximation ability. )e SOA, through the
computer language, describes some of the human natural
languages that can simulate human intelligence reasoning
search behavior. If the algorithm expresses a simple fuzzy
rule, it adapts to the best approximation of the objective
optimization problems. )e greater search step length is
more important. However, the smaller fitness corresponds to
the smaller search step length. )e Gaussian distribution
function is adopted to describe the search stepmeasurement.
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μ(α) � e− α2/2δ2
, (3)

where α and δ are parameters of a membership function.
According to (3), the probability of the output variable

exceeding [− 3δ, 3δ] is less than 0.0111. )erefore,
µmin � 0.0111. Under normal circumstances, the optimal
position of an individual has µmax � 1.0, and the worst place
is 0.0111. However, to accelerate the convergence speed and
get the optimal individual to have an uncertain step size,
µmax is set as 0.9 in this paper. Select the following function
as the fuzzy variable with a “small” target function value:

μi � μmax −
s − Ii

s − I
μmax − μmin( 􏼁, i � 1, 2, · · · , s, (4)

μij � rand μi, 1( 􏼁, j � 1, 2, · · · , D, (5)

where µij is determined by (4) and (5), Ii is the count of the
sequence xi(t) of the current individuals arranged from high
to low by function value, and the function rand(µi,1) is the
real number in any partition [µi, 1].

It can be seen that (4) simulates the random search be-
havior of human beings. Step measurement of j-dimensional
search interspace is determined by the following equation:

αij � δij −

�������

− ln μij􏼐 􏼑

􏽱

, (6)

where δij is a parameter of the Gaussian distribution
function, which is defined by

ω �
itermax − t( 􏼁

itermax
, (7)

δij � ω∗ abs x
→

min − x
→

max( 􏼁, (8)

where ω is the weight of inertia. As the evolutionary algebra
increases, ω decreases linearly from 0.9 to 0.1. x

→
min and

x
→

max are, respectively, the variate of the minimum value and
maximum value of the function.

2.1.3. Individual Location Updates. After obtaining the
scout direction and scout step measurement of the indi-
vidual, the location update is represented by (8).

xij(t + 1) � xij(t) + αij(t)fij(t), i � 1, 2, · · · , s; j � 1, 2, · · · , D.

(9)

i is the ith searcher individual; j represents the individual
dimension; fij(t) and αij(t), respectively, represent the
searchers’ search direction and search step size at time t; and
xij(t) and xij(t+ 1), respectively, represent the searchers’ site
at time t and (t+ 1).

2.2. Algorithm Improvement Strategies. Six strategies for
improving the algorithm are listed in this paper.

2.2.1. Dynamic Adaptive Gaussian Variation of Empirical
Parameters. In the SOA, (8) is changed to (10), and the
empirical value C1 is changed to an adaptive empirical value

that varies between 0.1 and 0.5 with the change of opti-
mization algebra according to (11). )e individual position
update is still the same as (9).

δij � ω∗ abs x
→

min − C1 ∗ rand(1, d)( 􏼁, (10)

C1 � 0.5 − t∗
0.1

itermax
􏼠 􏼡, (11)

where i represents the ith individual, j represents the in-
dividual dimension, δij is a parameter of the Gaussian
membership function [20, 21], t means the current algebra,
itermax represents the maximum optimization algebra, and d
represents the dimension of the optimized object.

2.2.2. 7e Levy Movement. A Levy movement [22, 24] is a
random searching path alternating between short and oc-
casionally long walks following the Levy distribution. )e
position update equation of the Levy motion is as follows:

xij(t + 1) � xij(t) × Levy(d),

Levy(β) � 0.01 ×
r1 × σ( 􏼁

r2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
β− 1 ,

σ �
(Γ(1 + β) × sin(πβ/2))

Γ(1 + β/2) × β × 2(β− 1/2)( 􏼁
􏼠 􏼡

β− 1

.

(12)

i represents the ith individual and j represents the number of
individuals. Γ(β)� (β − 1)!. t is the current algebra. d is the
dimension of the optimized object. r1, r2 ∈ rand (0, 1). β is the
partial real constant, which is 1.5 in this paper. After judging
whether the fitness value is good or bad based on the newly
generated individual position vector in (14), the original
individual will be replaced by the best.

2.2.3. 7e Refraction Reverse Learning. If the projection of
refraction points x

∗′ on the x-axis represents x∗, x∗ rep-
resent the reverse solution of individual x based on the

a

Incident light

x
b

y

o

α

β

h

h*

x* ’

x*

x

x’

Refracted light

Optimal value

Figure 1: )e schematic diagram of refraction reverse learning.
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refraction principle [23, 24].)e value of the boundary point
in the refraction reverse learning is (a + b)/2 of the search
interval [a, b]. As shown in Figure 1, the calculation of sinα
and sinβ is shown in (13) and (14).

sin α �
((a + b)/2 − x)

h
. (13)

sin β �
x
∗

− (a + b)/2( 􏼁

h∗
. (14)

According to (13) and (14), we can get

sin α
sin β

�
((a + b)/2 − x)

x
∗

− (a + b)/2( 􏼁
􏼠 􏼡

h

h
∗􏼠 􏼡. (15)

Assuming k� h/h∗, we can write (15) as (16), and then
(17), n� 1 and k� 1, can be simplified to (18).

kn �
((a + b)/2 − x)

x
∗

− (a + b)/2( 􏼁
􏼠 􏼡. (16)

x
∗

�
(a + b)

2
+

(a + b)

(2kn)
−

x

(kn)
. (17)

x
∗

� a + b − x. (18)

When it is applied to the SOA, the probability of mu-
tation is 0.8. )e individual positions are taken for the re-
fraction reverse learning according to (19) to get the new
individual positions. In the formula, i is the ith individual,
and j is the individual dimension. After judging whether the
fitness value is good or bad based on the newly generated
individual position vector in (19), the original individual is
replaced by the best one.

x
∗
ij(t + 1) �

aj + bj􏼐 􏼑

2
+

aj + bj􏼐 􏼑

(2kn)
−

xij(t)

(kn)
. (19)

2.2.4. 7e Mutually Beneficial Factor. )e individuals xh
were randomly selected, and xm was determined by (20) to
determine the mutually beneficial factor C [25].

C �
xh + xm( 􏼁

2
. (20)

xij(t + 1) � xij(t) × φ × xgbest − C × R􏼐 􏼑, (21)

where i represents the ith individual, j represents the in-
dividual dimension, ψ represents a random number in (0,1),
xgbest represents the j-dimensional component of the current
optimal position of the entire population, C is the mutual
benefit factor, R is the benefit parameter, and 1 or 2 is
randomly selected. After judging whether the fitness value is
good or bad based on the newly generated individual po-
sition vector in (21), the original individual is replaced by the
best one.

2.2.5. 7e Cauchy Variation. In this paper, the Cauchy
inverse can mutate the population under certain probability.
)e Cauchy inverse function [26] is shown in (22). Referring
to (22), we can write the new position of the individual as
(23); that is, the new position of the individual is obtained by
the Cauchymutation. After judging whether the fitness value
is good or bad based on the newly generated individual
position vector in (23), the original individual is replaced by
the best one.

F
− 1

p; x0, c( 􏼁 � x0 + c · tan π · p −
1
2

􏼒 􏼓􏼒 􏼓. (22)

xij(t + 1) � xij(t) + r1 · tan π · r2 −
1
2

􏼒 􏼓􏼒 􏼓, (23)

where F− 1 is the Cauchy inverse function and r1 and r2 are
random values within [0, 1].

2.2.6. Elastic Collision Variation. For the individual xij (xij is
a solution distributed in the solution space of the optimi-
zation problem and can be abstractly represented as a unit
mass object at a certain position in the space), δ � {x′}(x′ ∈ P
(t) ∧ x′≠xij); xij and x′ move in each other’s direction at the
velocities f(xij) and f(x′), respectively; and xij and x′ will
collide at ∆t, and then after ∆t, xi reaches the new position
xi,new. )e derivation is as follows. For the complete elasticity
(CE) collision, according to the law of conservation of
momentum and energy [27],

CE:

mf(x) + mf x′( 􏼁 � mf xnew( 􏼁 + mf xnew′( 􏼁,

1
2

m[f(x)]
2

+
1
2

m f x′( 􏼁􏼂 􏼃
2

�
1
2

m f xnew( 􏼁􏼂 􏼃
2

+
1
2

m f xnew′( 􏼁􏼂 􏼃
2
,

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

xnew � CE x + x′( 􏼁 � x
2f x′( 􏼁

f x′( 􏼁 + f(x)
+ x′

f(x) − f x′( 􏼁

f x′( 􏼁 + f(x)
.

(24)
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Similarly, for the complete inelastic (CI) collisions and
the non-complete elastic (NCE) collisions,

CI: mf(x) + mf x′( 􏼁 � 2mf xnew( 􏼁,

xnew � CI x + x′( 􏼁 � x
3f x′( 􏼁 − f(x)

2 f x′( 􏼁 + f(x)( 􏼁
+ x′

3f(x) − f x′( 􏼁

2 f x′( 􏼁 + f(x)( 􏼁
,

NCE: xnew � NCE x + x′( 􏼁 � βCE x + x′( 􏼁; β ∈ (0, 1).

(25)

)e individual updating mechanism is as follows:

xij(t + 1) �
ECO xij(t), δ􏼐 􏼑, r1 ≥ ε,

xij(t), r1 < ε,

⎧⎨

⎩ (26)

ECO xij(t), δ􏼐 􏼑 �

CE xij(t),Gij(t)􏼐 􏼑, r2 ≤ 0.5,

CI xij(t),Bij(t)􏼐 􏼑, 0.5< r2 ≤ 0.5 + ξ,

α CE xij(t),Gij(t)􏼐 􏼑 + CI xij(t),Bij(t)􏼐 􏼑􏽨 􏽩,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

where i represents the ith individual, j represents the in-
dividual dimension, ε ∈ (0,1) and ξ ∈ (0, 0.5) are newer
systems, Gij(t) is the optimal solution of xij(t) history, and
Bij(t) is the optimal solution of species. r1 ∈ (0, 1), r2 ∈ (0, 1),
and α ∈ (0, 0.5) are the random numbers. After judging
whether the fitness value is good or bad based on the newly
generated individual position vector in (27), the original
individual is replaced by the best one.

3. ECSOA

)eECSOA evolves some individuals in the CE collision, the
CI collision, and the NCE collision to improve the diversity
of individuals and boost partial scouting. Algorithm 1 is the
primary process of the ECSOA.

4. Experimental Results

4.1. Experimental Setup. )e algorithms used in the ex-
periment in this paper were running under MATLAB
R2016a. )e computer is configured as Intel® Core™ i7-
7500U CPU @2.7GHz 2.9GHz processor with 8GB of
memory, Windows 10 operating system.

4.2. Algorithm Performance Comparison in Benchmark
Functions. To ensure that the comparison of these algo-
rithms is fair, the population number of algorithms is 30,
and the evolutionary algebra is 1000. At the same time,
for further ensuring the fairness of algorithm comparison
and reducing the effect of randomness, the results of the
seven algorithms after 30 independent runs were selected
for comparison.

4.2.1. Benchmark Functions. In this field, it is common to
base the capability of algorithms on mathematic functions
that are known to be globally optimal. Fifteen benchmark
functions in the literature are used as the comparative test
platform [7, 10, 37–39]. Table 1 shows the functions in the
experiment. Variables are set to one hundred.

4.2.2. Performance Comparison of SOA with Different Im-
provement Methods. In this paper, the SOA is improved by
seven different methods: the parameter changing SOA
(PCSOA), the parameter adaptive Gaussian transform SOA
(PAGTSOA), the SOA based on Levy variation (LVSOA),
the SOA based on refraction reverse learning mechanism
(RRLSOA), the SOA based on mutually beneficial factor
strategy (MBFSOA), the SOA based on Cauchy variation
(CVSOA), and the elastic collision seeker optimization al-
gorithm (ECSOA).

(1) Parameter Setting of SOA with Different Improvement
Methods. )is section will introduce the parameter setting of
the improved SOAs used in the experiment in this paper. Dai
et al. have done a lot of research on the parameter set of the
SOA [32], and we did a lot of practice tests and comparative
studies about the parameters. )e specific parameters of the
improved SOA are shown in Table 2. In the next section, we
will use these improved algorithms for experimental com-
parison and choose a relatively optimal improved algorithm
to compare it with other advanced intelligent algorithms.

(2) Improved Algorithms’ Performance Comparison in
Benchmark Functions. )e SOA is improved in seven dif-
ferent ways: the SOA based on parameter change (PCSOA),

Mathematical Problems in Engineering 5



the SOA based on parameter adaptive Gaussian transform
(PAGTSOA), the SOA based on Levy variation (LVSOA),
the SOA based on refraction reverse learning mechanism
(RRLOOA), the SOA based onmutual benefit factor strategy
(MBFSOA), the SOA based on Cauchy variation (CVSOA),
and the SOA based on elastic collision (ECSOA). To test the
performance, each improved algorithm was optimized for
the fifteen functions in Table 1. Each algorithm and each
function were run independently 30 times. )e performance
of the SOA and the seven improved SOAs in fifteen-function
optimization was compared in terms of the mean (Mean),
standard deviation (Std.), best fitness (Best), program
running time (Time), and best fitness rank (Rank) of 30
running results. )e optimal fitness reflects the optimization
accuracy of the algorithm, the average value and standard
deviation reflect the robustness of the algorithms, and the
running time reflects the time of the program. )e results of
the functions f1-f15 are displayed in Table 3. )e boldface
indicates that the optimal result is better.

Based on Table 3, for the benchmark functions f1-f15, the
comparison between the seven improved SOAs in this paper
and the original SOA shows that the optimization result of
the ECSOA is the best value. )e mean (Mean), standard
deviation (Std.), best fitness (Best), and best fitness rank
(Rank) of the ECSOA were the best after 30 independent
runs. )e f1-f15 total program running time (Time) rank is
the fourth among all the eight algorithms compared in this
paper. )e running time of the ECSOA is longer than that of
the SOA, PCSOA, and PAGTSOA; it is shorter than that of
the LVSOA, MBFSOA, CVSOA, and PAGTSOA. From the

perspective of optimization accuracy and robustness, the
ECSOA has the best optimization performance among the
improved SOAs in this paper. Section 4.2.3 will compare the
ECSOA with the other intelligent optimization algorithms
that are widely used at present.

4.2.3. Performance Comparison of Different Algorithms in
Benchmark Functions. To test the performance of the
ECSOA, it is compared to the PSO, SA_GA, GSA, SCA,
MVO, and SSA, using the fifteen benchmark functions
[7, 10, 37–39] in Table 1, which have been widely used in
the test.

(1) 7e Parameter Setting of Different Algorithms. In this
section, the parameters’ set of the PSO [40], SA_GA [41],
GSA [6], SCA [8], MVO [9], SOA [28], and ECSOA is
presented. According to [6, 8, 9, 28, 40, 41], we did a lot of
practice tests and comparative studies for the parameters set.
Table 4 shows the parameters set of different algorithms.

(2) 7e Results Comparison of Different Algorithms in
Benchmark Functions. )e mean values, standard deviation,
best fitness, and best fitness rank of the algorithms of 30
independent runs and the data of functions f1-f15 optimi-
zation results are shown in Table 5. )e boldface indicates
that the optimal outcome is better.

Based on Table 5, for the best value of the benchmark
functions, the standard deviation, and the mean, the ECSOA
is better than the others. According to the optimal fitness

(1) t� 0
(2) Parameter initialization.
(3) Population initialization. Generate an initial species group.
(4) Evaluate each seeker. Compute the fitness. Determine the optimal solution Pbest,G.
(5) While the stopping condition is not satisfied.

(5.1)Running process of the ECSOA
(1) )e search direction of the searcher is generated according to (2)
(2) )e search step size is generated according to (6)
(3) Generate a new position xECSOA,G according to (9), and the range of xECSOA,G is judged and modified to meet (xmin, xmax).
(4) Calculate the fitness and judge the optimal solution.

if f (xECSOA,G)≤Pbest,G
Pbest,G � f (xECSOA,G)

end if
(5.2) )e elastic collision variation
(1) if rand<Pm, the elastic collision variation was carried out on some new positions, according to (26), to obtain new xECSOA,G,

and the range of xECSOA,G is judged and modified to meet (xmin, xmax).
(Other improvement strategies, such as the empirical value parameter adaptive transformation formula (10), the

refraction reverse learning formula (14), the Levy variation formula (19), the introduction of mutually beneficial factor
formula (21), and the Cauchy variation formula (23), were updated according to the corresponding formula.)

(2) Calculate the fitness and judge the optimal solution.
if f (xECSOA,G)≤Pbest,G
Pbest,G � f (xECSOA,G)

end if
end if

(6) t� t+1
(7) if t<Tmax, then jump to 3; else stop.

ALGORITHM 1: ECSOA.
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Table 2: Parameter settings of SOA with different improvement methods.

Algorithm Parameters and values

SOA [5] )e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1.

PCSOA )e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, the empirical value: W� 0.2.

PAGTSOA )e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, the empirical value: W� 0.1–0.5.

LVSOA
)e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, the empirical value: W� 0.2, the Levy

mutation probability: PL � 0.8.

RRLSOA
)e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, the empirical value: W� 0.2, the refraction

reverse probability: Pr � 0.8.

MBFSOA
)e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, the empirical value: W� 0.2, the mutually

beneficial factor probability: Pm � 0.8.

CVSOA
)e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, the empirical value: W� 0.2, the Cauchy

variation probability: PC � 0.8.

ECSOA
)e maximum membership degree value: Umax � 0.95, the minimum membership degree value: Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, the empirical value: W� 0.2, the elastic

collision probability: Pe � 0.8.

Table 3: Performance comparison of different SOA improvement strategies of 30 independent runs for benchmark functions.

Function Result
Algorithms

SOA PAGTSOA PASOA LVSOA RRLSOA MBFSOA CVSOA ECSOA

f1 (D� 100)

Mean 1.0524957 10.651095 5.8792970 0.1969439 0.0540391 1.4202532 3.5095128 0
Std. 0.2051906 49.006900 26.483115 0.1757506 0.0941245 4.0124150 12.582150 0
Best 0.6215967 0.0194690 0.0126392 9.264e-04 9.538e-06 0.0075097 0.0037232 0
Time 45.50061 55.33285 53.03482 72.312269 138.09713 53.66496 48.995307 63.00413
Rank 8 7 6 3 2 5 4 1

f2 (D� 100)

Mean 13.002085 0.8551306 1.1247211 0.4843834 0.0192347 0.8807482 0.8554324 0
Std. 2.0008395 0.3078019 0.1241726 0.0896276 0.0033951 0.2147558 0.2150637 0
Best 9.4729280 0.3884975 0.8443990 0.3522036 0.0139691 0.5532238 0.5829066 0
Time 54.16754 51.23705 49.17031 72.312269 138.09713 53.66496 48.995307 68.65450
Rank 8 4 7 3 2 5 6 1

f3 (D� 100)

Mean 9.869e+03 3.392e+03 3.452e+03 2.524e+03 4.8034565 4.346e+03 2.945e+03 0
Std. 3.472e+03 1.658e+03 1.959e+03 2.193e+03 20.624508 2.943e+03 2.83e+03 0
Best 3.318e+03 4.645e+02 37.813122 7.6866138 3.279e-04 2.408e+02 2.2538366 0
Time 423.27283 393.18358 468.54936 639.09729 802.52870 519.93894 375.72695 720.86686
Rank 8 7 5 4 2 6 3 1

f4 (D� 100)

Mean 21.743821 18.412017 18.418584 16.663924 0.0344293 19.610919 16.210237 0
Std. 5.6809434 6.8890641 6.6275327 5.7602336 0.1376098 6.0681946 7.5363261 0
Best 2.9045088 0.2149959 0.5369130 0.4595301 7.323e-04 2.5876468 0.3657577 0
Time 47.98446 55.85934 49.86405 74.121127 101.07014 90.23634 49.264932 67.91751
Rank 8 3 6 5 2 7 4 1

f5 (D� 100)

Mean 7.093e+02 1.334e+02 1.082e+02 98.378869 97.910630 3.843e+03 1.120e+02 98.124573
Std. 1.675e+02 1.489e+02 14.576662 1.9535375 1.1793911 1.792e+04 1.284e+02 0.0339669
Best 2.789e+02 96.133568 97.022113 95.965118 95.896077 96.241454 16.545566 98.057258
Time 54.515291 62.169550 50.996834 122.32891 102.59963 68.034444 63.561199 79.987520
Rank 8 4 6 3 2 5 1 7

f6 (D� 100)

Mean 1.1365348 10.241728 8.3207707 7.3932402 8.2483572 44.121188 3.4131678 0.0471172
Std. 0.1751583 7.3068384 4.9997548 4.2448245 3.8398778 2.080e+02 6.5430302 0.0339465
Best 0.7992740 0.2161040 0.0424130 0.2796657 0.0246273 0.0166825 0.0202905 0.0218316
Time 47.876927 52.583180 46.059290 114.87808 94.008038 73.899842 48.275220 68.786422
Rank 8 6 5 7 4 1 2 3
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value mean rank and all rank results from Table 5, the
ECSOA has a strong optimization ability and strong ro-
bustness to a benchmark function.

Figure 2 shows the fitness curves of the best values for the
benchmark functions f1-f15 (D� 100). As seen from Fig-
ure 2, the convergence of the ECSOA is faster, and the
precision of the ECSOA is better.

Figure 3 is the ANOVA for the benchmark functions
f1–f15 (D � 100). As seen from Figure 3, the ECSOA

showed better robustness and improved SOA. )erefore,
the ECSOA is a feasible solution in the optimization of
benchmark functions.

4.2.4. Complexity Analysis. )e calculational complexity of
the SOA is O (NDM), N represents the total individual
count, D represents the dimension count, and M represents
the maximum count of algebras. )e computational

Table 3: Continued.

Function Result
Algorithms

SOA PAGTSOA PASOA LVSOA RRLSOA MBFSOA CVSOA ECSOA

f7 (D� 100)

Mean 3.4645595 0.0979540 0.1900503 0.0668954 3.532e-04 0.1034386 0.1007809 9.621e-05
Std. 0.9443482 0.0295516 0.0493722 0.0198944 1.419e-04 0.0259960 0.0265230 7.291e-05
Best 2.0472780 0.0497600 0.0989682 0.0386301 1.334e-04 0.0591166 0.0651808 2.056e-05
Time 90.52067 95.46660 85.11105 171.49167 169.29825 109.08514 97.226073 162.01431
Rank 8 4 7 3 2 5 6 1

f8 (D� 100)

Mean 1.391e+02 0.3830840 1.2523149 0.2155477 3.125e-04 0.4082059 0.4914759 0
Std. 33.925547 0.1176738 0.2579516 0.0689183 9.806e-05 0.1798079 0.5899702 0
Best 79.288776 0.2063376 0.7213791 0.1216883 1.766e-04 0.2088904 0.2163823 0
Time 55.51168 51.83529 47.67628 113.84626 107.06077 62.40435 48.359841 68.06153
Rank 8 4 7 3 2 5 6 1

f9 (D� 100)

Mean 1.471e-05 2.988e-08 1.597e-07 1.684e-08 1.683e-11 3.108e-08 4.428e-08 0
Std. 1.279e-05 1.944e-08 1.098e-07 9.608e-09 1.695e-11 2.652e-08 4.378e-08 0
Best 6.318e-07 4.835e-09 9.134e-09 3.497e-09 3.468e-13 5.062e-09 5.396e-09 0
Time 102.88770 105.16369 94.27801 210.95845 262.27585 184.68808 142.54992 120.19844
Rank 8 4 7 3 2 5 6 1

f10 (D� 100)

Mean − 2.324e+4 − 2.184e+4 − 2.296e+4 − 2.685e+4 − 2.752e+4 −4.151e+4 − 3.298e+4 − 2.627e+4
Std. 3.396e+03 3.105e+03 3.478e+03 5.409e+03 4.717e+03 9.886e+02 5.590e+03 7.262e+03
Best − 3.174e+4 − 2.906e+4 − 3.383e+4 − 3.942e+4 − 3.658e+4 −4.190e+4 −4.190e+4 − 4.105e+4
Time 60.474337 64.865537 69.718244 134.61052 135.83717 96.863046 72.777288 82.973951
Rank 7 8 6 4 5 1 1 3

f11 (D� 100)

Mean 4.147e+02 40.408968 1.671e+02 16.244213 0.0046895 36.266581 18.815332 0
Std. 47.133648 58.557280 52.557303 27.473872 0.0019906 46.628463 27.008433 0
Best 3.230e+02 0.1867154 49.014907 0.2093659 0.0024715 0.1742839 0.2374936 0
Time 59.59937 70.80121 53.881313 122.41571 215.67516 81.87741 66.201350 70.32757
Rank 8 4 7 5 2 3 6 1

f12 (D� 100)

Mean 2.4523846 0.4491129 0.2960575 0.3706855 0.0229150 0.5816069 0.2511530 8.882e-16
Std. 0.3106584 0.6639778 0.5909855 0.9556260 0.0636082 1.1166917 0.6797442 0
Best 1.9634230 0.0154282 0.0320302 0.0132288 9.955e-04 0.0177150 0.0136431 8.882e-16
Time 64.89326 68.48468 56.26708 139.44284 188.30542 83.18719 57.217278 74.98492
Rank 8 5 7 3 2 6 4 1

f13 (D� 100)

Mean 0.5354222 0.9578562 0.143592 0.0806190 0.0344354 1.025111 0.9414278 0
Std. 0.3343660 3.0280038 0.336573 0.2045818 0.1153465 2.874560 2.1213929 0
Best 0.0806019 0.0020953 0.007806 0.0012407 3.238e-06 0.003087 0.0018399 0
Time 63.67314 65.48267 60.59472 169.61463 179.53784 101.38439 65.805859 82.41825
Rank 8 5 7 3 2 6 4 1

f14 (D� 100)

Mean 20.231984 11.239536 13.286278 10.512085 0.0574088 14.582338 16.625816 0.0355875
Std. 8.8688013 6.6059206 8.0516954 4.8185197 0.0487519 8.6789426 9.4591054 0.0135230
Best 8.9451797 0.3752616 0.2490416 0.2575901 0.0211033 0.0101677 0.0018590 0.0020366
Time 165.94752 214.22263 158.94344 264.67286 516.74399 246.38223 179.81703 211.78782
Rank 8 7 5 6 4 3 1 2

f15 (D� 100)

Mean 1.301e+02 1.080e+02 95.968154 45.734524 24.515453 2.014e+02 93.843578 7.6774427
Std. 62.979168 78.512763 75.121239 49.570748 36.817491 6.687e+02 83.666000 4.1034906
Best 1.7998261 9.9178264 9.7032945 9.3364901 5.1884504 9.8278162 0.2503571 0.0977197
Time 166.65126 164.31928 159.80885 245.52676 484.10688 191.20796 211.63275 207.40591
Rank 3 8 6 5 4 7 2 1

Average rank 7.6 5.33333 6.26667 4 2.6 4.66667 3.73333 1.73333
Overall rank 8 6 7 4 2 5 3 1
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Table 4: )e parameters set of different algorithms.

Algorithm Parameters and values
PSO [40] Constant inertia: c0� 0.9∼0.4, two acceleration coefficients: c1� c2�1.4962.

SA_GA [41] Selection probability: Ps � 0.6, crossover probability: Pc � 0.7, mutation scale factor: Pm � 0.05, initial temperature: T0 �100,
temperature reduction parameter: Pt � 0.98.

GSA [6] )e gravitational constant: G0�100, alfa� 20.
SCA [8] )e random numbers: r1� 0∼2, r2� 0∼2π, r3� 0∼2, r4� 0∼1.

MVO [9] )e wormhole existence probability: WEP_Max� 1, WEP_Min� 0.2, traveling distance rate: TDR� 0∼1, the random
numbers: r1� 0∼1, r2� 0∼1, r3� 0∼1.

SOA [28] )emaximummembership degree value:Umax � 0.95, the minimummembership degree value:Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1. ()e same as Table 2.)

ECSOA
)emaximummembership degree value:Umax � 0.95, the minimummembership degree value:Umin � 0.0111, the maximum
inertia weight value: Wmax � 0.9, the minimum inertia weight value: Wmin � 0.1, the empirical value: W� 0.2, the elastic

collision probability: Pe � 0.8. ()e same as Table 2.)

Table 5: Performance comparison of algorithms for benchmark functions.

Test functions Result
Algorithms

PSO SA_GA GSA SCA MVO SOA ECSOA

f1(D� 100)

Mean 0.0031 3.018e+04 6.21 E+02 6.42E+03 40.269355 1.0524957 0
Std. 6.31E− 04 6.691e+03 2.71 E+02 5.62E+03 6.8812839 0.2051906 0
Best 0.0022 1.708e+04 2.50E+02 96.29169 27.3763 0.6216 0
Rank 2 7 6 5 4 3 1

f2 (D� 100)

Mean 0.2192801 118.6375 7.1387617 1.3795842 7.34 E+20 13.002085 0
Std. 0.0260935 13.168469 3.2135126 1.4335667 3.92E+21 2.0008395 0
Best 0.1732089 92.513924 2.0654838 0.0310204 5.43 E+02 9.4729280 0
Rank 3 7 4 2 6 5 1

f3 (D� 100)

Mean 2.27E+03 3.77e+05 8.80E+03 1.84E+05 4.24 E+04 9.87 E+03 0
Std. 1.30E+03 8.95e+04 1.84E+03 3.48E+04 6.09 E+03 3.47 E+03 0
Best 8.43E+02 2.55e+05 6.26E+03 1.24E+05 3.11E+04 3.32 E+03 0
Rank 2 7 4 6 5 3 1

f4 (D� 100)

Mean 1.4624169 89.626880 15.671857 85.539422 49.557442 21.743821 0
Std. 0.2035038 3.454423 1.5605923 3.5980134 6.2884298 5.6809434 0
Best 1.0929345 83.496264 10.958917 77.909721 37.299715 2.9045088 0
Rank 2 7 4 6 5 3 1

f5 (D� 100)

Mean 2.515e+02 5.783e+07 1.784e+04 6.427e+07 2.440e+03 7.093e+02 98.124573
Std. 59.018749 2.620e+07 1.578e+04 4.671e+07 1.959e+03 1.675e+02 0.0339669
Best 1.236e+02 1.925e+07 1.987e+03 7.162e+06 7.755e+02 2.789e+02 98.057258
Rank 2 7 5 6 4 3 1

f6 (D� 100)

Mean 0.0119147 3.074e+04 6.995e+02 6.131e+03 40.0892130 1.1365348 0.0471172
Std. 0.0020782 8.323e+03 3.890e+02 4.651e+03 5.9162672 0.1751583 0.0339465
Best 0.008661 1.356e+04 2.169e+02 6.729e+02 28.9167207 0.799274 0.0218316
Rank 1 7 5 6 4 3 2

f7 (D� 100)

Mean 0.2211229 77.487242 2.3136998 73.024146 0.3355664 3.4645595 9.621e−05
Std. 0.0419681 49.238470 1.1506156 46.772681 0.0733789 0.9443482 7.291e−05
Best 0.1180966 19.170953 0.8371509 11.108763 0.2176315 2.0472780 2.06e−05
Rank 2 7 4 6 3 5 1

f8 (D� 100)

Mean 0.0624146 1.29e+04 1.32E+02 1.52E+03 1.05 E+02 1.39 E+02 0
Std. 0.0164020 3.57e+03 74.414138 1.16 E+03 43.821833 33.925549 0
Best 0.0291246 7.55e+03 31.981022 2.47E+02 34.296414 79.288776 0
Rank 2 7 3 6 4 5 1

f9 (D� 100)

Mean 2.08E− 26 1.78e+03 3.67E− 12 35.077327 1.21E− 06 1.47E− 05 0
Std. 3.99E− 26 9.54e+03 7.66E− 12 80.100469 5.23E− 07 1.28E− 05 0
Best 2.07E− 29 0.002883 4.23E− 16 0.0268174 4.55E− 07 6.32E− 07 0
Rank 2 6 3 7 4 5 1

f10 (D� 100)

Mean − 4.746e+3 − 2.475e+04 − 4.729e+3 − 7.256e+3 − 2.408e+4 − 2.324e+4 −2.627e+4
Std. 6.889e+02 8.845e+02 8.702e+02 6.962e+02 1.533e+03 3.396e+03 7.262e+03
Best − 6.440e+3 − 2.659e+04 − 7.354e+3 − 9.457e+3 − 2.658e+4 − 3.174e+4 −4.105e+4
Rank 7 3 6 5 4 2 1
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complexity of the first phase of the SOA stage is O (NDM).
)e elastic collision strategy is introduced to calculate the O
(NDM) value. )erefore, the overall complexity of the
ECSOA is O (NDM+NDM). Based on the principle of the
Big-O representation [42], if the count of algebras is high
(M≫N, D), the calculational complexity is O (NDM).
)erefore, the overall calculational complexity of the
ECSOA is almost the same as the basic SOA.

4.2.5. Statistical Testing of Algorithms in Benchmark
Functions. Using Wilcoxon’s rank-sum test [43], we can
discover the important differences between the two algo-
rithms. )is test gives the value p< 0.05.

Table 6 indicates the results of statistical testing. N/A
represents the best algorithm. From Table 6, ECSOA is
suitable for the fifteen functions. )erefore, the ECSOA is
better than the other algorithms.

4.2.6. Run Time Comparison of Algorithms in Benchmark
Functions. In this subsection, the running time of the al-
gorithms for each function is recorded under the same
conditions: population number of 30, evolution algebra of
1000, and 30 independent runs of the above fifteen
benchmark functions f1–f15 (d� 100). )en, the running
time of the fifteen functions is added to obtain the sum of the
30 independent running times of each algorithm for the
fifteen functions listed in this paper and the ranking of the
total time, as shown in Table 7. As seen from Table 7, the
SCA has the most minor program running time, followed by
the PSO algorithm, which has more program running time.
)e ECSOA ranks fifth, which has a relatively longer

program running time. At the bottom of the list is the
SA_GA, which takes the most running time.

To learn more traits about the program running time of
the seven algorithms in the fifteen functions, a bar chart in
Figure 4 was made for the total time of each algorithm after
30 independent runs. From Figure 4, as to the running time,
the ECSOA is less than the SA_GA and GSA; the SCA is the
least; the SA_GA is the most; the ECSOA is less than one-
sixth of SA_GA; and the ECSOA is nearly four times the
SCA, which is relatively large.

4.2.7. Performance Profiles of Algorithms in Benchmark
Functions. )e average fitness was selected as the capability
index. )e algorithmic capability is expressed in performance
profiles, which is calculated by the following formulas:

rf,g �
μf,g

min μf,g: g ∈ G􏽮 􏽯
, (28)

ρg(τ) �
size f ∈ F: rf,g ≤ τ􏽮 􏽯

nf

, (29)

where g represents an algorithm; G is the algorithms set; f
means a function; F represents the function set; ng represents
the count of algorithms in the experiment; nf is the number
of functions in the experiment; µf,g is the average fitness
obtained by the algorithm g after solving function f, rf,g is the
capability ratio; ρg is the algorithmic capability; and τ is a
factor of the best probability [44].

Figure 5 shows the capability ratios of the average value
for the seven algorithms on the benchmark functions f1-f15
(D� 100). )e consequences are revealed by a log scale 2. As

Table 5: Continued.

Test functions Result
Algorithms

PSO SA_GA GSA SCA MVO SOA ECSOA

f11 (D� 100)

Mean 33.896488 425.8326 1.36E+02 2.06E+02 6.41E+02 4.15E+02 0
Std. 6.2350851 48.908770 18.532649 92.249647 69.443553 47.133647 0
Best 23.655297 3.34E+02 88.161003 67.314606 5.01E+02 3.30 E+02 0
Rank 2 6 4 3 7 5 1

f12 (D� 100)

Mean 0.0220555 15.3479726 3.1378392 18.309269 6.5910720 2.4523845 8.882e−16
Std. 0.0032932 0.7816167 0.6404753 4.7183569 6.0322718 0.3106583 0
Best 0.0161767 13.7962876 2.0521342 6.872015 3.2031355 1.9634230 8.882e−16
Rank 2 7 4 6 5 3 1

f13 (D� 100)

Mean 9.1115292 274.5795 98.761595 53.145123 1.3775687 0.5354221 0
Std. 1.8646352 66.687333 11.527169 38.195663 0.0626040 0.3343659 0
Best 6.1937260 137.5120 81.688324 1.7219609 1.2241138 0.0806019 0
Rank 5 7 6 4 3 2 1

f14 (D� 100)

Mean 0.0167129 4.418e+07 4.5497727 1.582e+08 11.6567511 20.2319839 0.0355875
Std. 0.0241246 5.110e+07 1.21396147 1.352e+08 4.2010589 8.8688013 0.0135230
Best 4.838e−05 3.883e+06 2.1673113 6.757e+06 6.7785747 8.9451797 0.0020366
Rank 1 6 3 7 4 5 2

f15 (D� 100)

Mean 0.0010358 1.435e+08 1.309e+02 2.674e+08 1.209e+02 1.301e+02 7.6774427
Std. 0.002800 1.008e+08 64.254054 1.527e+08 30.717732 62.9791683 4.1034906
Best 1.898e−04 2.309e+07 76.4103682 3.106e+07 51.2656139 1.7998261 0.0977197
Rank 1 6 5 7 4 3 2

Average rank 2.4 6.466667 4.4 5.466667 4.4 3.666667 1.2
Overall rank 2 7 4 6 4 3 1
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shown in Figure 5, the ECSOA has the highest probability.
When τ � 1, the ECSOA is about 0.8, which is better than
that of the others. When τ � 8, the ECSOA is the winner on
the given test functions, ESOA is 1, PSO is 0.67, SA_GA is
0.067, SCA is 0.3, GSA is 0.3, MVO is 0.2, and SOA is 0.33.
Regarding the performance curve, the ECSOA is the best; the
ECSOA can achieve 100% when τ ≥1.)us, the performance
of the ECSOA is better than that of the other algorithms.

4.3. Algorithm Performance Comparison in PID Controller
Parameter Optimization Problems. In this subsection, we
use four control system optimizing PID parameter models to
test the capability of the ECSOA. For g1–g3, the population
number of all algorithms is 20, the max number of algebras is
20, g1-g2 step response time is set to 10s, and g3 step re-
sponse time is set to 30s. For g4, the population number of all
algorithms is 50, the max number of algebras is 50, the step
response time is set to 50s.

4.3.1. Control System Models. Equations (30)–(33) show the
test control system models optimizing PID parameters used
in our experiment. Figure 6 shows the process diagram for
optimizing the test control system PID parameters by the
ECSOA. Figure 7 shows the optimization PID parameter
model structure of the control system.

g1(s) �
2.6

(2.7s + 1)(0.3s + 1)
, (30)

g2(s) �
5

(2.7s + 1)
e− 0.5s

, (31)

g3(s) �
3

(2s + 1)
e− 3s

, (32)

g4(s) �
1

(s + 1)
8. (33)

4.3.2. Results Comparison of Algorithms in the PID Controller
Parameter Optimization. For testing the capability of the
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Figure 3: ANOVA tests for benchmark functions f1–f15 (D� 100).
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Table 6: )e p values of the Wilcoxon rank-sum test.

Test functions p test values of various algorithms
(D� 100) PSO SA_GA GSA SCA MVO SOA ECSOA
f1 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 N/A
f2 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 N/A
f3 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 N/A
f4 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 N/A
f5 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 N/A
f6 N/A 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11
f7 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 N/A
f8 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 N/A
f9 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 N/A
f10 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 0.695215399 0.129670225 N/A
f11 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 N/A
f12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 N/A
f13 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 1.21178e-12 N/A
f14 N/A 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 8.11998e-04
f15 N/A 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11 3.01986e-11

Table 7: Run time comparison of 30 independent runs for benchmark functions f1–f15 (D� 100).

Functions Run time of algorithms
(D� 100) PSO SA_GA GSA SCA MVO SOA ECSOA
f1 19.2614 542.3931 150.8607 15.6790 37.1642 45.5006 63.004
f2 22.358433 521.8564 154.253122 16.774635 22.505080 54.167535 68.65450
f3 131.065635 3509.5453 276.851090 157.841395 150.595822 423.272832 720.86686
f4 21.427574 642.475529 154.476221 17.295688 40.792862 47.984464 67.91751
f5 19.859456 651.808449 188.478202 18.794625 41.892321 54.515291 79.987520
f6 20.542143 480.833828 153.064086 17.318195 39.282568 47.876927 68.786422
f7 34.792130 890.981756 168.550287 30.316487 51.654684 90.520669 162.014
f8 23.367437 481.638596 153.526963 17.055855 39.908609 55.511679 68.06153
f9 35.632177 975.1530 173.578067 32.396346 45.258449 102.887695 120.19844
f10 26.354619 562.020557 158.499353 20.396761 22.749008 60.474337 82.973951
f11 21.033824 648.6857 184.680588 22.147268 41.646913 59.599374 70.32757
f12 23.395074 624.441362 173.135274 21.299206 43.723453 64.893256 74.985
f13 29.505900 615.5540 169.814804 23.426107 46.092607 63.673136 82.41825
f14 60.288823 1654.958657 193.881593 52.751386 74.326149 165.947519 211.787815
f15 59.640283 1629.496415 196.205228 53.109655 75.622178 166.651257 207.405906
)e total time 548.524908 14431.84265 2649.855578 516.602609 773.214903 1503.476571 2149.389274
Overall rank 2 7 6 1 3 4 5

PSO
0

5000

10000

�
e t

ot
al

 ti
m

e (
s)

15000

SA-GA GSA SCA MVO SOA ECSOA
Algorithms

�e total time of 30 independent runs for benchmark functions

Figure 4: )e total time of 30 independent runs of 7 algorithms on fifteen benchmark functions.
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ECSOA, it is compared with the PSO, SA_GA, GSA, SCA,
MVO, and SOA in terms of the PID controller parameter
optimization. )e mean values, standard deviation values,
best fitness values, and best fitness values rank of the
algorithms of 30 independent runs for g1–g4 are displayed
in Table 8. )e boldface indicates that the optimal result is
better.

For the PID controller parameter optimization prob-
lems, according to Table 8, except g3 and g4, as to the best
fitness, the ECSOA is better than the others. )e optimal
fitness value result of the ECSOA for g3 model is only worse

than the SA_GA, the optimal fitness value result of the
ECSOA for g4 model is only worse than the PSO algorithm.
As to the standard deviation results, for g1 model, the
ECSOA is only worse than the SA_GA, SCA, and the MVO;
for g2 and g3 models, the ECSOA is only worse than the
SA_GA; and for g4 model, the ECSOA is only worse than the
MVO. Except for g1 and g4, as to the mean test results, the
ECSOA is better than the others; for g1 model, the ECSOA is
only worse than the SCA; and for g4 model, the ECSOA is
only worse than the MVO. According to the optimal fitness
value mean rank and all rank results from Table 8, the
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ECSOA can find solutions and has very strong robustness for
the PID controller parameter optimization problems.

4.3.3. Convergence Curves Comparison of Algorithms in
PID Controller Parameter Optimization. Figure 8 shows
the fitness curves of PID controller parameter optimization
for g1–g4. )e comparison between the seven algorithms in
Figure 8 shows that the convergence of the ECSOA is fast
and the precision of the ECSOA is the best. )e ECSOA can
find the optimal value.

4.3.4. ANOVA Tests Comparison of Algorithms in PID
Controller Parameter Optimization. Figure 9 is the ANOVA

of the global best values PID controller parameter optimi-
zation for g1–g4. As seen from Figure 9, ECSOA is the most
robust algorithm.

4.3.5. Unit Step Function PID Controller Parameter
Optimization. Figure 10 shows the unit step function PID
controller parameter optimization for g1–g4. As seen from
Figure 10, the ECSOA is used to optimize the unit step
function PID controller parameters of g1–g4, and the unit
step functions tend to stabilize very quickly and accurately.

)erefore, the ECSOA is an effective and feasible so-
lution in the control system models optimizing PID
parameters.

× × Test transfer function
g1 (s)~g4 (s)

Step Output

0.02s+1
Kd.s

Kp

Ki (s)
s

Proportion integrals differential
controller

Integrals

Proportion

Differential

Optimization of PID parameters based on ECSOA
optimization algorithm

-

Figure 7: )e optimization PID parameters model structure of the test control system.

Table 8: Performance comparison of algorithms in PID parameter optimization of 30 independent runs.

Test Result
Algorithm

PSO SA_GA GSA SCA MVO SOA ECSOA

g1

Mean 0.2267 0.3169 0.4571 0.0918 0.2501 0.1917 0.106057
Std. 0.0877 0.0649 0.1569 0.0263 0.0532 0.11226 0.072471
Best 0.0485 0.1002 0.2732 0.0483 0.0513 0.05774 0.047885
Rank 3 6 7 2 4 5 1

g2

Mean 58.4757 62.4599 60.7787 24.8454 59.5805 42.1538 3.846738
Std. 7.75976 0.1216 5.3034 21.5239 7.6556 27.9025 2.706181
Best 36.0409 62.0356 42.7711 0.4898 32.6095 0.39301 0.310553
Rank 5 7 6 3 4 2 1

g3

Mean 1.8481e+2 2.7179e+2 2.7665e+2 29.0458 1.0848e+2 2.6269e+2 14.234925
Std. 59.6434 0.62334 10.3088 11.9839 56.6750 44.8106 2.840193
Best 32.5445 2.71191 2.7139e+2 14.5588 20.0492 26.5763 8.737658
Rank 6 1 7 3 4 5 2

g4

Mean 1.7713e+2 55.3556 2.3413e+2 85.196656 35.721213 46.10528 35.837850
Std. 4.2182e+2 36.00807 2.1754e+2 1.0050e+2 1.411226 26.992197 3.905932
Best 34.625063 34.6294 58.321733 34.867448 34.643162 34.745734 34.625510
Rank 1 3 7 6 4 5 2

Average rank 3.75 4.25 6.75 3.5 4 4.25 1.5
Overall rank 3 5 7 2 4 5 1
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4.4. Algorithm Performance Comparison in Constrained
Engineering Optimization Problems. We are using six
constrained engineering problems to test the capability of
the ECSOA further. )ese constrained engineering prob-
lems are very popular in the literature. )e penalty function
is used to calculate the constrained problem.)e parameters
set for all of the heuristic algorithms still adopt the parameter
setting in Table 4 of section 4.2.3. )e formulations of these
problems are available in the appendix.

4.4.1. Welded Beam Design Problem. )is is a least fabri-
cation cost problem, which has four parameters and seven
constraints. )e parameters of the structural system are
shown in Figure 11 [7]. Some of the algorithms are taken
from other literature as follows: GSA [6], MFO [7], MVO
[9], CPSO [45], and HS [46]. For the problem in this

paper, the ECSOA is compared to the PSO, SA_GA, GSA,
SCA, MVO, and SOA and provides the best-obtained
values in Table 9.

In Table 9, the ECSOA is better than GSA, MFO, MVO,
GA, CPSO, and HS algorithms in other literature.)e ECSOA
is also better than the PSO, SA_GA, GSA, SCA, MVO, and
SOA. )erefore, the ECSOA can resolve the problem.

4.4.2. Pressure Vessel Design Problem. )is is also the least
fabrication cost problem of four parameters and four
constraints. )e parameters of the structural system are
shown in Figure 12 [7]. Some of the algorithms are taken
from other literature as follows: MFO [7], ES [47], DE [48],
ACO [49], and GA [50]. For the problem, the ECSOA is
compared to the PSO, SA_GA, GSA, SCA, MVO, and SOA
and provides the best-obtained values in Table 10.
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For the problem, the ECSOA is better than the MFO, ES,
DE, ACO, and GA algorithms in other literature. )e
ECSOA is also better than the PSO, SA_GA, GSA, SCA, and
MVO. )ere is not much difference between the optimal
value of ESOA and that of SOA. )erefore, ECSOA can
resolve the problem.

4.4.3. Cantilever Beam Design Problem. )is is a problem
that is determined by five parameters and is only applied to
the scope of variables of constraints. )e parameters of the
structural system are shown in Figure 13 [7]. Some of the
algorithms are taken from other literature as follows: MFO
[7], CS [51], GCA [52], MMA [52], and SOS [53]. For the
problem, the ECSOA is compared to the PSO, SA_GA, GSA,
SCA, MVO, and SOA and provides the best-obtained values
in Table 11.

In Table 11, the ECSOA proves to be better than the
MFO, CS, GCA, MMA, and SOS algorithm in other liter-
ature. )e ECSOA is also better than the PSO, SA_GA, GSA,
SCA, and MVO. )ere is not much difference between the

optimal value of ECSOA and that of SOA. )erefore, the
ECSOA can resolve the problem.

4.4.4. Gear Train Design Problem. )is is a minimum gear
ratio problem, which has four variables and a scope of
variables of constraints. Figure 14 is the schematic diagram
[7]. Some of the algorithms are taken from other literature as
follows: MFO [7], MVO [9], CS [51], ABC [54], and MBA
[54]. For the problem in this paper, the ECSOA is compared
to the PSO, SA_GA, GSA, SCA, MVO, and SOA and
provides the best-obtained values in Table 12.

In Table 12, the ECSOA proves to be better than the
MFO, MVO, CS, ABC, and MBA algorithm in other
literature. Except for the SA_GA, GSA, and PSO, the
ECSOA is also better than the SCA, the MVO, and the
SOA. )e result of the ECSOA has reached the theoretical
best solution, although the optimum of the ECSOA is
worse than that of the SA_GA, GSA, and PSO.)e ECSOA
finds a new value. )erefore, the ECSOA can resolve the
problem.

Algorithms

g1 ANOVA of controller parameter optimization g2 ANOVA of controller parameter optimization

g3 ANOVA of controller parameter optimization g4 ANOVA of controller parameter optimization

Fi
tn

es
s v

al
ue

Fi
tn

es
s v

al
ue

Fi
tn

es
s v

al
ue

Fi
tn

es
s v

al
ue

ECSOAPSO

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

80

70

60

50

40

30

20

10

0

300

250

200

150

100

50

0

2000

1500

1000

500

0

SA-GA GSA SCA SOAMVO
Algorithms

ECSOAPSO SA-GA GSA SCA SOAMVO

Algorithms
ECSOAPSO SA-GA GSA SCA SOAMVO

Algorithms
ECSOAPSO SA-GA GSA SCA SOAMVO

Figure 9: )e ANOVA tests for PID controller parameter optimization, g1–g4.

20 Mathematical Problems in Engineering



4.4.5. 7ree-Bar Truss Design Problem. )is is a minimize
weight problem under stress, which has two variables and only
applies to the scope of the variables of constraints. Figure 15 is
the schematic diagram of the components [7]. Some of the
algorithms are taken from other literature as follows: MFO [7],
MVO [9], CS [51],MBA [54], andDEDS [55]. For the problem,
the ECSOA is compared to the PSO, SA_GA, GSA, SCA,
MVO, and SOA and provides the best values in Table 13.

In Table 13, except for the MVO and the PSO, the
ECSOA is better than the others. )e best value of the

ECSOA has reached the theoretical best solution, although
the optimum of the ECSOA is worse than that of the MVO
and the PSO.)erefore, the ECSOA can resolve the problem.

4.4.6. I-Beam Design Problem. )is is a minimize vertical
deflection problem that has four variables and a constraint.
Figure 16 is the design diagram [7]. Some of the algorithms
are taken from other literature as follows: MFO [7], CS
[51], SOS [53], IARSM [56], and ARSM [56]. For the
problem, the ECSOA is compared to the PSO, SA_GA,
GSA, SCA, MVO, and SOA and provides the best-obtained
values in Table 14.

In Table 14, except for theMFO, GSA, SOA, and SA_GA,
the ECSOA is better than the others. )e fitness of the MFO
is the best. Although the most minor vertical deviation of the
ECSOA is not as good as that of the GSA, the SOA, and the
SA_GA, it is very close to other relative optimal values.
)erefore, the ECSOA is an effective and feasible solution to
the I-beam design optimization problem.

In brief, the ECSOA proves to be better than the other
algorithms in most actual studies. )e ECSOA can resolve
these practical problems.
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Figure 11: Design parameters of the welded beam design problem.
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Table 9: Comparison results of the welded beam design problem.

Algorithm
Optimal values for variables

Optimal cost Rank
h l t b

GSA [6] 0.182129 3.856979 10.0000 0.202376 1.87995 9
MFO [7] 0.2057 3.4703 9.0364 0.2057 1.72452 5
MVO [9] 0.205463 3.473193 9.044502 0.205695 1.72645 6
CPSO [45] 0.202369 3.544214 9.048210 0.205723 1.72802 7
HS [46] 0.2442 6.2231 8.2915 0.2443 2.3807 12
PSO 0.20437461682 3.27746206207 9.03907307954 0.20573458497 1.69700648019 2
SA_GA 0.26572876298 2.77789863579 7.63164040030 0.28853829376 1.99412873170 10
GSA 0.12743403146 5.89076184871 8.05262845397 0.25908004232 2.10212926568 11
SCA 0.20112344041 3.23948182622 9.40574225336 0.20795790595 1.76704865429 8
MVO 0.20397627841 3.28970350716 9.03536739179 0.20582407425 1.69811381975 4
SOA 0.19348578918 3.489546622637 9.027709656861 0.20615302629 1.69714450048 3
ECSOA 0.18588842973 3.68013819994 9.06091584266 0.20569607018 1.69693487297 1

Th

2R

L Ts

Figure 12: Pressure vessel design problem.

Table 10: Comparison results for pressure vessel design problem.

Algorithm
Optimal values for variables

Optimal cost Rank
Ts Th R L

MFO [9] 0.8125 0.4375 42.098445 176.636596 6059.7143 8
ES [47] 0.8125 0.4375 42.098087 176.640518 6059.7456 10
DE [48] 0.8125 0.4375 42.098411 176.637690 6059.7340 9
ACO [49] 0.8125 0.4375 42.103624 176.572656 6059.0888 7
GA [50] 0.8125 0.4375 42.097398 176.654050 6059.9463 11
PSO 0.93627266112 0.41391783346 47.19019859907 123.06285131625 6317.0167340514 12
SA_GA 0.83804097369 0.41223740796 45.10610463950 142.64078515697 5931.2868373440 5
GSA 0.89533101776 0.43654377356 47.89640596198 115.96279725902 6057.9309555313 6
SCA 0.71165237901 0.39215740603 40.39056304889 200.00000000000 5903.0036698882 4
MVO 0.75462696023 0.37830685291 40.94839768196 191.64503059607 5764.4347452930 3
SOA 0.76961590364 41.5284631287 0.388196715944 183.84147207932 5735.1355906012 1
ECSOA 1.08847662958 0.52082333958 57.69587709181 47.007639941708 5736.5315190781 2

6 4 3 2 15 x

constant

Figure 13: Cantilever beam design problem.
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Table 11: Comparison results for cantilever beam design problem.

Algorithm
Optimal values for variables

Optimum weight Rank
x1 x2 x3 x4 x5

MFO [7] 5.9848717732 5.3167269243 4.4973325858 3.5136164677 2.1616202934 1.339988086 6
CS [51] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 7
GCA [52] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 8
MMA [52] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 8
SOS [53] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 3
PSO 6.007219438 5.311747232 4.505611438 3.4904346887 2.158626706 1.339963522 4
SA_GA 6.251285023 5.460509756 4.149903306 3.8032391760 1.974102742 1.350285757 11
GSA 6.020285873 5.305304583 4.512114944 3.4939372220 2.142187864 1.339969652 5
SCA 5.801308754 5.589807963 4.497563735 3.4994713866 2.262668613 1.351011196 12
MVO 6.017944991 5.336576175 4.493102726 3.4797461041 2.146292918 1.340024388 10
SOA 6.014092415 5.315583298 4.484154000 3.5033360363 2.156331174 1.339957455 1
ECSOA 5.993351697 5.332166494 4.470567257 3.5421087592 2.137286902 1.339957510 2

C

A
B D

Figure 14: Gear train design problem.

Table 12: Comparison results of the gear train design problem.

Algorithm
Optimal values for variables

Optimal gear ratio Rank
nA nB nC nD

MFO [7] 43 19 16 49 2.7009e-012 7
MVO [9] 43 16 19 49 2.7009e-012 7
CS [51] 43 16 19 49 2.7009e-012 7
ABC [54] 49 16 19 43 2.7009e-012 7
MBA [54] 43 16 19 49 2.7009e-012 7
PSO 41.2676387267 12.0000000000 12.0000000000 24.1851491677 5.321647791e-20 3
SA_GA 32.3132176916 21.0818982120 12.1649288759 55.0091556193 0 1
GSA 54.7718113206 33.5951575204 12.0000000000 51.0148628266 1.358936169e-30 2
SCA 52.6322252242 15.4114043064 23.1179418870 46.9168162381 5.431797718e-12 12
MVO 60.0000000000 12.0000000000 41.8647883833 58.0329758032 2.334953506e-16 5
SOA 60.0000000000 12.0000000000 43.2835302093 60.0000000000 2.567448245e-16 6
ECSOA 58.3864369781 18.85988647288 21.2811710819 47.6451311622 8.240738329e-19 4

A2A1

A3

1

P
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D
A1=A3

2 3

Figure 15: )ree-bar truss design problem.
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5. Conclusion

An ECSOA is presented, with a completely elastic collision,
completely inelastic collision, and non-completely elastic
collision method. According to the four-phase test of the
ECSOA from different perspectives, it improved the SOA,
the benchmark function optimization, the PID control
parameter optimization problems, and the constrained
engineering problems.

In the first phase, the SOA is improved in seven different
ways: the SOA based on parameter change (PCSOA), the SOA
based on parameter adaptive Gaussian transform (PAGTSOA),
the SOA based on Levy variation (LVSOA), the SOA based on
refraction reverse learning mechanism (RRLOOA), the SOA
based on mutual benefit factor strategy (MBFSOA), the SOA
based on Cauchy variation (CVSOA), and the SOA based on
elastic collision (ECSOA). Each improved algorithm was

optimized for the fifteen functions. )e result is that the
ECSOA is feasible in the benchmark functions. In this phase,
we consider the ranking values of 30 independent runs between
the ECSOAmean values, the standard deviation values, the best
fitness values, the best fitness values rank, the convergence
curves, and the variance tests for the global minimum values.

In the second phase, fifteen benchmark function opti-
mization problems are used to test the ECSOA further. )e
ECSOA is compared to the PSO, SA_GA, GSA, SCA, MVO,
and SOA for verification. It was observed that the ECSOA is
feasible and competitive in benchmark functions. )e sec-
ond test phase is also about the ranking values of 30 in-
dependent runs between the ECSOA mean values, standard
deviation values, best fitness values, best fitness values rank,
convergence curves, and variance tests for the global min-
imum values. In the benchmark function optimization
problems, the complexity analysis of the ECSOA is

Table 13: Comparison results of the three-bar truss design problem.

Algorithm
Optimal values for variables

Optimum weight Rank
x1 x2

MFO [7] 0.788244770931922 0.409466905784741 263.895979682 10
MVO [9] 0.78860276 0.40845307 263.8958499 8
CS [51] 0.78867 0.40902 263.9716 11
MBA [54] 0.7885650 0.4085597 263.8958522 9
DEDS [55] 0.78867513 0.40824828 263.8958434 7
PSO 0.788425434690935 0.408085596065985 263.8523465301364 2
SA_GA 0.787321758816231 0.411216143996852 263.8532291023197 5
GSA 0.761893501005708 0.493138841375638 264.8099085788021 12
SCA 0.789922169365255 0.403817724788810 263.8541885386347 6
MVO 0.788407496115311 0.408135122885127 263.8523464859033 1
SOA 0.788530250484097 0.407914579681955 263.8523714388302 4
ECSOA 0.788380881070123 0.408297927805087 263.8523494157003 3
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Figure 16: I-beam design problem.

Table 14: Comparison results for I-beam design problem.

Algorithm
Optimal values for variables

Optimum vertical deflection Rank
b h tw tf

MFO [7] 50 80 1.7647 5.0000 0.0066259 1
CS [51] 50 80 0.9 5 2.32167 0.0130747 9
SOS [53] 50 80 0.9 2.32179 0.0130741 8
IARSM [56] 48.42 79.99 0.90 2.40 0.131 11
ARSM [56] 37.05 80 1.71 2.31 0.0157 10
PSO 29.2349505988 77.7790428198 5.0000000000 3.5987373218 0.0114625520 12
SA_GA 34.9999839459 79.9999646294 4.9999802368 4.9999823841 0.0078637302 5
GSA 35.0000000001 80.0000000000 5.0000000000 5.0000000000 0.0078636959 2
SCA 34.9878089422 80.0000000000 5.0000000000 5.0000000000 0.0078658199 7
MVO 34.9998614894 80.0000000000 4.9997841775 5.0000000000 0.0078637964 6
SOA 34.9999002914 80.0000000000 5.0000000000 5.0000000000 0.0078636963 3
ECSOA 34.9997548457 79.9999999921 4.9999998123 4.9999999961 0.0078636983 3
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researched, and the overall calculational complexity of the
ECSOA is almost the same as that of the basic SOA. Wil-
coxon’s rank-sum test is studied, and the ECSOA proves to
be better than the other six algorithms. Based on the run
time comparison of seven algorithms in benchmark func-
tions, the ECSOA has relatively more program running time,
and it is not optimal in terms of running time. From the
results of the performance ratios of the average solution for
the seven algorithms, the optimization probability of the
ECSOA is the highest.

In the third phase, the four PID control parameter op-
timization models were used to test the ECSOA in practice
further. )e problems were a parameter optimization model
of second-order PID controller without time delay, a pa-
rameter optimizationmodel of PID controller with first-order
micro delay, a parameter optimization model of first-order
PID controller with significant time delay, and a parameter
optimizationmodel of high order PID controller without time
delay problems. )e third test phase also considered the
ECSOA mean values, standard deviation values, best fitness
values, best fitness values rank of 30 independent runs,
convergence curves, and ANOVA. From the results of PID
parameter optimization problems, the ECSOA was compared
to various algorithms. )e results show that the ECSOA is
effective and feasible in practical problems.

Eventually, in the last phase, six engineering problems
further tested the ECSOA. )e ECSOA was compared to
various algorithms. )e results prove that the ECSOA is the
highest competitive algorithm for the practical optimization
problems.

According to the comparative analysis of the experi-
ments, the conclusion is as follows:

(1) )e elastic collision strategy includes the completely
elastic collision, the completely inelastic collision,
and the noncomplete elastic collision. )e three
different situations of elastic collision strategy tend to
generate random seekers, increase the diversity of the
seeker, increase the search space, and avoid pre-
mature convergence.

(2) Among the eight improved algorithms (PCSOA,
PAGTSOA, ECSAO, LVSOA, RRLOOA, MBFSOA,
CVSOA, and ECSOA), the ECSOA performed best
in the benchmark functions test.

(3) Among the seven algorithms (PSO, SA_GA, GSA,
SCA, MVO, SOA, and ECSOA), the ECSOA opti-
mization benchmark function has the highest opti-
mization capability.

(4) )e ECSOA optimization benchmark functions have
almost the same calculational complexity as the SOA.

(5) )e running time of the ECSOA optimization
benchmark function is relatively high. Among the
seven algorithms compared, the running time is only
better than that of the SA_GA.

(6) )e ECSOA can solve real challenging problems,
such as the PID control parameter optimization
problems and the classical constrained engineering
optimization problems.

(7) Further improving and application can be incor-
porated into future studies. )e improved SOA and
the heuristic algorithms based on those improved
strategies can be applied not only to engineering
optimization problems, but also to path planning
problems, pattern recognition, intelligent control
and other fields, and many practical application
optimization problems that cannot be solved by
traditional methods. Except the methods used in the
paper, some of representative computational in-
telligence algorithms can be used to solve the
problems, such as the MBO, EHO, MS, SMA, and
HHO.

Appendix

A. Welded Beam Design Problem

Consider x
→

� [x1, x2, x3, x4] � [h, l, t, b], and minimize
f( x

→
) � 1.10471x2

1x2 + 0.04811x3x4(14 + x2), subject to

g1( x
→

) � τ( x
→

) − τmax ≤ 0, (A.1)

g2( x
→

) � σ( x
→

) − σmax ≤ 0, (A.2)

g3( x
→

) � x1 − x4 ≤ 0, (A.3)

g4( x
→

) � 1.10471x
2
1 + 0.04811x3x4 14 + x2( 􏼁 − 5≤ 0,

(A.4)

g5( x
→

) � 0.125 − x1 ≤ 0, (A.5)

g6( x
→

) � δ( x
→

) − δmax ≤ 0, (A.6)

g7( x
→

) � P − Pc( x
→

)≤ 0. (A.7)

Variable ranges are 0.1≤x1 ≤ 2, 0.1≤x2 ≤ 10,
0.1≤ x3 ≤ 10, and 0.1≤x4 ≤ 2, where

τ( x
→

) �

������������������������

(τ′)2 + 2τ′τ″(x2/2R) + (τ″)2
􏽱

τ′ � (P/
�
2

√
x1x2), τ″ � (MP/J), M � P(L + (x2/2))

R �

������������������

(x2
2/4) + (x1 + x3/2)2

􏽱

J � 2
�
2

√
x1x2[(x2

2/4) + (x1 + x3/2)2]􏽮 􏽯

σ( x
→

) � (6PL/x4x
2
3)

δ( x
→

) � (6PL3/Ex4x
3
3)

Pc( x
→

) � (4.013E
�������

x2
3x

6
4/36

􏽱

/L2)(1 − (x3/2L)
������
(E/4G)

􏽰
)

P� 6000 lb, L� 14 in, E� 30×106 psi, G� 12×106 psi,
τmax � 136000 psi, σmax � 30000 psi, δmax � 0.25 in

B. Pressure Vessel Design Problem

Consider x
→

� [x1, x2, x3] � [Ts,Th,R, L], and minimize
f( x

→
) � 0.6224x1x3x4 + 1.7781x2x

2
3 + 3.1661x2

1x4 + 19.84x
2
1x3, subject to
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g1( x
→

) � − x1 + 0.0193x3 ≤ 0, (B.1)

g2( x
→

) � − x2 + 0.00954x3 ≤ 0, (B.2)

g3( x
→

) � − πx
2
3x4 −

4
3
πx

3
3 + 1296000≤ 0, (B.3)

g4( x
→

) � x4 − 240≤ 0. (B.4)

Variable ranges are 0≤x1 ≤ 99, 0≤x2 ≤ 99, 10≤x3 ≤ 200,
10≤x4 ≤ 200.

C. Cantilever Design Problem

Consider x
→

� [x1, x2, x3, x4, x5], and minimize f( x
→

) �

0.0624(x1 + x2 + x3 + x4 + x5), subject to g( x
→

) � 61/x3
1 +

37/x3
2 + 19/x3

3 + 7/x3
4 + 1/x3

5 − 1≤ 0.

Variable ranges are 0.01≤ x1, x2, x3, x4, x5 ≤ 100.

D. Gear Train Design Problem

Consider x
→

� [x1, x2, x3, x4] � [nA, nB, nC, nD], and mini-
mize f( x

→
) � (1/6.931 − x3x2/x1x4)

2.
Variable ranges are 12≤x1, x2, x3, x4 ≤ 60.

E. Three-Bar Truss Design Problem

Consider x
→

� [x1, x2] � [A1, A2], and minimize f( x
→

) �

(2
�
2

√
x1 + x2)∗ l, subject to

g1( x
→

) �

�
2

√
x1 + x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0, (E.1)

g2( x
→

) �
x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0, (E.2)

g3( x
→

) �
1

�
2

√
x2 + x1

P − σ ≤ 0. (E.3)

Variable ranges are 0≤x1, x2 ≤ 1, l � 100cm, P � 2KN/
cm2, σ � 2KN/cm2.

F. I-Beam Design Problem

Consider x
→

� [x1, x2, x3, x4] � [b, h, tw, tf], and minimize
f( x

→
) � 5000/x3(x2 − 2x4)

3/12 + x1x
3
4/6 + 2x1x4(x2 −

x4/2)2, subject to g( x
→

) � 2x1x3 − x3(x2 − 2x4)≤ 0.
Variable ranges are 10≤ x1 ≤ 50, 10≤ x2 ≤ 80,

0.9≤x3 ≤ 5, 0.9≤ x4 ≤ 5.
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