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It is well accepted that suitable additional information improves the e�ciency of an estimator but at the same time, it faced the
situation of nonresponse. �e two-occasion successive sampling is useful to handle the absence of a full response from respondents.
In this present study, we have developed exponential estimators for populationmean using a subsampling nonrespondent procedure.
To show the e�cacy of the recommended estimators, several properties are derived, and respective optimum replacement strategies
are inferred. To evaluate the performance of the recommended estimators empirically, a computational study is carried out as well. It
was found that the recommended estimators outperform the existing ones under the nonresponse in successive sampling.

1. Introduction

Incomplete information is a well-known problem in sample
surveys, especially in socio-economic surveys of households,
in which individual data are collected. �e reasons for
missing information may be migration, refusal to respond,
not being available at the time of surveys performed, etc.

Jessen [1] initially encountered the problem and sug-
gested the method of estimation under the successive
sampling with partial replacement of units utilizing the
complete information at the previous occasion. Further-
more, Patterson [2]; Rao and Graham [3]; Feng and Zou [4]
studied the properties of di�erent estimators under suc-
cessive sampling. Biradar and Singh [5] and Singh and
Vishwakarma [6]; Singh and Pal [7]; Sanahulla et al. [8];
Javaid et al. [9] and Pal et al. [10] used additional infor-
mation for estimation under successive sampling.

�e concept used in this paper is nonresponse. First time
during the data collection, Hansen and Hurwitz [11] realize the
problem of nonresponse at the estimation stage. He took this

problem forward and realizes that while taking the subsamples
from the nonrespondents group e�ect of nonresponse can be
reduced. Furthermore, he developed the estimators utilizing
the information from response and nonresponse groups to-
gether which was well accepted in the sampling theory.

Later on, several researchers including Chaudhary et al.
[12]; Singh and Priyanka [13], and Pal and Singh [14]
combined the concept of successive sampling and nonre-
sponse and used it for estimation of population mean on
current occasion on two-occasion successive sampling.
Under di�erent practical situations using the auxiliary
variable, the aforesaid authors suggested some estimators
when nonresponse was observed on the current occasion in
two-occasion successive sampling.

�e remainder of this paper is organized as follows: in
section 2, terminology and notations are presented further the
resent estimators and proposed estimators along with their
properties are in sections 3 and 4, respectively. Section 5
provides the computational study, and concluding remarks
are o�ered in section 6.
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2. Terminology and Notations

Let Ω � (Ω1,Ω2, . . . ,ΩN) be a finite population of N units,
which has been sampled over two occasions. +e character
under study is denoted byx(y) on the first (second) occasion. It
is assumed that information on an ancillary variable z (with
unknown population mean), which is positively correlated with
the study variable, is readily available and almost stable over
both the occasions. A simple random sample (without re-
placement) sn of n units is drawn on the first occasion. A
random subsample sm ofm � nλ units is retained (matched) for
its use on the second occasion. We assume that there is
nonresponse at the current occasion, so that the population can
be divided into two classes, those who will respond at the first
attempt and those who will not respond. Let the sizes of these
two classes be N1 and N2, respectively. At the current (second)
occasion, a simple random sample (without replacement) sυ of
υ � (n − m) � nμ units is drawn afresh from the entire pop-
ulation so that the sample size on the current (second) occasion
is also n. λ and μ, (λ + μ � 1) are the fractions of matched and
fresh samples, respectively, at the current (second) occasion.We
assume that in the unmatched portion of the sample on the
current (second) occasion, υ1 units respond and υ2 units do not
respond. Let sυ1 ∩ sυ and sυ2 ∩ sυ. Let υ2h denote the size of the
subsample sυ2h (of sυ2) drawn from the nonresponding units in
the unmatched (fresh) portion sυ2 of the sample (sυ) on the
current (second) occasion (i.e., from the υ2 nonrespondents, on
SRSWOR of υ2h units is selected with the inverse sampling rates
f2, where υ2h � (υ2/f2), f2 > 1.

+e notations used in the research paper are shown in
the Table 1.

3. Recent Developments of Estimators

For estimating the current population mean Y, Singh et al.
[15, 16] have given the estimators of set sυ as

T1υ � y
∗
υ exp

Z − z
∗
υ( 

Z + zυ( 
 ,

T2υ � y
∗
υ exp

Z − zυ( 

Z + z
∗
υ( 

 .

(1)

Singh et al. [15] also gave the estimators of set sm for
estimating the current population mean Y as

Tm � ym

Z

zm

 exp
xn − xm( 

xn + xm( 
 . (2)

Singh et al. [15] suggested the following estimators of
population mean Y at the current (second) occasion by
combining the estimators of sets sυ and sm as

Ti � ϕiTiu + 1 − ϕi( Tim; (i � 1, 2), (3)

where ϕi(0≤ ϕi ≤ 1); (i � 1, 2) are unknown constants
(scalars) to be determined under certain criteria. For detailed
properties of the estimators Ti(i � 1, 2), readers are referred
to Singh et al. [15].

4. New Development of Estimators

4.1. Estimators Based on the Unmatched Portion of the Ample
su. Looking the formulation of the estimators T1υ given by
(1) due to Singh et al. [15], it is clear that the estimator T1υ is
defined in the situation, in which information on the aux-
iliary variable z is obtained for all the sample units υ (drawn
afresh from the entire population at the second occasion),
and the population mean Z of the auxiliary variable z is
known, but some sample units fail to supply information on
the study variable y. We note that, when suggesting the
estimators for the population mean Y on the current
(second) occasion, Singh et al. [15] used only information on
the sample mean zυ of the auxiliary variable z. However, one
can also obtain the unbiased estimator z∗υ of the population
mean Z (without any extra effort) while in the process of
obtaining the unbiased estimator y∗υ of the population mean
Y. +us, in this situation, where information on the auxiliary
variable z is obtained for all the sample units υ, we have two
unbiased estimators z∗υ and zυ, of the population mean Z of
the auxiliary variable z (see, Singh and Kumar [17]). With
this background, we suggest the following estimators (using
z∗υ and zυ together) for the population mean Y on the
current (second) occasion based on unmatched portion of
the sample Sυ of the size υ.

P1υ � y
∗
υ exp

Z − zυ

Z + zυ
 exp

Z − z
∗
υ

Z + z
∗
υ

 ,

P2υ � y
∗
υ exp

2βyz

Rz

Z − zυ( 

Z + zυ( 
⎛⎝ ⎞⎠exp

4βyz(2)

Rz

Z zυ − z
∗
υ( 

Z + zυ(  Z + z
∗
υ( 

⎛⎝ ⎞⎠,

(4)

where (β
∗
yz � s∗yz/s∗ 2z , β

∗
yz(2) � s∗yz(2)/s

∗2
z(2)) are, respectively,

the estimates of (β∗yz(2), β
∗
yz(2)),
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1
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zυ2h �
1
υ2h( 

  
sυ2h

zj
⎛⎝ ⎞⎠.

(5)
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For the simplicity in calculation, Reddy (1974, [18]) and
Ruiz Espejo [19] initially assumed that the coefficient of
variation of study and auxiliary variables are equal. It is
further assumed that under incomplete information, coef-
ficient of variation of class is equal to coefficient of variation
of population. Following this, we state that

Theorem 1. 0e MSE of the estimator P1υ to the fda is given
by

MSE P1υ(  � S
2
y 2λυ 1 − ρyz  + θυ

5
4

  − ρyz(2)  . (6)

Theorem 2. 0e MSE of the estimator P2υ to the fda is given
by

MSE P2υ(  � S
2
y λυ 1 − ρ2yz  + θυ 1 − ρ2yz(2)  . (7)

Remark 1. +e MSE of the estimators P1υ and P2υ is given
while considering the assumption made by Singh et al.
[15, 16] that the population correlation coefficient is equal to
the nonresponse class correlation coefficient (ρyz(2) � ρyz):

MSE P1υ(  � S
2
y 2λυ 1 − ρyz  + θυ

5
4

  − ρyz  ,

MSE P2υ(  � S
2
y λυ + θυ(  1 − ρ2yz  .

(8)

4.2. EstimatorsBased on theMatchedPortion of the Sample sm.
It is assumed that there is no nonresponse on the first oc-
casion as well on the matched portion of the sample. Under
the above assumption, we consider the following estimators
based on the matched sample sm of size m:

P1m � ym + byz(m) Z − zm(  exp
xn − xm( 

xn + xm( 
 , (9)

where byz(m) are the estimates of the population regression
coefficients βyz, respectively, based on the sample of size m.

To the fda, the MSE of the proposed estimators P1m is
given by

MSE P1m(  � Y
2 1

m
−
1
N

 C
2
y 1 − ρ2yz  +

1
m

−
1
n

 
1
4
C
2
x − ρyxCyCx + ρyzρxzCyCx  .

(10)

Under the assumption Cx � Cz � Cy, the MSEs (10)
reduce to

MSE P1m(  � S
2
y

1
m

−
1
N

  1 − ρ2yz  +
1
m

−
1
n

 
1
4

− ρyx + ρyzρxz  .

(11)

4.3. Covariance between su and sm. +e covariance between
(P1u, P1m) is given by

C11 � Cov P1u, P1m(  � −
S
2
y

N
1 − ρ2yz . (12)

It is to be noted that the expression (11) has been derived
under the assumptions Cx � Cz � Cy, ρyz � ρyz(2), and
Cy � Cy(2).

C21 � Cov P2u, P1m(  � −
S
2
y

N
1 − ρ2yz . (13)

4.4. Linear Combination of Estimators. We have suggested
the following estimators for estimating the population mean
Y at the current occasion by combining the different esti-
mators at the matched and unmatched portions of the
samples, respectively:

P1 � ϕ1P1u + 1 − ϕ1( P1m,

P2 � ϕ2P2u + 1 − ϕ2( P1m,
(14)

where ϕi(1≤ ϕi ≤ 1) is suitably chosen constant to be de-
termined under certain assumptions.

4.5. MSEs of the Estimators P1 and P2. +e MSEs of the
estimators are derived up to fda, and under the assumption,
Cx � Cz � Cy, ρyz � ρyz(2), and Cy � Cy(2).

Theorem 3. MSEs of Pi(i � 1, 2) to the fda are obtained as

MSE P1(  � ϕ21MSE P1u(  + 1 − ϕ1( 
2MSE P1m( 

+ 2ϕ1 1 − ϕ1( C11,
(15)

MSE P2(  � ϕ22MSE P2u(  + 1 − ϕ2( 
2MSE P1m( 

+ 2ϕ2 1 − ϕ2( C21.
(16)

4.6. MMSEs of the Estimators Pi(i � 1, 2). Since the MSE of
the estimators Pi(i � 1, 2) in (15) and (16) is functions of
unknown constants ϕi’s (i � 1, 2), therefore, the MSEs are
minimized with respect to ϕi(i � 1, 2), respectively, for

ϕ1(opt) �
MSE P1υ(  − C11

MSE P1υ(  + MSE P1m(  − 2C11( 

�
1 − μ1(  Z0(1) − μ1f κ5 − κ0(  

Z0(1) + μ1Z1(1) + μ21Z2(1) 
,

(17)

ϕ2(opt) �
MSE P2υ(  − C21

MSE P2υ(  + MSE P1m(  − 2C21( 
,

�
1 − μ2( Z0(2)

Z0(2) + μ2Z1(2) + μ21Z2(2) 
.

(18)
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and thus, the resultingMMSEs of the estimators Pi(i � 1, 2)
are given as

MMSE P1(  �
MSE P1υ( MSE P1m(  − C

2
11

MSE P1υ(  + MSE P1m(  − 2C11( 

�
ƛ0(1) + μ2ƛ1(1) + μ22ƛ2(1) 

Z0(1) + μ2Z1(1) + μ22Z2(1) 

S
2
y

n
,

(19)

MMSE P2(  �
MSE P2υ( MSE P1m(  − C

2
21

MSE P2υ(  + MSE t1m(  − 2C21( 

�
ƛ0(2) + μ2ƛ1(2) + μ22ƛ2(2) 

Z0(2) + μ2Z1(2) + μ22Z2(2) 

S
2
y

n
.

(20)

where κ0 � 2(1 − ρyz), κ1 � Θ(f2 − 1)((5/4) − ρyz),
κ2 � ((1/4) − ρyx + ρxz),κ3 � ((5/4) − ρyz), κ4 � (1 − ρ2yz),
κ5 � ((1/4) − ρyz + ρyzρxz), κ6 � [1 + Θ(f2 − 1)], Z0(1) �

(κ0 + κ1), Z1(1) � [(1 − f)(κ4 − κ0) − κ1], Z2(1) � [κ5−
fκ4 + fκ0], Z0(2) � κ4κ6, Z1(2) � κ4(1 − κ6), Z2(2) � κ5,
ƛ0(1) � (1 − f)(κ0 + κ1)κ4, ƛ1(1) � [(κ0 + κ1)κ5 + fκ1κ4−
f2κ4(κ4 − κ0)], ƛ2(1) � [f2κ4(κ4 − κ0) − fκ0κ5], ƛ0(2) �

(1 − f)κ24κ6, ƛ1(2) � [κ5κ6 + fκ4(κ6 − 1)]κ4, ƛ2(2) � − fκ4κ5

4.7. Optimum Replacement Policy. It is observed from (18)
and (19) that the MMSEs of the estimators Pi(i � 1, 2) are
the functions of μi(i � 1, 2) (functions of sample to be drawn
afresh at the second occasion); therefore, the optimum
values of μi are obtained to estimate the population mean Y

with minimum precision and lowest cost. To obtain the
optimum values of μi(i � 1, 2), we minimize the MMSEs of
the proposed estimators Pi(i � 1, 2) given in (18) to (19),
respectively, with respect to μi(i � 1, 2) which result in
quadratic equations in μi (i � 1, 2), and the respective sal-
utations of μi(i � 1, 2) say μi(i � 1, 2) are given as follows:

ψ12(1)μ
2
1 + 2ψ02(1)μ1 + ψ01(1) � 0, (21)

μ1 �
− ψ02(1) ±

������������������

ψ2
12(1) − ψ01(1)ψ12(1) 



D12(1)

, (22)

ψ12(2)μ
2
2 + 2ψ02(2)μ2 + ψ01(2) � 0, (23)

μ2 �
− ψ02(2) ±

������������������

ψ2
12(2) − ψ01(2)ψ12(2) 



ψ12(2)

, (24)

where

ψ01(1) � Z0(1)ƛ1(1) − ƛ0(1)Z1(1) ,ψ02(1) � Z0(1)ƛ2(1) − ƛ0(1)Z2(1) ,

ψ12(1) � Z1(1)ƛ2(1) − ƛ1(1)Z2(1) ,ψ01(2) � Z0(2)ƛ1(2) − ƛ0(2)Z1(2) ,

ψ02(2) � Z0(2)ƛ2(2) − ƛ0(2)Z2(2) ,ψ12(2) � Z1(2)ƛ2(2) − ƛ1(2)Z2(2) .

(25)

From (21) and (22), it is observed that real values of
μi(i � 1, 2) exist, iff the quantities under square roots are
greater than or equals to zero, and for any combinations ρyx,
ρyz, and ρxz, which satisfy the conditions of real situations,
two real values of μi(i � 1, 2) are possible, and hence, while
choosing the values of μi(i � 1, 2), it should be remembered
that 0≤ μi ≤ 1(i � 1, 2). All other values of μi(i � 1, 2) are
inadmissible. Substituting the admissible values of μi (say)
μ(0)

i (i � 1, 2) from (21) and (22) in (17) and (18), respec-
tively, we have the optimum values of mean squared errors
of Pi(i � 1, 2) which are shown as follows:

MMSE P
(0)
1 opt �

ƛ0(1) + μ(0)
1 ƛ1(1) + μ(0)2

1 ƛ2(1) 

Z0(1) + μ(0)
1 Z1(1) + μ(0)2

1 Z2(1) 

S
2
y

n
,

MMSE P
(0)
2 opt �

ƛ0(2) + μ(0)
2 ƛ1(2) + μ(0)2

2 ƛ2(2) 

Z0(2) + μ(0)
2 Z1(2) + μ(0)2

2 Z2(2) 

S
2
y

n
.

(26)

4.8. Efficiency Comparisons. +e percent relative losses in
efficiencies of the estimators Pi(i � 1, 2) are obtained with
respect to the similar estimator and natural successive
sampling estimator when the nonresponse no observed on
any occasion. +e estimator Φ1is for complete information
and under the similar assumption as estimator Pi(i � 1, 2).
Whereas the estimator Φ2 is natural estimator under suc-
cessive sampling, given by

Table 1: Notations used and their meaning.

Notations Meaning
X, Y, Z Population mean of the study variable y and two auxiliary variables x, z
ym, yυ, yυ1, yυ2h

, yn, yn1
, yn2h

Sample means of the study variable under different situations
xn, xm Sample mean of auxiliary variable x
zm, zυ, zυ1, zυ2h

Sample mean of auxiliary variable z
ρyx, ρxz, ρyz Population correlation coefficients
ρ2yz Population correlation coefficient under nonresponse
S2x, S2y, S2z Population variances of the study and auxiliary variables
S22y, S22z Population variances of y and z under nonresponse
Θ � (N2/N) Proportion of nonresponding population to the total population at second occasion
y∗υ � (υ1yυ1 + u2yυ2h)/υ Hansen and Hurwitz estimator for study variable y
z∗υ � (υ1yυ1 + u2yυ2h)/υ Hansen and Hurwitz estimator for study variable x for the unmatched sample on the current occasion
f2(� υ2/υ2h) Correction factor under nonresponse
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Table 2: Percent relative losses L11 and L12 with respect to Φ1 and Φ2 for f � 0.1.

Θ ρyx ρyz

f2 � 1.5 f2 � 2.0
μ(0)
1 L11 L12 μ(0)

1 L11 L12

0.10

0.50

0.80 0.78 − 32.63 − 119.12 0.90 − 26.42 − 108.85
0.85 0.63 − 49.64 − 176.93 0.72 − 42.89 − 164.44
0.90 0.53 − 79.78 − 277.20 0.60 − 70.70 − 258.16
0.95 0.43 − 152.55 − 510.50 0.49 − 134.20 − 466.16

0.60

0.80 0.78 − 28.02 − 110.43 0.90 − 22.03 − 100.58
0.85 0.63 − 44.13 − 165.96 0.72 − 37.62 − 153.96
0.90 0.53 − 72.77 − 262.25 0.60 − 64.05 − 243.96
0.95 0.43 − 142.10 − 486.31 0.49 − 124.52 − 443.73

0.70

0.80 0.78 − 23.16 − 99.14 0.90 − 17.39 − 89.81
0.85 0.63 − 38.33 − 151.69 0.72 − 32.09 − 140.33
0.90 0.53 − 65.44 − 242.81 0.60 − 57.09 − 225.51
0.95 0.43 − 131.22 − 454.85 0.49 − 114.42 − 414.55

0.80

0.80 0.78 − 18.01 − 84.13 0.90 − 12.48 − 75.51
0.85 0.63 − 32.26 − 132.71 0.72 − 26.30 − 122.22
0.90 0.53 − 57.83 − 216.97 0.60 − 49.86 − 200.97
0.95 0.43 − 119.99 − 413.02 0.49 − 104.01 − 375.76

0.15

0.50

0.80 0.84 − 29.55 − 114.03 1.02 − 20.03 − 98.30
0.85 0.67 − 46.26 − 170.69 0.80 − 36.15 − 151.98
0.90 0.56 − 75.19 − 267.58 0.66 − 62.02 − 239.96
0.95 0.46 − 143.08 − 487.61 0.55 − 118.03 − 427.07

0.60

0.80 0.84 − 25.05 − 105.55 1.02 − 15.87 − 90.45
0.85 0.67 − 40.88 − 159.96 0.80 − 31.14 − 142.00
0.90 0.56 − 68.36 − 253.01 0.66 − 55.71 − 226.48
0.95 0.46 − 133.02 − 464.33 0.55 − 109.01 − 406.18

0.70

0.80 0.84 − 20.30 − 94.52 1.02 − 11.46 − 80.23
0.85 0.67 − 35.22 − 146.01 0.80 − 25.87 − 129.01
0.90 0.56 − 61.22 − 234.07 0.66 − 49.10 − 208.96
0.95 0.46 − 122.55 − 434.04 0.55 − 99.62 − 379.02

0.80

0.80 0.84 − 15.27 − 79.86 1.02 − 6.80 − 66.64
0.85 0.67 − 29.28 − 127.47 0.80 − 20.35 − 111.75
0.90 0.56 − 53.80 − 208.89 0.66 − 42.24 − 185.67
0.95 0.46 − 111.74 − 393.79 0.55 − 89.92 − 342.91

0.20

0.50

0.80 0.90 − 26.42 − 108.85 1.14 − 13.56 − 87.61
0.85 0.72 − 42.89 − 164.44 0.89 − 29.51 − 139.68
0.90 0.60 − 70.70 − 258.16 0.73 − 53.76 − 222.62
0.95 0.49 − 134.20 − 466.16 0.60 − 103.66 − 392.32

0.60

0.80 0.90 − 22.03 − 100.58 1.14 − 9.62 − 80.18
0.85 0.72 − 37.62 − 153.96 0.89 − 24.74 − 130.18
0.90 0.60 − 64.05 − 243.96 0.73 − 47.77 − 209.84
0.95 0.49 − 124.52 − 443.73 0.60 − 95.23 − 372.81

0.70

0.80 0.90 − 17.39 − 89.81 1.14 − 5.46 − 70.51
0.85 0.72 − 32.09 − 140.33 0.89 − 19.72 − 117.83
0.90 0.60 − 57.09 − 225.51 0.73 − 41.50 − 193.21
0.95 0.49 − 114.42 − 414.55 0.60 − 86.46 − 347.44

0.80

0.80 0.90 − 12.48 − 75.51 1.14 − 1.04 − 57.66
0.85 0.72 − 26.30 − 122.22 0.89 − 14.47 − 101.41
0.90 0.60 − 49.86 − 200.97 0.73 − 34.99 − 171.11
0.95 0.49 − 104.01 − 375.76 0.60 − 77.40 − 313.71
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Table 3: Percent relative losses L21 and L22 with respect to Φ1 and Φ2 for f � 0.1.

Θ ρyx ρyz

f2 � 1.5 f2 � 2.0
μ(0)
2 L21 L22 μ(0)

2 L21 L22

0.10

0.50

0.80 0.58 − 41.77 − 134.22 0.69 − 37.11 − 126.52
0.85 0.52 − 57.61 − 191.68 0.59 − 52.94 − 183.04
0.90 0.46 − 88.47 − 295.43 0.50 − 83.28 − 284.56
0.95 0.38 − 169.46 − 551.39 0.40 − 162.49 − 534.54

0.60

0.80 0.58 − 36.85 − 124.94 0.69 − 32.35 − 117.55
0.85 0.52 − 51.80 − 180.12 0.59 − 47.30 − 171.82
0.90 0.46 − 81.12 − 279.76 0.50 − 76.14 − 269.32
0.95 0.38 − 158.31 − 525.57 0.40 − 151.63 − 509.39

0.70

0.80 0.58 − 31.65 − 112.87 0.69 − 27.33 − 105.87
0.85 0.52 − 45.70 − 165.09 0.59 − 41.38 − 157.24
0.90 0.46 − 73.43 − 259.38 0.50 − 68.66 − 249.50
0.95 0.38 − 146.70 − 492.00 0.40 − 140.32 − 476.69

0.80

0.80 0.58 − 26.15 − 96.82 0.69 − 22.00 − 90.35
0.85 0.52 − 39.31 − 145.11 0.59 − 35.18 − 137.84
0.90 0.46 − 65.46 − 232.29 0.50 − 60.91 − 223.15
0.95 0.38 − 134.72 − 447.37 0.40 − 128.65 − 433.22

0.15

0.50

0.80 0.64 − 39.48 − 130.44 0.80 − 32.17 − 118.36
0.85 0.55 − 55.28 − 187.38 0.65 − 48.20 − 174.27
0.90 0.48 − 85.86 − 289.97 0.54 − 78.20 − 273.88
0.95 0.39 − 165.93 − 542.87 0.42 − 155.82 − 518.42

0.60

0.80 0.64 − 34.64 − 121.31 0.80 − 27.58 − 109.71
0.85 0.55 − 49.56 − 175.99 0.65 − 42.74 − 163.40
0.90 0.48 − 78.62 − 274.52 0.54 − 71.25 − 259.07
0.95 0.39 − 154.93 − 517.39 0.42 − 145.24 − 493.92

0.70

0.80 0.64 − 29.53 − 109.43 0.80 − 22.74 − 98.46
0.85 0.55 − 43.55 − 161.18 0.65 − 37.00 − 149.27
0.90 0.48 − 71.04 − 254.42 0.54 − 63.98 − 239.80
0.95 0.39 − 143.47 − 484.26 0.42 − 134.22 − 462.05

0.80

0.80 0.64 − 24.11 − 93.64 0.80 − 17.60 − 83.50
0.85 0.55 − 37.25 − 141.49 0.65 − 30.99 − 130.48
0.90 0.48 − 63.17 − 227.70 0.54 − 56.44 − 214.18
0.95 0.39 − 131.65 − 440.22 0.42 − 122.84 − 419.68

0.20

0.50

0.80 0.69 − 37.11 − 126.52 0.90 − 27.04 − 109.89
0.85 0.59 − 52.94 − 183.04 0.71 − 43.44 − 165.46
0.90 0.50 − 83.28 − 284.56 0.58 − 73.22 − 263.44
0.95 0.40 − 162.49 − 534.54 0.44 − 149.45 − 503.01

0.60

0.80 0.69 − 32.35 − 117.55 0.90 − 22.63 − 101.57
0.85 0.59 − 47.30 − 171.82 0.71 − 38.15 − 154.93
0.90 0.50 − 76.14 − 269.32 0.58 − 66.47 − 249.04
0.95 0.40 − 151.63 − 509.39 0.44 − 139.13 − 479.11

0.70

0.80 0.69 − 27.33 − 105.87 0.90 − 17.98 − 90.75
0.85 0.59 − 41.38 − 157.24 0.71 − 32.60 − 141.25
0.90 0.50 − 68.66 − 249.50 0.58 − 59.40 − 230.31
0.95 0.40 − 140.32 − 476.69 0.44 − 128.38 − 448.03

0.80

0.80 0.69 − 22.00 − 90.35 0.90 − 13.04 − 76.37
0.85 0.59 − 35.18 − 137.84 0.71 − 26.78 − 123.07
0.90 0.50 − 60.91 − 223.15 0.58 − 52.07 − 205.41
0.95 0.40 − 128.65 − 433.22 0.44 − 117.29 − 406.72
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Φj � ψjΦju + 1 − ψj Tjm; (j � 1, 2), (27)

where Φ1u � yu exp(Z − zu/Z + zu), Φ2u � yu,

T1m � P1m

� ym

Z

zm

 exp
xn − xm

xn + xm

 , T2m � ym + byx(m) xn − xm( .

(28)

Proceeding in similar manner as discussed for the es-
timators Pi(i � 1, 2), the optimum mean squared errors of
the estimators Φj, (j � 1, 2) are derived as

Φj � ψjΦju + 1 − ψj Tjm,

MMSE Φ(0)
1 opt �

A3 + μ∗ (0)
1 A2 + μ∗ (0)2

1 A1 

B3 + μ∗ (0)
1 B2 + μ∗ (0)2

1 B1 

S
2
y

n
,

MMSE Φ(0)
2 opt �

1
2

1 +

��������

1 − ρ2xy 



  − f 
S
2
y

n
,

(29)

where μ∗ (0)
1 � − Q2 ±

���������

Q2
2 − Q1Q3



/Q1 (fraction of the
sample for the estimator Φ1),

Q1 � B1A2 − A1B2, Q2 � B1A3 − A1B3, Q3 � B2A3 − A2B3,

A1 �
9
16

 f
2κ20 − f

2κ0κ3 − fκ2κ3 ,

A2 � fκ0κ3 + κ2κ3 − f(1 − f)κ0κ3 −
9
16

 f
2κ20 ,

A3 � (1 − f)κ0κ3,

B1 � fκ0 + κ2 −
3
2

 fκ0 + fκ3 ,

B2 � (1 − f)κ0 − (1 + f)κ3 +
3
2

 fκ0 ,

B3 � κ3.
(30)

Remark 2. For comparison of estimators Pi and Φj, it was
advisable by Cochran [3] & Feng and Zou [4] to assume the
intraclass correlation coefficient equal, that is, ρxz � ρyz.

5. Numerical Illustrations

For N � 5000, n � 500 and different choices of ρyx

and ρyz, Tables 2 & 3 give the optimum values of μ(0)
i

and percent relative losses Lij, (i � 1, 2; j � 1, 2) in the
precision of estimators Pi(i � 1, 2) with respect to Φj,
(j � 1, 2).

+e percent relative losses in the precision of estimators
Pi(i � 1, 2) with respect to Φj, (j � 1, 2), under their re-
spective optimality conditions are given by

Lij �
MMSE P

(0)
i opt − MMSE Φ(0)

i opt

MMSE P
(0)
i opt

, (i � 1, 2; j � 1).

(31)

+e following inferences may draw from Tables 2 and 3.
+e above Table 2 depicts that

(i) Considering the constant value of Θ, f2, and ρyz,
we observe that values of μ(0)

1 , L11, and L12 decrease
as ρyx increases. In other words, the intraclass
correlation coefficient between y and z is inversely
proportional to the new sample. +at means the
efficacy of the estimators under nonresponse de-
pends positively on the auxiliary information. +is
attitude of the estimators is very important and
extremely desirable.

(ii) Considering the constant value of Θ, f2, and ρyz,
we observe that values of μ(0)

2 remain the same
whereas L11 and L12 increase as ρyx increases.

(iii) Considering the constant value of Θ, ρyx, and ρyz,
we observe that values of μ(0)

2 , L11, and L12 increase
as f2 increases.

(iv) Considering the constant value of f2, ρyx, and ρyz,
we observe that values of μ(0)

2 , L11, and L12 increase
as Θ increases. Table 3 depicts that nonresponse
rate and sample size at current occasion are di-
rectly proportional and therefore the cost of the
survey increases as well.

(v) Considering the constant value of Θ, f2, and ρyz,
we observe that values of μ(0)

2 , L21, and L22 decrease
as ρyx increases. In other words, the intraclass
correlation coefficient between y and z is inversely
proportional to the new sample. +at means the
efficacy of the estimators under nonresponse de-
pends positively on the auxiliary information. +is
attitude of the estimators is very important and
extremely desirable.

(vi) Considering the constant value of Θ, f2, and ρyz,
we observe that values of μ(0)

2 remain the same
whereas L21 and L22 increase as ρyx increases.

(vii) Considering the constant value of Θ, ρyx, and ρyz,
we observe that values of μ(0)

2 , L21, and L22 increase
as f2 increases.

(viii) Considering the constant value of f2, ρyx, and ρyz,
we observe that values of μ(0)

2 , L21, and L22 increase
as Θ increases. In other words, the nonresponse
rate and sample size at the current occasion are
directly proportional; consequently, the cost of the
survey increases as well.

6. Conclusions

In this paper, we have proposed exponential type estimators
for estimating the population mean under the unavailability
of full response in two-occasion successive sampling using
the additional information. An extensive theoretical and
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computational study led to the conclusion that both the
proposed estimators are better than the usual estimators
available in the literature, and moreover, the estimator P2 is
better than the estimator P1 between the self-comparison.
+erefore, the authors recommend the use of estimator P2
over the other estimators considered in this paper in
practice. Furthermore, the researchers can use the compo-
sition of the proposed estimators for their use [20, 21].
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