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Te short-time linear canonical transform (STLCT) is a novel time-frequency analysis tool, which has attracted some attention
recently. However, its applications in signal processing are limited because the time-frequency properties of the STLCTare still little
known.Most existing studies focus onmathematical properties rather than time-frequency properties in signal processing. To handle
this problem, frst, we investigate some basic time-frequency properties such as 2-D resolution of the time-frequency plane, the
STLCTdomain support, computation of the STLCT, etc by generalizing the short-time Fourier transform to the STLCT.Ten, based
on these derived properties, we fnd that the Gaussian window is optimal window of the STLCT. Signal separation verifed the results.

1. Introduction

Te short-time Fourier transform (STFT) has been the
widely used as time-frequency analysis tool for many years.
It can extract the characteristic behavior of a signal in joint
time-frequency domains. Recently, the linear canonical
transform (LCT), a generalization of the traditional Fourier
transform (FT) and well-known fractional Fourier trans-
form (FRFT), has received much attention in signal pro-
cessing [1–8]. Te LCT is more fexible because it has a total
of four free parameters and one constraint. Many theoretical
issues of the FT and FRFT have been extended to the LCT,
which has found many research results in signal processing
[9–22]. But the LCT fails in locating frequency-domain
contents due to its global kernel function. For some practical
applications, we want to know not only the LCT frequency
contents but also how they change by time. For this reason,
Kou and Xu [23] frst systematically introduced the short-
time linear canonical transform (STLCT), in which two
mathematical theorems were developed.

Temotivation of this paper is to study the time-frequency
properties of the STLCT, especially the optimal window se-
lection. Since the STLCT is a generalized form of classical

transformation, such as the STFT, its possible applications
theoretically include nonstationary signal fltering, radar signal
analysis, and so on. Te premise of these applications is the
property of the STLCT, such as sampling theorem, calculation
algorithm, and so on [18]. To our knowledge, few achievements
on time-frequency properties associated with the STLCT have
been reported.Tus, we account for time-frequency properties
of the STLCT from the point of view of signal processing.
Serving as a novel time-frequency analysis tool, window se-
lection and applications of the STLCT are still little known
because of the following two reasons.

Te frst reason is most related work focused more on its
mathematical theories than time-frequency properties. For
instance, in [23], Kou and Xu proposed the STLCT and
developed many useful theorems including covariance
property, orthogonality property, and limit theorem in
function space. Ten, in [24], they also proved the
Paley–Wiener theorems and the uncertainty principles for
the (inverse) windowed linear canonical transform. Subse-
quently, the STLCT has also received attention by scholars.
In [25], Zhang addressed a sampling theorem for the STLCT
by means of generalized Zak transforms associated with the
LCT and investigated biorthogonal condition of series
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expansion of the STLCT. Besides, Guanlei et al. discussed the
uncertainty inequation relation in two STLCTdomains [26].
Recently, in [27], we studied the uncertainty principle in one
STLCT domain based on the defnition of time width and
frequency bandwidth of its time-frequency plane. Most
studies paid more attention to its mathematic properties. We
study time-frequency performance of the STLCT in this
paper. In fact, the LCT has been introduced to classic time-
frequency analysis tool, such as Wigner distribution (WD)
and STFT [28–30]. For instance, in [29], Zhang and Luo
considered the time-frequency tool and its application using
the Gaussian windowed STFTand LCT. Te performance of
frequency location depends on sliding window of the STFT.

Te second issue is that there are few studies on the time-
frequency properties of the STLCT. As a novel time-fre-
quency analysis tool, these basic properties are prerequisites of
applications. For example, the principle of selecting the op-
timal window function was studied in [31]. So, we want to
know the upper bound of 2-D resolution of the time-fre-
quency plane and theminimum STLCTdomain support.Tat
is to say, how to select an appropriate window will have an
impact on performance of the STLCT. For practical appli-
cations, digital computation of the STLCT is also needed to
study. Besides, some other time-frequency features such as
inverse STLCT, time delay, and frequency shift properties are
necessary supplementary principles to its applications.

Te contribution of this paper is twofold. First, we de-
velop the time-frequency properties of the STLCT by
generalizing the short-time Fourier transform (STFT) to the
STLCT by substituting the FT kernel function with the LCT
kernel function, including linearity, time delay and fre-
quency shift, inverse STLCT, etc. Second, since performance
of the STLCT depends largely on the window function, we
prove that the Gaussian window function is optimal. Te
Gaussian-windowed STLCT has both maximum 2D reso-
lution and minimum time-frequency domain support.
Furthermore, performance of the STLCT afected by dif-
ferent windows is studied by signal separation.

Our paper is organized as follows. In Section 2, the LCT
and the STLCT as well as the previous works about time-
frequency analysis are reviewed. In Section 3, framework of
the STLCT is established, including the idea of the STLCT,
inverse STLCT, 2-D resolution of the time-frequency plane,
digital computation algorithm, and STLCTdomain support.
In Section 4, an optimal STLCT is developed and some
potential applications are discussed. In Section 5, we
summarize the paper and make a future direction.

2. Preliminaries

2.1. Linear Canonical Transform. Te linear canonical trans-
form (LCT) of a signal f(t) with parameter A is defned as [3]

LA(f)(u) �
􏽚
∞

− ∞
OA(t, u)f(t)dt, b≠ 0,

��
d

√
e

j(cd/2)u2
f(du), b � 0,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where a, b, c, and d are real numbers satisfying a d − bc � 1.
Te kernel function of the LCT is defned as

OA(t, u) �
1

����
j2πb

􏽰 e
j/2b at2− 2tu+du2( )b≠ 0. (2)

Te LCT satisfes the additivity property as follows:

L(e,f,g,h)[f(t)] � L a2 ,b2 ,c2 ,d2( ) L a1 ,b1 ,c1 ,d1( )f(t)􏼔 􏼕, (3)

where

e f

g h
􏼢 􏼣 �

a2 b2

c2 d2
􏼢 􏼣

a1 b1

c1 d1
􏼢 􏼣. (4)

Tus, inverse LCTcan be deduced through the additivity
property, particularly,

f(t) � LA− 1 LA(f)(u)􏼂 􏼃, (5)

where A− 1 �
d, − b

− c, a
􏼢 􏼣 is the inverse of matrix. Other

properties of the LCT, such as sampling, eigenfunction,
uncertainty principles, fast computation, and relationships
with other transforms, can be found in detail in [28].

Te LCT is a generalized linear transform. When
a, b, c, d{ } � cos α, sin α, − sin α, cos α{ }, it reduces to the
FRFT. When a, b, c, d{ } � 0, 1, − 1, 0{ }, it becomes the classic
FT. When the parameter b � 0, the LCT is a scaling
transform operation multiplying a linear frequency modu-
lation signal, and we only consider b≠ 0 in our paper.

2.2. Short-TimeLinearCanonicalTransform. TeLCThas the
same limitations as the FT. Itmeans that the LCTfails in locating
the linear canonical domain frequency contents due to its global
kernel function. So, in [23], Kit proposed the short-time linear
canonical transform (STLCT) to handle this problem.Actually, a
STLCT was mentioned in uncertainty principles study even
earlier [17]. Te defnition of the STLCT is

STLCTf,A(t, u) � 􏽚
+∞

− ∞
f(τ)g(τ − t)OA(τ, u)dτ, (6)

where g(·) is the selected window function with a short time
support and OA(·) is the LCT kernel function. By defnition,
the result of the integral transform contains information
about time t and frequency u. So, we can know not only the
STLCT frequency-domain contents but also how they
change with time. Te basis of the STLCT is defned as

y(τ|t, u) � g(τ − t)OA− 1(t, u). (7)

3. Theoretical Framework of the STLCT

In this section, we will establish the time-frequency analysis
theories of the STLCT. Firstly, basic time-frequency prop-
erties of the STLCT including inverse STLCT, time delay,
and frequency shift properties are deduced.Ten, in order to
achieve a better implementation of the STLCT, an optimal
window selection for STLCT is developed. According to the
classic STFT, there are several kinds of window function
such as rectangular window, Hamming window, Gaussian
window, and so on. But only the Gaussian window can
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obtain the lower bound of the uncertainty principle of STFT
and achieve minimum STFTdomain support, which implies
that Gaussian windowed FT is optimal STFT [31]. Secondly,
as mentioned above, the STFT is a special case of the STLCT.
So, we want to fnd out if these properties of the STFTcan be
generalized to the STLCT, and we seek the results via both
mathematical proof and simulation verifcation.

3.1. Time-Frequency Properties of the STLCT

3.1.1. Property of Linearity. Tis property was mentioned in
[23], and the STLCT is linear:

STLCTkf1+vf2 ,A(t, u) � k · STLCTf1 ,A(t, u)

+ v · STLCTvf2 ,A(t, u),
(8)

where k and v are arbitrary real constants. Tis property is
convenient to process multicomponent signals and will be
used in application part in this paper.

3.1.2. Time Delay and Frequency Shift Properties. STLCT is
windowed LCT and can be viewed as a result of fnitely
repeated LCT. Tus, the time delay and frequency shift
properties of the STLCT remain unchanged with the LCT,
respectively. Tey are shown as follows:

STLCTf t− t0( ),A(t, u) � e
j cut0− (1/2)act0

2( )STLCTf(t),A t − t0, u − at0( 􏼁,

STLCTf(t)ejvt ,A(t, u) � e
j dvu− (1/2)bdv2( )STLCTf(t),A(t, u − bv).

(9)

Tese properties can be used to deduce the case that both
time delay and frequency shift occur to signal. In this case,
the result is shown below.

STLCTf t− t0( )ejvt,A � e
jΨ(u)STLCTf(t),A t − t0, u − bv − at0( 􏼁, (10)

where

Ψ(u) � av − bt0( 􏼁u +
t
2
0 − v

2

2
ab + t0vb

2
. (11)

3.1.3. Inverse STLCT

1-D Inverse STLCT. We frst assume that the reconstruction
formula is

􏽢f(t) � 􏽚
+∞

− ∞
STLCTf,A(t, u)OA− 1(t, u)du. (12)

Substituting (6) into (12), we obtain

􏽢f(t) � C 􏽚
+∞

− ∞
􏽚

+∞

− ∞
f(τ)g(τ − t)OA(τ, u)dτ OA− 1(t, u)du. (13)

Ten, simplifying (13) yields
􏽢f(t) � Cg(0)f(t). (14)

In order to obtain the perfect reconstruction, let
􏽢f(t) � f(t); therefore, the constant coefcient should satisfy
the following requirement:

C �
1

g(0)
. (15)

So, the 1-D inverse STLCT is

f(t) �
1

g(0)
􏽚

+∞

− ∞
STLCTf,A(t, u)OA− 1(t, u)du. (16)

2-D Inverse STLCT. We frst assume that the reconstruction
formula is

􏽢f(θ) � 􏽚
+∞

− ∞
􏽚

+∞

− ∞
STLCTf,A(t, u)􏽢g(θ − t)OA− 1(θ, u)dtdu.

(17)

Substituting (6) into (17) yields

􏽢f(θ) � 􏽚
+∞

− ∞
􏽚

+∞

− ∞
􏽚

+∞

− ∞
f(τ)g(τ − t)OA(τ, u)dτ􏽢g(θ − t)

OA− 1(θ, u)dtdu.

(18)

Ten, by simplifying (18), we have

􏽢f(θ) � f(θ) 􏽚
+∞

− ∞
g(θ − t)􏽢g(θ − t)dt. (19)

A simple form can be obtained through variable
substitution:

􏽢f(θ) � f(θ) 􏽚
+∞

− ∞
g(t)􏽢g(t)dt. (20)

Similarly, to ensure 􏽢f(θ) � f(θ), the following equation
should be satisfed:

􏽚
+∞

− ∞
g(t)􏽢g(t)dt � 1. (21)

Terefore, we usually choose an appropriate window
function tomeet the condition (

����g(t)
���� � 1).Te 2-D inverse

STLCT is
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􏽢f(θ) � 􏽚
+∞

− ∞
􏽚

+∞

− ∞
STLCTf,A(t, u)g(θ − t)OA− 1(θ, u)dtdu. (22)

3.1.4. Uncertainty Principle. In time-frequency analysis feld,
Heisenberg’s principle is a fundamental result in signal
processing. Diferent time-frequency analysis tools such as FT
and FRFT have diferent lower bounds. Let us s take the FTfor
example; a signal cannot be both narrowband and short
duration, as the variances of FT pairs cannot be arbitrarily
small. So, the lower bound is largely dependent upon the
selected technology.Te STFT has the same lower boundwith
the FT (Section 3, [26]). However, the STLCT includes the
STFT, and we want to know not only whether the STLCT
keeps the uncertainty property of its special case unchanged
but also the reality verifed by the simulation. Our previous
study in [20] showed that lower bound of the STLCTremains
the same with the LCT. Also, in this section, in order to get
actual performance of the STLCTwhich could guide potential
engineering practice, we choose the signal s(t) �

������
(Ps/2)

􏽰

cos(2πf0t + πKt2), where f0 � 0, K � 500, and Ps � 2, as
our test signal.We study the Gaussian-windowed STLCTwith
diferent window lengths (see Figure 1).

3.1.5. 2-D Resolution of the STLCT. Te STLCTcan map the
time-domain signal into the joint time and frequency do-
main. From this 2-D transformation, we can know not only
the LCT domain frequency contents but also how they
modify with time via its time-frequency plane. Tis plane is
divided by many parallelograms while the plane of the GT is
divided by numerous rectangles. Te two sides of parallel-
ogram represent the time width and the LCT domain
bandwidth, respectively, based on uncertainty principle
analysis in [9]. In a similar manner, they are defned by

Δt2h �
1
E

􏽚
+∞

− ∞
τ − τh( 􏼁

2
|y(τt, u)|

2dτ,

Δω2
h �

1
E

􏽚
+∞

− ∞
ζ − ζh( 􏼁

2
YA(ζt, u)

2dζ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

where E denotes the energy of signal, and specially, for an
energy normalized signal, we have E � 􏽒

+∞
− ∞ 􏽒

+∞
− ∞

STLCTf,A(t, u)dtdu � 1. YA(ζ|t, u) is the LCT of y(τt, u).
Tus, the defnition of YA(ζt, u) is given as follows:

YA(ζ|t, u) � 􏽚
+∞

− ∞
g(τ − t)OA− 1(τ, ζ)OA(τ, u)dτ. (24)

We can rewrite the above equation by substituting the
kernel function of the LCT. Te computation process can be
found in Appendix A.

YA(ζ|t, u) �
���
j2π

􏽰
e

− j/2bd′( )((ζ− u)/b)2
F[(ζ − u)/b]

OA(t, ζ)OA− 1(t, u),
(25)

where F[(ζ − u)/b] is the LCT of g(τ) with A′ � (a − d,

b2, c, d′).

Similar to the classic uncertainty principle in FTdomain,
τh and ζh are the mean values of time domain and frequency
domain, respectively. Tey are defned as

τh �
1
E

􏽚
+∞

− ∞
τy(τ|t, u)

2dτ,

ζh �
1
E

􏽚
+∞

− ∞
ζ YA(ζ|t, u)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dζ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(26)

Te 2-D resolution of the STLCT is defned as

Ψ �
1
ΔthΔωh

. (27)

From the defnition of the resolution, the performance is
afected by selected window function and free parameters of
the STLCT. In [20], we have proved that the uncertainty
principle of the STLCT is

Δt2hΔω
2
h ≥

b
2

4
. (28)

Te equality holds if and only if Gaussian window
function is selected. Tat is to say, the 2-D resolution can be
obtained as

Ψ≤
2

|b|
. (29)

Clearly, it has an upper bound when we chose Gaussian
window. We summarize this section as a theorem as follows.

Theorem 1. Te upper bound of 2-D resolution of the STLCT
is 2/|b|, which is achieved if and only if the Gaussian window
is used.

3.1.6. STLCT Domain Support. It is known that classic time-
frequency plane of the STFT is divided by many cell grids (see
Figure 2), which is also called time-frequency cells. Te two
sides of the cell represent the STFTtime width and band width.
Moreover, each cell grid is bounded by rectangles. Te coor-
dinates of the center of rectangle are mean time and frequency,
and two sides of the rectangle are the time width and band-
width of the STFT. Te product of the two sides (time-fre-
quency product) is often defned as a STFT domain support.

Te STLCT is generalized STFT.Terefore, similar to the
STFT, the time width, bandwidth, mean time, and mean
bandwidth in STLCT domain are defned as

ΔT2
S �

1
P

􏽚
+∞

− ∞
􏽚

+∞

− ∞
t − tS( 􏼁

2
STLCTf,A(t, u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dtdu,

ΔΩ2S,A �
1
P

􏽚
+∞

− ∞
􏽚

+∞

− ∞
u − uS( 􏼁

2
STLCTf,A(t, u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dtdu,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(30)

tS �
1
P

􏽚
+∞

− ∞
􏽚

+∞

− ∞
t STLCTf,A(t, u)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dtdu,

uS �
1
P

􏽚
+∞

− ∞
􏽚

+∞

− ∞
u STLCTf,A(t, u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dtdu.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(31)
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To seek the relationship between the selected window
function and the STLCT domain, we have the following
equation, and the computation process can be found in
Appendix B.

ΔT2
S � ΔT2

f + ΔT2
g,

ΔΩ2S,A � ΔΩ2f,A + ΔΩ2gb
2
,

⎧⎪⎨

⎪⎩
(32)

where T2
g andΩ2g are the squared time and bandwidth of the

given window function. Also, the STLCTdomain support is
defned as squared product of ΔT2

S and ΔΩ2S,A.

TFBP2
S,A � ΔT2

SΔΩ
2
S,A. (33)

3.2. Computation of the STLCT. Te basic idea of compu-
tation of the STLCT is as follows. First, original signal is
intercepted and captured by a sliding window in time do-
main. Second, the instantaneous STLCT spectrum in time
domain is obtained by LCTof the signal portion captured by
the window. Ten, by moving the window along time do-
main, we can see how the frequency contents change by
time. As the STLCT is based on LCT, to utilize the STLCT to
the practical application, we choose a simple and efcient
method of the LCT proposed in [29]. Te discrete LCT and
its inverse are as follows. Also, the computation steps of the
STLCT are summarized as follows.

Gaussian Window Length = 64 For STLCT
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Gaussian Window Length = 128 For STLCT
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Gaussian Window Length = 256 For STLCT
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Gaussian Window Length = 512 For STLCT
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Figure 1: Performance of the Gaussian windowed STLCTwith diferent window lengths. (a)Window length� 64. (b)Window length� 128.
(c) Window length� 256. (d) Window length� 512.

0

bandwidth

timewidth

U

t

Figure 2: Time-frequency plane of the STLCT.Te STLCTdomain
is bounded by many parallelograms.

Mathematical Problems in Engineering 5



Step 1: select an appropriate window function and
initialize a set of parameters of the LCT.
Step 2: choose the length of window.
Step 3: add the window to the given signal and compute
the LCT of the signal cut by the window.
Step 4: move the window along the time till the end of
the signal.

From the idea of the STLCT, we can see that compu-
tation complexity of the STLCT is the same as the LCT
because the STLCT is the sum of fnite LCT result of each
segment signal (see Figure 3).

4. Results

4.1. Optimal STLCT. In this section, we demonstrate that the
Gaussian window is the optimal window for the STLCT. Te
performance of the STLCT is determined by selected window
and free parameters according to the above study. In reality,
we usually preset the parameters and then select a window
based on the situation. Te time and frequency resolution of
the STLCT is constrained by the uncertainty principle, which
means that a high-frequency resolution leads to a coarse time
resolution and vice versa. Tus, there is a trade-of between
time and frequency resolution in choosing an appropriate
window for the STLCT. Window with short length is more
appropriate for signals of short duration, whereas a long
length window with high-frequency resolution is more ap-
propriate for narrowband signals.

Durak and Arikan put forward a criterion of optimal
window selection in [31]. Optimal windowed STLCT has
both maximum 2D resolution and minimum time-fre-
quency domain support. According to the time-frequency
properties (5) and (6) in Section 3, we demonstrate that the
Gaussian window also has the minimum STLCT domain
support, which is concluded as the following theorem.

Theorem  . Te minimum STLCT domain support exists if
and only if the selected window is Gaussian, and the ex-
pression of the window function is

g(τ) � π|b|
ΔTf

ΔΩf,A

􏼠 􏼡

− 1/4

e
− τ2ΔΩf,A/2|b|ΔTf( 􏼁

. (34)

Proof. According to Teorem 1, the Gaussian-windowed
STLCTdomain has maximum 2D resolution, so we suppose
an energy normalized window function

g(τ) � πμ2􏼐 􏼑
− (1/4)

e
− τ2/2μ2( ). (35)

Ten, squared time and bandwidth of the window can be
computed by integral formula 􏽒

+∞
− ∞ e− at2 ± 2bt+cdt �����

π/A
√

e(b2/a+c). We obtain

ΔT2
g �

μ2

2
,

ΔΩ2g �
1
2μ2

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(36)

In addition, by substituting (30) and (33) into (31), we
have

TFBP2S,A � ΔT2
f + ΔT2

g􏼐 􏼑 ΔΩ2f,A + ΔΩ2gb
2

􏼐 􏼑

� ΔT2
fΔΩ

2
f,A + ΔT2

f

b
2

2μ2
+
μ2

2
ΔΩ2f,A +

μ2

2
1
2μ2

b
2
.

(37)

Based on basic inequality property,

TFBP2
S,A ≥ΔT

2
fΔΩ

2
f,A + 2ΔTf

b
�
2

√
μ

μ
�
2

√ ΔΩf,A +
1
4

b,
2

� ΔTfΔΩf,A +
1
2

b􏼒 􏼓
2
.

(38)

Te equality is achieved if and only if
μ2 � ΔTf/ΔΩf,A|b|. Furthermore, the result can be reduced
to the STFT and STFRFT cases when A � (0, 1, − 1, 0) and
A � (cosα, sinα, − sinα, cosα), respectively.

It is known that there are some commonly used windows
such as rectangular window, Hamming window, and
Gaussian window. We choose the signal used in Section 3 to
test the performance of the STLCT with diferent windows
under the same parameters (a� 10, b� 0.5, d� 10, and
window length� 128). It demonstrates that the Gaussian
window leads to fne resolution and concentration of the
time-frequency plane, relative to other windows (see
Figure 4). □

4.2. Signal SeparationApplication. Signal separation is a vital
setup in many real applications such as fault diagnosis,
feature selection, and classifcation. In this section, the
STLCT is applied to signal separation. Especially, the
Gaussian window is verifed the optimal window of the
STLCT through the application. Here we use the nonsta-
tionary mixed signals (see Figure 5).

Te simulation results show that the Gaussian window
function has the best time-frequency plane resolution and

f(t)·g(t–t1) f(t)·g(t–t2) f(t)·g(t–t3)

f(t)

t

DLCT

DLCT

DLCT

u

tt1

t1 t2 t3

t2 t3

Figure 3: Schematic diagram of the short-time linear canonical
transform computation.
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aggregation. In this section, the selective signal separation is
applied to verify the superiority of Gaussian window. Signal
separation is an important task in signal processing, which is
often used in practical processing tasks such as flter design
and fault diagnosis. For example, in fault diagnosis domain,
it is often necessary to extract features from signals. For
signals with fault and abnormal features, people want to
separate them from normal signals for diagnosis. In this
section, we will take the mixed signal of the following two

nonstationary signals as an example (as shown in Figure 5)
and separate them in the time-frequency plane by using the
time-frequency analysis technology based on short-time
linear canonical transformation.

Te main steps of simulation are as follows.

Step 1: initialize the parameters of the short-term linear
canonical transformation matrix and start the type and
width of window function to process the original signal.
Step 2: the time-frequency distribution of the two
signals is obtained by short-time linear canonical
transformation.
Step 3: mask the signals to be removed to separate them.
Step 4: do the inverse transform of short-time linear
canonical transform for the reserved signal.

Te experimental results are shown in Figure 6. Te
results show that in terms of time-frequency distribution,
the resolution and aggregation degree of time-frequency
distribution of traditional short-time Fourier transform with
window length of 256 are worse than those of short-time
linear canonical transformation with window length of 512
(as shown in Figure 1). Te longer the window length is, the
less likely it is to refect the frequency location characteristics
theoretically. Compared with rectangular window and
Hamming window, Gaussian window has the best time-
frequency resolution and aggregation for short-time linear
canonical transform. Especially in the third step, mask flter
has better fltering efect because of its high aggregation.
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Terefore, qualitative analysis based on simulation verifes
the conclusion that Gaussian window is the optimal window
function. When the parameters are given, the short-term

linear canonical transform will degenerate into the tradi-
tional optimal short-time Fourier transform, namely, Gabor
transform.
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Figure 6: Comparison of signal separation performance under diferent windows. (a) Time-frequency distribution of the mixed signal in
STLCT domain with Gaussian window, Hamming window, and rectangular window, respectively. (b) Time-frequency distribution of
separated signal in STLCT domain by using mask with Gaussian window, Hamming window, and rectangular window, respectively. (c)
Reconstruction of separated windowed signal with Gaussian window, Hamming window, and rectangular window, respectively.
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4.3. Discussion and Some Potential Applications

4.3.1. Advantages of the STLCT. From the properties de-
duced in Section 3, the advantage of the STLCT is that it can
obtain a higher resolution compared to the STFT and also
has no cross terms in the time-frequency plane. If the
Gaussian window is taken, the optimal STLCT will become
the generalized Gabor transform (GT) with three free pa-
rameters. It is known that the GT has found many appli-
cations in signal analysis, image processing, and pattern
recognition. As its generalized form, the STLCT has more
degree of freedom.

4.3.2. Weakness of the STLCT. Although the STLCT is a new
time-frequency analysis tool, it has not been used in practical
scenarios so far. Te classic short-time Fourier transform
(STFT) (special case of the STLCT) has been widely used in
the feld of nonstationary signal processing. In particular,
when the window function is Gaussian function, the short-
time Fourier transform is Gabor transform (GT). However,
the GTdid not attract scholars’ interest in the decades after it
was proposed.Temain reason is that the expansion basis of
the GT composed of window function and Fourier kernel
function is nonorthogonal, which makes it difcult to cal-
culate Gabor expansion coefcients. Te STLCT is the
generalized form of the STFT, so the STLCTalso sufers from
the difculty of calculating its coefcients.

One of the potential applications of the STLCT is
nonstationary signal fltering. Image or signal often has noise
and interference. If diferent regions of a signal or image are
contaminated with noise of diferent distribution charac-
teristics, we can separate the target signal from noise in time-
frequency plane based on high concentration by selecting
suitable parameter matrix. We can also choose diferent free
parameters for diferent regions to achieve a better per-
formance rather than working with a fxed parameters for
the whole signal or image. For example, we consider the
LFM signal, the most important nonstationary signals in
radar and sonar systems. Based on optimization algorithm,
maximization local energy concentration can be obtained by

choosing an optimal parameter matrix [14, 15]. Another
potential application is in radar signal analysis. Moving
target detection technology in complex background is one of
the key technologies and difculties of radar target detection,
and the STFRFT has excellent performance in processing
multicomponent signals, especially in high-resolution sparse
domain signal processing. Since classic FRFT and STFRFT
are special forms of the STLCT. Terefore, in theory, the
STLCT should also have their advantages in radar target
detection and parameter estimation.

4.3.3. Calculation Acceleration of the STLCT. Based on the
STLCT calculation algorithm in this paper, the calculation
complexity of the STLCTmainly depends on the calculation
of LCT. However, the large-scale signals generated in
practical engineering restrict the application of the STLCT.
Fortunately, in [32, 33], Zhang et al. and Liu et al. proposed a
sparse discrete FRFTalgorithm to reduce the computational
complexity when dealing with large signal data. Inspired by
Liu et al.’s work, a feasible future direction is to study sparse
LCT because LCT is the generalized form of FRFT.

5. Conclusions

In this paper, we have studied the time-frequency properties
of the STLCT including linearity, time delay and frequency
shift, inverse STLCT, computation of the STLCT, 2-D
resolution, and time-frequency plane support. Gaussian
window is proved to be the optimal window for the STLCT.
Te performance of uncertainty principle and optimal
STLCT is qualitatively verifed via simulation. Some po-
tential applications also have been discussed. STLCT-based
fltering design and IFE are now under investigation.

Appendix

A. Computation of (26)

YA(ζ|t, u) � 􏽚
+∞

− ∞
g(τ)OA− 1(τ + t, u)OA(τ + t, ζ)dτ

� 􏽚
+∞

− ∞
g(τ)

1
2πb

e
j/2b (a− d)(τ+t)2− 2b(τ+t)(ζ − u)+dζ2− au2[ ]dτ

�
1

2πb
e

j/2b at2− 2btζ+dζ2− dt2+2btu+du2( )[ ]e
− j/bd′((ζ− u) /b)2

× 􏽚
+∞

− ∞
g(τ)e

− j/b(a− d)τt
e

j/2b (a− d)τ2− 2τb2ζ− u/b+d′((ζ− u) /b)2[ ]dτ

�
���
j2π

􏽰
e

− j/2bd′((ζ− u) /b)2
F

(ζ − u)

b
􏼢 􏼣OA(t, ζ)OA− 1(t, u).

(A.1)
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B. Proof of (31)

To simplify (31), we frst compute P � ‖STLCTf,A(t, u)‖2 as
follows:

STLCTf,A(t, u)

� 􏽚
+∞

− ∞
􏽚

+∞

− ∞
LA(f)(ζ)OA− 1(τ, ζ)dζ g(τ − t)OA(τ, u)dτ

� 􏽚
+∞

− ∞
LA(f)(ζ) 􏽚

+∞

− ∞
g(τ − t)OA− 1(τ, ζ)OA(τ, u)dτdζ

� 􏽚
+∞

− ∞
LA(f)(ζ)YA(ζ|t, u)dζ .

(B.1)

On the other hand, suppose the window function is real
and symmetric, and we obtain

YA(ζ|t, u)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
|F[((ζ − u)/b)]|

���
2π

√
b

. (B.2)

So, we have the following equation:

STLCTf,A(t, u)
�����

�����
2

� 􏽚
+∞

− ∞
􏽚

+∞

− ∞
LA(f)(ζ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

F[(u − ζ)/b]
���
2π

√
b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dζdu.

(B.3)

By variable substitution,

ζ � ρ,

u � ρ + ηb.
􏼨 (B.4)

Te Jacobian partial derivative is

J �
z(ζ , u)

z(ρ, η)
�

1 0

1 b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� b. (B.5)

Ten, (38) can be rewritten as
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(B.6)

Tus, uS and ΔΩ2S,A are obtained:

uS �
1
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