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Distance based topological indices (TIs) play a vital role in the study of various structural and chemical aspects for the
molecular graphs.�e �rst distance-based TI is used to �nd the boiling point of para�n.�e connection distance (CD) index is
a latest developed TI that is de�ned as the sum of all the products of distances between pair of vertices with the sum of their
respective connection numbers . In this paper, we computed CD indices of the di�erent derived graphs (subdivision graph
S(G), vertex-semitotal graph R(G), edge-semitotal graph Q(G) and total graph T(G) obtained from the graph G under various
operations of subdivision in the form of degree distance (DD) and CD indices of the basic graphs including some other
algebraic expressions.

1. Introduction

A topological index (TI) is a function from the set of simple
graphs F to the set of real numbers that assigns a unique
number to each graphG belonging to F . More importantly, it
remains constant for the isomorphic graphs that is if G1 �
G2 then TI(G1) � TI(G2). Many topological indices have
been introduced for the molecular graphs in the chemical
graph theory to predict the certain structural and chemical
properties such as vaporization, freezing point, boiling point,
volume, density, weight and physicochemical properties of
chemical bound [1]. Moreover, most rapidly growing �elds of
science such as chemistry, mathematics and information
sciences provide e�ective research achievements in the last
decade and one of the combinations of these subjects is called
by cheminformatics which studies two relationships tech-
niques quantitative structures property relationships (QSPR)
and quantitative structure activity relationships (QSAR) for
the di�erent molecular structures, see [2–4].

Wiener (1947) [5] was �rst scientist who laid the
foundation of chemical graph theory. In chemical graph
theory, atoms and bounds are taken as vertices and edges. He
discovered through his research work that there is a close

correlation between the sums of the distances among pairs of
vertices and the boiling points of para�ne. Almost, after
passage of three quarters of the 20th century (1972) [6]
discovered degree-based indices, (First and Second Zagreb
indices), which were utilized to calculate the total π-electron
energy of molecules. After these developments, many TIs
were introduced which are found to be highly useful for the
study of di�erent physicochemical properties of chemical
compounds. Degree distance index [7] and Gutman index
[8] are the most important distance-degree based TIs. Ali
and Trinajstic [9] (2018) restudied the �rst Zagreb con-
nection index (ZC1), second Zagreb connection index
(ZC2) and the modi�ed �rst Zagreb connection index
(ZC∗1 ). Recently, Javaid et al. [10] de�ned a new distance-
based TI called by connection distance index as the sum of
all the products of distances between pair of vertices with the
sum of their respective connection numbers.

Yan et al. [11] de�ned the new graphs called as sub-
divided graph S(G), vertex-total graph R(G), edge-total
graph Q(G) and total graph T(G) with the help of the
subdivision-related operations S, R,Q and T respectively. Xu
et al. [12] have determined the degree distance index of the
derived graphs. Bahadur et al. [13] have determined Gutman
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index of derived graphs. In particular, on different families
of graphs for the result about degree based TIs, see [14, 15]
(line graph), [16, 17] (sum-graphs), [18, 19] (derived
graphs), [20, 21] (extremal graphs), [22, 23] (generalized
sum graphs), [24] (nanotube) and distance based TIs, see
[25–27].

In this paper, firstly, we have determined the exact values
of connection numbers of old (black) vertices and new
(white) for derived graph S(G) and bounded values of
connection numbers for C3, C4􏼈 􏼉− graph of R(G), Q(G) and
T(G) were determined. 'en, finally, bounded and exact
values of connection distance (CD) of derived graphs
S(G), R(G), Q(G), T(G){ } are determined by 'eorems and
Corollaries. Section 2 consists of applications, Section 3
comprises some related definitions, Section 4 covers the
main results of connection distance index (CD) for the
derived graphs and Section 5 sum up our findings.

2. Applications

From the last two decades, the worth investing problem of
finding out the physicochemical properties of the molecular
structures is attracting the attention of chemists and
mathematicians continuously. 'e TIs have been used to:
predict the solubility of fullerene C60 [28], find the ionic
liquids densities [1], optimize QSPR models (Simplex op-
timisation of generalized TIs) [29], manufacture the anti-
cancer drugs [30, 31], calculate molecular van der Waals
areas or volumes [32] and measure the vaporisation, sub-
limation, formation & combustion for the monocarboxylic
acids (C2H4O2 − C20H40O2) [4]. Recently, International
Academy of Mathematical Chemistry checked thirteen
physicochemical properties of octane isomers (heat capacity
at T constant, heat capacity at P constant, density, boiling
point, entropy, acentric factor, enthalpy of formation,
octanol-water partition coefficient, enthalpy of vaporisation,
standard enthalpy of formation, molar volume and total
surface tension) with the help of the connection number-
based TIs and declared that the chemical capability of the
Zagreb connection indices is better than the ordinary Zagreb
indices for the entropy and acentric factor of the octane
isomers, for detail see [9]. In addition, Javaid et al. [33]
presents comparison of correlation coefficients between
different TIs and eleven physicochemical properties of oc-
tane isomers (boiling point, heat capacity, entropy, densi-
ty,mean radius, change in heat of vaporization, standard heat
of formation, acentric factor, enthalpy of vaporization and
standard enthalpy of vaporization) which shows that Gut-
man connection index is a very useful TI for the prediction
of entropy, acentric factor, enthalpy of vaporization and
standard enthalpy of vaporization.

3. Preliminaries

'roughout in this research paper, we take a simple and
connected graphs G with V(G) � ui: 1≤ i≤ n􏼈 􏼉 and E(G) �

ei: 1≤ i≤m􏼈 􏼉 such that |V(G)| � n and |E(G)| � m. For
more basic notations of graphs, see [34, 35]. Now, we define
some most frequent used definition as follows

• 'e number of vertices at distance one from a vertex ui

is called its degree and it is denoted by δ(ui).
• Degree of an edge ei � ujuk is given by
δ(ei) � δ(uj) + δ(uk) − 2, where 1≤ i≤m for some
1≤ j, k≤ n.

• 'e distance between two vertices ui, uj ∈ V(G) is
denoted by d(ui, uj) and defined as the length of the
shortest path between both the vertices ui and uj for
1≤ i, j≤ n.

• 'e distance between two edges ei � upuq and ej �

urus is defined as dG(ei, ej) � min dG(up, ur),􏽮

dG(up, us), dG(uq, ur), dG(uq, us)}, where 1≤ i, j≤m

and 1≤p, q, r, s≤ n.
• 'e distance between one vertex ui and one edge ej �

upuq is defined as dG(ui, ej) � min dG(ui,􏼈

up), dG(ui, uq)}, where 1≤ j≤m and 1≤ i, p, q≤ n.
• 'e number of vertices at distance two from a vertex ui

is called its connection number of ui and it is denoted
by τ(ui) for 1≤ i≤ n .

More details about aforesaid definitions can be obtained
from [9, 36, 37].

Some important and related TIs are the following:

Definition 1 (see [5]). Let G be a connected graph of order n,
then its Wiener index is

W(G) �
1
2

􏽘
ui,uj∈V(G)

dG ui, uj􏼐 􏼑, (1)

where 1≤ i, j≤ n.

Definition 2 (see [6]). Let G be a connected graph of order n,
then first and second Zagreb index are defined as

M1(G) � 􏽘
uiuj∈E(G)

δG ui( 􏼁 + δG uj􏼐 􏼑􏽨 􏽩 � 􏽘
ui∈V(G)

δG ui( 􏼁
2
.􏽨

(2)

M2(G) � 􏽘
uiuj∈E(G)

δG ui( 􏼁δG uj􏼐 􏼑􏽨 􏽩,
(3)

where 1≤ i, j≤ n.

Definition 3 (see [38]). Let G be a connected graph of order
n, then first and second Zagreb coindex are defined as

M1(G) � 􏽘
uiuj ∉ E(G)

δG ui( 􏼁 + δG uj􏼐 􏼑􏽨 􏽩.
(4)

M2(G) � 􏽘
uiuj ∉ E(G)

δG ui( 􏼁δG uj􏼐 􏼑􏽨 􏽩,
(5)

where 1≤ i, j≤ n.

Definition 4 (see [6]). Let G be a connected graph of order n
and size m, then edge version of Wiener index is defined as
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We(G) � 􏽘

ei,ej􏼈 􏼉⊆E(G)

dG ei, ej􏼐 􏼑 + 1􏽨 􏽩,
(6)

where 1≤ i, j≤m.

Definition 5 (see [35]). Let G be a connected graph of order
n, then the degree distance index of G is

D D(G) �
1
2

􏽘
ui,uj∈V(G)

d ui, uj􏼐 􏼑 δ ui( 􏼁 + δ uj􏼐 􏼑􏼐 􏼑􏽮 􏽯, (7)

where 1≤ i, j≤ n.

Definition 6 (see [12]). Let G be a connected graph of order
n and size m, then the edge version of degree distance index
of G is

DDe(G) � 􏽘

ei,ej􏼈 􏼉⊆E(G)

de ei, ej􏼐 􏼑 + 1􏽨 􏽩 δ ei( 􏼁 + δ ej􏼐 􏼑􏼑􏽨 􏽩,
(8)

where 1≤ i, j≤m.

Definition 7 (see [8]). Let G be a connected graph, then the
Gutman index of G is

Gut(G) �
1
2

􏽘
ui,uj∈V(G)

d ui, uj􏼐 􏼑 δ ui( 􏼁δ uj􏼐 􏼑􏼐 􏼑􏽮 􏽯, (9)

where 1≤ i, j≤ n.

Definition 8 (see [10]). Connection Distance index of a
graph G (denoted by C D(G)) is defined as

C D(G) � 􏽘

ui,uj􏼈 􏼉⊆V(G)

dG ui, uj􏼐 􏼑 τG ui( 􏼁 + τG uj􏼐 􏼑􏽨 􏽩,
(10)

where 1≤ i, j≤ n or

C D(G) �
1
2

􏽘
u,v∈V(G)

d(u, v)(τ(u) + τ(v)){ }, (11)

Definition 9 (see [10]). Gutman Connection index of a
graph G (denoted by G C(G)) is defines as

GC(G) � 􏽘

ui,uj􏼈 􏼉⊆V(G)

dG ui, uj􏼐 􏼑 τG ui( 􏼁τG uj􏼐 􏼑􏽨 􏽩,
(12)

where 1≤ i, j≤ n or

GC(G) �
1
2

􏽘
u,v∈V(G)

d(u, v)(τ(u)τ(v)){ }. (13)

Yan et al. [11] defined the four operations S, R, Q and T

on the graph G and obtained the four new graphs from G as
follows:

• S(G) is obtained from G if a new vertex wi is inserted
in every edge ei of G. 'e already existing vertices ui of
G are named as old or black vertices while new vertices
wi are also named new or white vertices.

• R(G) is formed by assigning a new vertex wi corre-
sponding to each edge ei of G and this new vertex wi is
connected with the end vertices of the respective edge ei.

• Q(G) is formed from S(G) if two white vertices wi and
wj are further joined together when corresponding
edges ei and ej have one common end vertex.

• T(G) is formed from R(G) if two white vertices wi and
wj are further joined together when corresponding
edges ei and ej have one common end vertex.

4. Relation Between Connection Numbers
and Degrees

In order to determine connection numbers or bounded
values of connection numbers of derived graphs S(G), R(G),
Q(G) and T(G), we will develop Lemma 1 to Lemma 4.
Before to the proofs of these results, in particular we con-
sider Figure 1 and Figure 2 to present some trees, cycles and
graphs consisting of cycles of order 3 and 4.

Lemma 1. For a simple and connected graph G (i)
τS(G)(ui) � δ(G)(ui) and (ii) τS(G)(wi) � δ(G)(uj)+

δ(G)(uk) − 2 � δ(ei) where wi is a new vertex corresponding
to edge ei � ujuk.

Proof 1. On applying S-operation, subdivision graph S(G),
each vertex ui is connected with δ(G)(ui) � di new (white)
vertices. So, δ(G)(ui) � di new (white) vertices wi are at
distance one from old vertices ui. Further di old vertices uj

are at distance two from ui in S(G) (which are at distance
one in G)

Also, each new vertex (white) wi corresponds to each
edge ei � ujuk is at distance one from uj and uk. So, number
of vertices at distance 2 from wi are δ(G)(uj) − 1+ δ(G)(uk) −

1 (see Figure 3 and Figure 4). 'erefore τS(G)(wi) �

δ(G)(uj) + δ(G)(uk) − 2 � δ(G)(ei). □

Lemma 2. Let G be a simple and connected graph

(a) If G is a C3, C4􏼈 􏼉− free graph, then

(i) τR(G)(ui) � 2τ(G)(ui) and
(ii) τR(G)(wi) � 2[δ(G)(uj) + δ(G)(uk)] − 4 � 2[δ(G)

(ei)].

(b) If G is a C3, C4􏼈 􏼉− graph, then

(i) τR(G)(ui)⩽2τ(G)(ui) + r, where r � max ri􏼈 􏼉 and
ri are number of C3 and C4 cycles connected with
ui in G.

(ii) τR(G)(wi)⩽2[δ(G)(uj) + δ(G)(uk)] − 4− s � 2[δ(G)

(ei)] − s, where s � max si􏼈 􏼉 and si are number of
C3 cycles connected with ui in G.

Proof 2. On applying R − operation, a new vertex wi is
joined with the corresponding vertices of edge ei � ujuk.

Case (a)
If G is a C3, C4􏼈 􏼉− free graph, then the degree of each

vertex ui in R(G) is twice the degree ui in G i.e. δR(G)(ui) �

2δG(ui) (see Figure 5) . 'en their connection number of
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each vertex ui in R(G) is twice the connection number ui in
G i.e. τR(G)(ui) � 2τ(G)(ui). Also uj and uk are at distance
one from wi, but in R(G), degree of uj and uk are also
doubled, then number of vertices at distance 2 of wi are
2[δ(G)(uj) − 1 + δ(G)(uk) − 1] � 2[δ(G)(uj) + δ(G)(uk)] −

42δG(ei) � 2δG(ei). Also for n≥ 5, δCn
(ui) � 2, τCn

(ui) � 2,
τR(Cn)(ui) � 4, τR(Cn)(wi) � 4,⇒ τR(Cn)(ui) � 2τ(Cn)(ui) and
τR(Cn)(wi) � 2[δ(Cn)(uj) + δ(Cn)(uk)] − 4 � 2δCn

(ei),
i � 1, 2 . . . n.

Case (b)
If G is a C3, C4􏼈 􏼉− graph, then consider δC3

(ui) � 2,

δC3
(ui) � 2, τC3

(ui) � 0, τR(C3)(ui) � 1, τR(C3)(wi) � 3⇒
τR(C3)(ui) � 2τ(C3)(ui) + 1 and τR(C3)(wi) � 2[δ(C3)(uj)+

δ(C3)(uk)] − 5,� 2δG(ei) − 1 i � 1, 2, 3.
δC4

(ui) � 2, τC4
(ui) � 1, τR(C4)(ui) � 3, τR(C4)(wi) � 4,

⇒ τR(C4)(ui) � 2τ(C4)(ui) + 1 and τR(C4)(wi) � 2[δ(C4)(uj) +

δ(C4)(uk)] − 4 � 2δC4
(ei), i � 1, 2, 3, 4.

Consider R(G1) graph in which two C3 are connected by
a common vertex u3 as shown in Figure 6, then δ(G1)(ui) � 2,
τG1

(ui) � 2, τR(G1)(ui) � 5⇒τR(G1)(ui) � 2τ(G1)(ui) + 1 for
i � 1, 2, 4, 5 and δ(G1)(u3) � 4, τG1

(u3) � 0, τR(G1)(u3) �

2⇒ τR(G1)(u3) � 2τ(G1)(u3) + 2 as u3 lies in two C3 graphs.
Also τR(G1)(wi) � 3⇒ τR(G1)(wi) � 2[δ(G1)(uj)+

δ(G1)(uk)] − 5 � 2δG(ei) − 1 for i � 1, 4 and τR(G1)(wi) �

7⇒ τR(G1)(wi) � 2[δ(G1)(uj) + δ(G1)(uk)] − 5 � 2δG(ei) − 1,
for i � 2, 3, 5, 6.

Consider R(G2) graph in which three C3 are connected
by a common vertex u3 as shown in Figure 6, then

δ(G2)(ui) � 2, τG2
(ui) � 4, τR(G2)(ui) � 9⇒τR(G2)(ui) �

2τ(G2)(ui) + 1 for i � 1, 2, 4, 5, 6, 7 and δ(G2)(u3) � 6,
τG2

(u3) � 0, τR(G2)(u3) � 3⇒ τR(G2)(u3) � 2τ(G2)(u3) + 3 as
u3 lies in three C3 graphs. Also τR(G2)(wi) � 3⇒
τR(G1)(wi) � 2[δ(G2)(uj) + δ(G2)(uk)] − 5 � 2δG(ei) − 1 for
i � 1, 4, 7 and τR(G1)(wi) � 11⇒ τR(G1)(wi) � 2[δ(G2)(xi)+

δ(G2)(yi)] − 5 � 2δG(ei) − 1, for i � 2, 3, 5, 6, 8, 9.
Consider R(G3) in which one C3 and one C4 are con-

nected by a common vertex u3 as shown in Figure 6, then
δ(G3)(ui) � 2 for i � 1, 2, 4, 5, 6, τG3

(ui) � 2 for i � 1, 2,

τG3
(ui) � 3 for i � 4, 6, τG3

(ui) � 1 for i � 3, 5, τR(G3)(ui) �

5 � 2τ(G3)(ui) + 1, for i � 1,2τR(G3)(u3) � 4� 2τ(G3)(u3) +2,
as u3 lies in one C3 and one C4 graphs, τR(G3)(ui) �

7� 2τ(G3)(ui) +1, for i � 4,6τR(G3)(u5) � 3� 2τ(G3)(u5) +1,
Also τR(G3)(w1) � 3� 2[δ(G3)(u1) +δ(G3)(u2)] −5 � 2δG(ei)−

1, τR(G3)(w2) � 7� 2[δ(G3)(u2) +δ(G3)(u3)] −5 � 2δG(ei) −1,
τR(G3)(w3) � 8� 2[δ(G3)(u3) +δ(G3)(u4)] −4 � 2δG(e3),
τR(G3)(w4) � 4� 2[δ(G3)(u4) +δ(G3)(u5)] −4 � 2δG(e4).

Consider R(G4) graph in which two C4 graphs and one
path are connected by vertex u3 as shown in Figure 6. As
δ(G4)(ui) � 2 for i � 1, 2, 4, 6, 8, δ(G1)(u3) � 5 and
δ(G4)(u5) � 1, τG4

(u1) � 1, τG4
(u2) � 4, τG4

(u3) � 3,
τG4

(u4) � 4, τG4
(u5) � 1, τR(G4)(u1) � 3 � 2τ(G4)(u1) + 1,

τR(G4)(u2) � 9 � 2τ(G4)(u2) + 1, τR(G4)(u3) � 8� 2τ(G4)(u3)+

2,τR(G4)(u4) � 8� 2τ(G4)(u1), τR(G4)(u5) � 2� 2τ(G4)(u5),
τR(G4)(w1) � 4� 2[δ(G4)(u1) +δ(G4)(u2)] −4 � 2δG(e1),
τR(G4)(w2) � 10� 2[δ(G4)(u2) +δ(G4)(u3)] −4 � 2δG(e2),

τR(G4)(w3) � 10� 2[δ(G4)(u3) +δ(G4)(u4)] −4 � 2δG(e3)

τR(G4)(w4) � 2� 2[δ(G4)(u4) +δ(G4)(u5)] −4 � 2δG4
(e4).

Consider a graph R(G5), in which one edge u2u3 is
common in two C3 − graphs as shown in Figure 6.
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Figure 5: R-operation of trees and cycles.
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Figure 6: R-operation of simple and connected C3, C4􏼈 􏼉− graphs.
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δ(G5)(ui) � 2 and τG5
(ui) � 1, τR(G5)(u1) � 4 � 2τ(G5)(u1) +

2 as N(u1) ∈ two C3 graphs, for i � 1, 4, δ(G5)(ui) � 3 and
τG5

(ui) � 0, τR(G5)(u1) � 2 � 2τ(G5)(u1) + 2 as N(ui) ∈ C3
graphs, for i � 2, 3, τR(G4)(w1) � 5 � 2[δ(G4)(u1)+

δ(G4)(u2)] − 5 � 2δG5
(e1), similarly we can get w2, w3 and w4,

τR(G4)(w5) � 5 � 2[δ(G4)(u2) + δ(G4)(u4)] − 6 � 2δG5
(e5) − 2,

as u2u3 ∈ two C3 graph.
Now consider a graph R(G6) in which one edge u2u3 is

common in three C3 − graphs as shown in Figure 6,
δ(G6)(ui) � 2 and τG6

(ui) � 2, τR(G6)(u1) � 7 � 2τ(G6)(u1) +

3 as N(u1) ∈ three C3 graphs, for i � 1, 4, 5, δ(G6)(ui) � 4
and τG6

(ui) � 0, τR(G6)(u1) � 3 � 2τ(G6)(u1) + 3 as N(u1) ∈
three C3 graphs, for i � 2, 3, τR(G4)(w1) � 7 � 2[δ(G6)(u1) +

δ(G6)(u2)] − 5 � 2δG6
(e1). Similarly, we can get w3, w4,

w5, w6, and w7, τR(G4)(w2) � 9 � 2[δ(G4)(u2) + δ(G4)(u4)] −

7 � 2δG4
(e2) − 3, as u2u3 ∈ three C3 graph.

Now, we close our discussion by taking r � max ri􏼈 􏼉 and
s � max si􏼈 􏼉, then upper bound for connection number is
taken is taken as τR(G)(ui) � 2τ(G)(ui) + r and τR(G)(wi) �

2[δ(G)(xi) + δ(G)(yi)] − 4 � 2[δ(G)(ei)]. And lower bound
for connection number is taken as τR(G)(ui) � 2τ(G)(ui) and
τR(G)(wi)�2[δ(G)(xi)+ δ(G)(yi)]−4−s�2[δ(G)(ei)]−s. □

Lemma 3. For a simple and connected graph G,

(a) If G is a C3, C4􏼈 􏼉− free graph, then

(i) τQ(G)(ui) � δ(G)(ui) + τ(G)(ui) and
(ii) τQ(G)(wi) � τ(G)(xi) + τ(G)(yi).

(b) If G is a C3, C4􏼈 􏼉− graph, then

(i) τQ(G)(ui)⩽δ(G)(ui) + τ(G)(ui) + r where
r � max ri􏼈 􏼉 and ri is the number of C3 and C4
cycles connected with vertex ui .

(ii) τQ(G)(wi)⩽τ(G)(uj) + τ(G)(uk) + s where
s � max si􏼈 􏼉 and si is the number of C3 cycles in
graph G connected with edge ei.

Proof 3
Case (a)
If G is a C3, C4􏼈 􏼉− free graph, On applying first S-op-

eration, the connection number of ui becomes equal to δui
.

'en for Q-operation, further two new (white) vertices of
S(G) are also joined if their corresponding edges have a
common vertex between them. So connection number of ui

in Q(G) becomes equal to the sum of δui
and τG(ui).

(For explanation from Figure 7, first consider a tree T

with nine vertices in which δ(T)(ui) � 1 for i � 1, 7, 8, 9,
δ(T)(ui) � 2 for i � 2, 3, 4, 5. δ(T)(u6) � 4, τ(G)(ui) �

1 i � 1, 2, 6, τ(T)(ui) � 3 i � 3, 4, τ(T)(u5) � 4, τ(G)(ui) �

3 i � 7, 8, 9. 'en τQ(T)(u1) � 2 � δ(T)(u1) + τ(T)(u1),

τQ(T)(u2) � 3 � δ(T)(u2) + τ(T)(u2), τQ(T)(u3) � 4 �

δ(T)(u3) + τ(T)(u3) � τQ(T)(u4), τQ(T)(u5) � 6 � δ(T)(u5) +

τ(T) (u5), τQ(T)(u6) � 5 � δ(T)(u6)+ τ(G)(u6), τQ(T)(u7) �

4 � δ(T)(u7) + τ(T)(u7) � τQ(T)(u8) � τQ(T)(u9),
τQ(T)(w1) � 2 � τ(T)(u1) + τ(T)(u2), τQ(T)(w2) �

3 � τ(T)(u2) + τ(T)(u3), τQ(T)(w3) � τ(T)(u3) + τ(T)(u4),
τQ(T)(w4) � 6 � τ(T)(u4)+ τ(T)(u5), τQ(T)(w5) � 5 �

τ(T)(u5)+ τ(T)(u6), τQ(T)(w6) � 4 � τ(T)(u6) + τ(T)(u7) �

τQ(T)(w7) � τQ(T)(w8), here we conclude τQ(T)

(ui) � δ(T)(ui) + τ(T)(ui) and τQ(G)(Ti) � τ(G)(uj)+

τ(T)(uk)).
Also for n≥ 5, δCn

(ui) � 2, τCn
(ui) � 2, τQ(Cn)(ui) � 4,

τq(Cn)(wi) � 4, ⇒ τQ(Cn)(ui) � δ(Cn)(ui) + τ(Cn)(ui) and
τQ(G)(wi) � τ(G)(uj) + τ(G)(uk).

Case(b)
Consider δC3

(ui) � 2, τC3
(ui) � 0, τQ(C3)(ui) � 3,

τQ(C3)(wi) � 1⇒ τQ(C3)(ui) � δ(C3)(ui) + τ(C3)(ui) + 1 and
τQ(C3)(wi) � τ(G)(uj) + τ(G)(uk) + 1, i � 1, 2, 3.

δC4
(ui) � 2, τC4

(ui) � 1, τQ(C4)(ui) � 4, τQ(C4)(wi) � 3,

⇒ τQ(C4)(ui) � δ(C4)(ui) + τ(C4)(ui) + 1 and τQ(G)(wi) �

τ(G)(uj) + τ(G)(uk), i � 1, 2, 3, 4.
Consider Q(G1) graph in which two C3 are connected by

a common vertex u3 as shown in Figure 8, then δ(G1)(ui) � 2,
τG1

(ui) � 2, τQ(G1)(ui) � 5 ⇒τQ(G1)(ui) � δ(G1)(ui)+

τ(G1)(ui) + 1 for i � 1, 2, 4, 5 and δ(G1)(u3) � 4,
τG1

(u3) � 0, τQ(G1)(u3) � 6⇒ τQ(G1)(u3) � δ(G1)(ui) +

τ(G1)(u3) + 2 as u3 lies in two C3 graphs. Also τQ(G1)(wi) �

3⇒ τQ(G1)(wi)≠ τ(G)(uj) + τ(G)(uk), but τQ(G1)(wi) �

δ(G1)(u3) − 1 when u1 and u2 is of same degree and u3 is their
third vertex in C3, Also τQ(G1)(wi)⋖τ(G)(uj) + τ(G)(uk) + 1
for i � 1, 4 and τQ(G1)(wi) � 4⇒ τQ(G1)(wi) � τ(G)(xi)+

τ(G)(yi) + 2, for i � 2, 3, 5, 6.
Consider Q(G2) graph in which three C3 are connected

by a common vertex u3 as shown in Figure 8, then
δ(G2)(ui) � 2, τG2

(ui) � 4, τQ(G2)(ui) � 7 ⇒τQ(G2)(ui) �

δ(G1)(ui) + τ(G2)(ui) + 1 for i � 1, 2, 4, 5, 6, 7 and
δ(G2)(u3) � 6, τG2

(u3) � 0, τQ(G2)(u3) � 9⇒ τQ(G2)(u3) �

δ(G1)(u3) + τ(G2)(u3) + 3 as u3 lies in three C3 graphs. Also
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Figure 7: Q-operation of trees and cycles.
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τQ(G2)(wi) � 5⇒ τQ(G1)(wi)≠ τ(G)(uj) + τ(G)(uk) for
i � 1, 4, 7 but τQ(G1)(wi) � δ(G1)(u3) − 1 when u1 and u2 is of
same degree and u3 is their third vertex in C3, Also
τQ(G1)(wi)⋖τ(G)(xi) + τ(G)(yi) + 1 for i � 1, 4, 7 and
τQ(G1)(wi) � 7⇒ τQ(G1)(wi) � τ(G)(uj) + τ(G)(uk) + 3, for
i � 2, 3, 5, 6, 8, 9.

Consider Q(G3) graph in which one C3 and one C4 are
connected by a common vertex u3 as shown in Figure 8, then
δ(G3)(ui) � 2 for i � 1, 2, 4, 5, 6, τG3

(ui) � 2 for i � 1, 2,

τG3
(ui) � 3 for i � 4, 6, τG3

(ui) � 1 for i � 3, τQ(G3)(u1) �

5 � δ(G1)(ui) + τ(G3)(u1) + 1, τQ(G3)(u3) � 7 � δ(G1)(ui)+

τ(G3)(u3) + 2, as u3 lies in one C3 and one C4 graphs,
τQ(G3)(u4) � 6 � δ(G1)(u4) + τ(G3)(u4) + 1, τQ(G3)(u5) � 4 �

δ(G1)(u5) + τ(G3)(u5) + 1, . Also τQ(G3)(w1) � 3 � δ(G1)(u3) −

1 when u1 and u2 is of same degree and u3 is their third
vertex in C3, Also τQ(G1)(w1)⋖τ(G)(u1) + τ(G)(u2) + 1,
τQ(G3)(w2) � 5 � τ(G)(u2) + τ(G)(u3) + 2, τQ(G3)(w3) � 6 �

τ(G)(u4)+ τ(G)(u3) + 2, τQ(G3)(w4) � 5 � τ(G)(u4)+

τ(G)(u5) + 1.
Consider Q(G4) graph in which two C4 graphs and one

path are connected by vertex u3 as shown in Figure 8. As
δ(G4)(ui) � 2 for i � 1, 2, 4, δ(G1)(u3) � 5 and δ(G4)(u5) � 1,
τG4

(u1) � 1, τG4
(u2) � 4, τG4

(u3) � 3, τG4
(u4) �

4, τG4
(u5) � 1, τQ(G4)(u1) � 4 � δ(G4)(u1) + τ(G4)(u1) + 1,

τQ(G4)(u2) � 7 � δ(G4)(u2) + τ(G4)(u2) + 1, τQ(G4)(u3) � 10 �

δ(G4)(u3)+ τ(G4)(u3) + 2, τQ(G4)(u4) � 6 � δ(G4)(u4)+

τ(G4)(u4), τQ(G4)(u5) � 4� δ(G4)(u5) + τ(G4)(u5), τQ(G4)(w1) �

6� τ(G)(u1) + τ(G)(u2) +1, τQ(G4)(w2) � 9� τ(G)(u2)+

τ(G)(u3) +2,τQ(G4)(w3) � 9� τ(G)(u3)+ τ(G)(u4) +2,
τQ(G4)(w4) � 6� τ(G)(u4) + τ(G)(u5).

Now we consider a graph Q(G5), in which one edge u2u4
is common in two C3 − graphs as shown in Figure 8 .
δ(G5)(ui) � 2 and τG5

(ui) � 1, τQ(G5)(u1) � 5 � δ(G4)(u1)+

τ(G5)(u1) + 2 as N(u1) ∈ two C3 graphs, for i � 1, 3,
δ(G5)(ui) � 3 and τG5

(ui) � 0, τQ(G5)(ui) � 5 � δ(G4)(ui)+

τ(G5)(ui) + 2 as N(ui) ∈ C3 graphs, for i � 2, 4,
τQ(G4)(w1) � 3 � τ(G)(u1) + τ(G)(u2) + 2. Similarly, we can
get w2, w3 and w4, τQ(G4)(w5) � τ(G)(u2) + τ(G)(u4) + 2, as
u2u4 ∈ two C3 graph.

Now we consider a graph Q(G6) in which one edge u2u4
is common in three C3 − graphs as shown in Figure 8,
δ(G6)(ui) � 2 and τG6

(ui) � 2, τQ(G6)(u1) � 7 � δ(G4)(u1)+

τ(G6)(u1) + 3 as N(u1) ∈ three C3 graphs, for i � 1, 3, 5,
δ(G6)(ui) � 4 and τG6

(ui) � 0, τQ(G6)(ui) � 3 � δ(G4)(ui)+

τ(G5)(ui) + 3 as N(ui) ∈ three C3 graphs, for i � 2, 4,
τQ(G4)(w1) � τ(G)(u1) + τ(G)(u2) + 2 �6. Similarly, we can
get w2, w3, w4, w6, and w7, τR(G4)(w5) � 3 � τ(G)(u2)+

τ(G)(u4) + 3, as u2u4 ∈ three C3 graph.
Now, we close our discussion by taking, r � max ri􏼈 􏼉

and s � max si􏼈 􏼉, τQ(G)(ui)⩽δ(G)(ui) + τ(G)(ui) + r and
τQ(G)(wi)⩽τ(G)(uj) + τ(G)(uk) + s. □

Lemma 4. For a simple, connected graph G,

(a) If G is a C3, C4􏼈 􏼉− free graph, then

(i) τT(G)(ui) � 2τ(G)(ui) and
(ii) τT(G)(wi) � τ(G)(uj) + τ(G)(uk).

(b) If G is a C3, C4􏼈 􏼉− graph, then

(i) τT(G)(ui)⩽2τ(G)(ui) + r where r � max ri􏼈 􏼉 and
vertex ui is connected with ri number of C3 and C4
cycles and

(ii) τT(G)(wi)⩽τ(G)(uj) + τ(G)(uk) + s where s �

max si􏼈 􏼉 and edge ei is connected with the si

number of C3 cycles in graph G.

Proof 4. After applying T-operation on G, we get m new
vertices wi corresponding to each edge ei � ujuk � xiyi for
uj � xi, uk � yi.

Case (a)
If G is a C3, C4􏼈 􏼉− free graph, on applying first R-op-

eration, the connection number of ui becomes equal to τui
.

'en for T-operation, further two new (white) vertices of
R(G) are also joined if their corresponding edges have a
common vertex between them. So connection number of ui

in T(G) becomes equal to the twice of τui
.

(For explanation from Figure 9, first consider δ(P6)(ui) �

1 for i � 1, 6, δ(P6)(ui) � 2 for i � 2, 3, 4, 5, τ(P6)(ui) � 1 i �

1, 2, 5, 6, τ(P6)(u3) � 2 � τ(P6)(u4), τT(P6)(ui) � 2 for i �

1, 2, 5, 6, τT(P6)(u3) � 4 � τT(P6)(u4) τT(P6)(w1) � 2 �

τP6
(u1) + τ((P6))(u2) � τT(G)(w5), τT((P6))(w2) � 3 �

τ((P6))(u2) + τ((P6))(u3) � τT(G)(w4), τT((P6))(w3) � 4 �

τ((P6))(u3) + τ((P6))(u4) here we conclude τT(Pn)(ui) �

2τ(Pn)(ui) and τ(Pn)(wi) � τ(Pn)(uj) + τ(Pn)(uk)

Also for n≥ 5, δCn
(ui) � 2, τCn

(ui) � 2, τT(Cn)(ui) � 4,
τT(Cn)(wi) � 4, ⇒ τT(Cn)(ui) � 2τ(Cn)(ui) and τT(G)(wi) �

τ(G)(uj) + τ(G)(uk)).
Case (b)
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Figure 8: Q-operation of simple and connected C3, C4􏼈 􏼉− graphs.
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Now consider δC3
(ui) � 2, τC3

(ui) � 0, τT(C3)(ui) � 1,
τT(C3)(wi) � 1⇒ τT(C3)(ui) � 2τ(C3)(ui) + 1 and τQ(C3)(wi)�

τ(G)(uj)+τ(G)(uk)+1, i�1,2,3.
δC4

(ui) � 2, τC4
(ui) � 1, τT(C4)(ui) � 3, τQ(C4)(wi) � 3,

⇒ τQ(C4)(ui) � 2τ(C4)(ui) + 1 and τT(C4)(wi) � τ(G)(uj)+

τ(C4)(uk) + 1, i � 1, 2, 3, 4.
Consider T(G1) in which two C3 are connected by a

common vertex u3 as shown in figure 10, then δ(G1)(ui) � 2,
τG1

(ui) � 2, τQ(G1)(ui) � 5⇒τT(G1)(ui) � 2τ(G1)(ui) + 1 for
i � 1, 2, 4, 5 and δ(G1)(u3) � 4, τG1

(u3) � 0, τT(G1)(u3) �

2⇒ τT(G1)(u3) � 2τ(G1)(u3) + 2 as u3 lies in two C3 cycles.
Also τT(G1)(wi) � 3⇒ τT(G1)(wi)≠ τ(G)(uj) + τ(G)(uk), but
τT(G1)(wi) � δ(G1)(u3) − 1 when u1 and u2 is of same degree
2 and u3 is their third vertex in C3, Also τQ(G1)(wi)⋖
τ(G)(uj) + τ(G)(uk) + 1 for i � 1, 4 and τT(G1)(wi) �

4⇒ τT(G1)(wi) � τ(G)(xi) + τ(G)(yi) + 2, for i � 2, 3, 5, 6.
Consider T(G2) in which three C3 are connected by a

common vertex u3 as shown in Figure 10, then δ(G2)(ui) � 2,
τG2

(ui) � 4, τT(G2)(ui) � 9⟶ τT(G2)(ui) � 2τ(G2)(ui) + 1
for i � 1, 2, 4, 5, 6, 7 and δ(G2)(u3) � 6, τG2

(u3) � 0,

τT(G2)(u3) � 3⇒ τT(G2)(u3) � 2τ(G2)(u3) + 3 as u3 lies in
three C3 graphs. Also τT(G2)(wi) � 5⇒ τT(G1)(wi)≠
τ(G)(uj) + τ(G)(uk) for i � 1, 4, 7 but τT(G1)(wi) �

δ(G1)(u3) − 1 when u1 and u2 is of same degree 2 and u3 is
their third vertex in C3,moreover τT(G1)(wi)⋖ τ(G2)(xi) +

τ(G2)(yi) + 1 for i � 1, 4, 7 and τT(G1)(wi) � 7⇒
τT(G1)(wi) � τ(G)(uj) + τ(G)(uk) + 3, for i � 2, 3, 5, 6, 8, 9.

Consider T(G3) in which one C3 and one C4 are con-
nected by a common vertex u3 as shown in Figure 10, then
δ(G3)(ui) � 2 for i � 1, 2, 4, 5, 6, τG3

(ui) � 2 for i � 1, 2,

τG3
(ui) � 3 for i � 4, 6, τG3

(u3) � 1, τT(G3)(u1) � 5 �

2τ(G3)(u1) + 1, τT(G3)(u3) � 4 � 2τ(G3)(u3) + 2, as u3 lies in
one C3 and one C4 graphs, τT(G3)(u4) � 7 � 2τ(G3)(u4) + 1,
τT(G3)(u5) � 3 � 2τ(G3)(u5) + 1 . Also τT(G3)(w1) � 3 �

δ(G1)(u3) − 1 when u1 and u2 are of same degree and u3 is
their third vertex in C3, Also τT(G1)(w1)〈τ(G3)(u1)+

τ(G3)(u2) + 1, τT(G3)(w2) � 5 � τ(G3)(u2) + τ(G3)(u3) + 2,
τT(G3)(w3) � 6 � τ(G)(u4)+ τ(G)(u3) + 2, τQ(G3)(w4) � 5 �

τ(G3)(u4) + τ(G3)(u5) + 1.
Consider G4 graph in which two C4 graphs and one path

are connected by vertex u3 as shown in Figure 10. As
δ(G4)(ui) � 2 for i � 1, 2, 4, δ(G4)(u3) � 5 and δ(G4)(u5) � 1,
τG4

(u1) � 1, τG4
(u2) � 4, τG4

(u3) � 3, τG4
(u4) � 4,

τG4
(u5) � 1, τT(G4)(u1) � 3� 2τ(G4)(u1) +1,τT(G4)(u2) � 9�

2τ(G4)(u2) +1, τT(G4)(u3) � 8� 2τ(G4)(u3) +2, τT(G4)(u4) �

8� 2τ(G4)(u4), τT(G4)(u5) � 2� 2τ(G4)(u5), τT(G4)(w1) �

6� τ(G4)(u1) + τ(G4)(u2) +1, τT(G4)(w2) � 9� τ(G4)(u2)+

τ(G4)(u3) +2, τT(G4)(w3) � 9� τ(G)(u3) + τ(G)(u4) +2,
τT(G4)(w4) � 5� τ(G4)(u4) + τ(G4)(u5).

Now we consider a graph G5, in which one edge u2u4 is
common in two C3 − graphs . δ(G5)(ui) � 2 and τG5

(ui) � 1,
τT(G5)(u1) � 3 � 2τ(G5)(u1) + 1, for i � 1, 3, δ(G5)(ui) � 3
and τG5

(ui) � 0, τT(G5)(ui) � 2 � 2τ(G5)(ui) + 2 as ui ∈ two
C3 cycles, for i � 2, 4, τT(G5)(w1) � 3 � τ(G5)(u1)+

τ(G5)(u2) + 2. Similarly, we can get w2, w3 and w4,

T (G1) T (G2)

T (G3) T (G5)

T (G4) T (G6)

u1

u2

u3

u4

u5
u1

u2
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u6
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u2
u3
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u3

u4

u5

u6

u7

u8

u9

u10

u1

u2 u3

u4

u5
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w2 w3

w4

w5w6

w1

w2

w3
w4

w5

w6

w7

w1

w2 w3

w4

w5w6
w7

w1
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w3
w4

w5

w8

w9

w1
w2

w3

w4

w5 w6

w7w8
w9

w10

w1

w2

w3 w4

w5

w6
w7

Figure 10: T-operation of simple and connected C3, C4􏼈 􏼉− graphs.

u1 u3 u4 u5
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u1 u2 u3 u4 u5 u6
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u8
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u4
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w2 w4 w5 w6

w1 w2 w4w3 w5
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w2

w3

w1

w2

w3

w4

w1
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Figure 9: T-operation of trees and cycles.
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τT(G4)(w5) � 2 � τ(G5)(u2) + τ(G5)(u4) + 2, as u2u4 ∈ two C3
graph.

Now we consider a graph G6 in which one edge u2u3 is
common in three C3 − graphs as shown in Figure 10,
δ(G6)(ui) � 2 and τG6

(ui) � 2, τT(G6)(u1) � 7 � 2τ(G6)(u1) +

3 as N(u1) ∈ three C3 graphs, for i � 1, 4, 5, δ(G6)(ui) � 4 and
τG6

(ui) � 0, τT(G6)(ui) � 3 � 2τ(G5)(ui) + 3 as N(ui) ∈ three
C3 graphs, for i � 2, 4, τT(G4)(w1) � 5 � τ(G6)(u2)+

τ(G6)(u4) + 1. Similarly, we can get w2, w3, w4, w6, and w7,
τT(G4)(w5) � 3 � τ(G6)(u2) + τ(G6)(u4) + 3, as u2u4 ∈ three
C3 graph.

Now, we close our discussion by taking r � max ri􏼈 􏼉 and
s � max si􏼈 􏼉, τT(G)(ui)⩽δ(G)(ui) + τ(G)(ui) + r and
τT(G)(wi)⩽τ(G)(uj) + τ(G)(uk) + s.

5. Connection Distance Indices of
derived graphs

Now, we will determine degree connection sum of derived
graphs S(G), R(G), Q(G) and S(G) by the following
theorems.

Theorem 1. If S(G) is subdivision graph of G, then

C D(S(G)) � 2 DD(G) + 2 DDe(G) +
1
2

nM1 + m(m − n) + 􏽘
n

i�1
􏽘

m

j�1
δG ui( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩dG ui, ej􏼐 􏼑. (14)

Proof 5. By □ lemma 5. τS(G)(ui) � δ(G)(ui) and τS(G)(wi) � δ(G)(uj)

+ δ(G)(uk) − 2 � τS(G)(ei)

Also

dS ui, uj􏼐 􏼑 � 2dG ui, uj􏼐 􏼑,

dS wi, wj􏼐 􏼑 � 2 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩,

dS ui, wj􏼐 􏼑 � 2dG ui, ei( 􏼁 + 1,

C D(S(G)) � 􏽘
u,v{ }⊆V(G)

dS(G) ui, uj􏼐 􏼑 τS(G) ui( 􏼁 + τS(G) uj􏼐 􏼑􏽨 􏽩,

�
1
2

􏽘

n

i�1,j�1
τS ui( 􏼁 + τS uj􏼐 􏼑􏽨 􏽩dS ui, uj􏼐 􏼑 +

1
2

􏽘

m

i�1,j�1
τS wi( 􏼁 + τS wj􏼐 􏼑􏽨 􏽩dS wi, wj􏼐 􏼑,

+
1
2

􏽘

n

i�1
􏽘

m

j�1
τS ui( 􏼁 + τS wj􏼐 􏼑􏽨 􏽩dS ui, wj􏼐 􏼑,

�
1
2

􏽘

n

i�1,j�1
δG ui( 􏼁 + δG uj􏼐 􏼑􏽨 􏽩2dG ui, uj􏼐 􏼑 +

1
2

􏽘

m

i�1,j�1
δG ei( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩2 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩,

+
1
2

􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩 2dG ui, ej􏼐 􏼑 + 1􏽨 􏽩,

� 2 DD(G) + 2 DDe(G) +
1
2

􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩 + 􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩dG ui, ej􏼐 􏼑,

� 2 DD(G) + 2 DDe(G) +
1
2

􏽘

m

j�1
􏽘

n

i�1
δG ui( 􏼁⎛⎝ ⎞⎠ +

1
2

􏽘

n

i�1
􏽘

m

j�1
δG ej􏼐 􏼑⎛⎝ ⎞⎠,

+ 􏽘
n

i�1
􏽘

m

j�1
δG ui( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩dG ui, ej􏼐 􏼑,

� 2 DD(G) + 2 DDe(G) + m
2

+
1
2

n M1 − 2m( 􏼁 + 􏽘
n

i�1
􏽘

m

j�1
δG ui( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩dG ui, ej􏼐 􏼑,

� 2 DD(G) + 2 DDe(G) +
1
2

nM1 + m(m − n) + 􏽘
n

i�1
􏽘

m

j�1
δG ui( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩dG ui, ej􏼐 􏼑.

(15)
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Theorem 2. If G be a C3, C4􏼈 􏼉− graph and R(G) is an vertex-
semitotal graph of G, then

(a)C D(R(G))≤ 2C D(G) + 2rW(G) + 2 DDe(G) +(2m + n) M1 − 2m( 􏼁 + 􏽘

n

i�1
􏽘

m

j�1
τG ui( 􏼁dG ui, ej􏼐 􏼑+

+ 􏽘
n

i�1
􏽘

m

j�1
δG ui( 􏼁dG ui, ej􏼐 􏼑 +

r

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + m 􏽘

n

i�1
τG ui( 􏼁 +

rmn

2
,

(b)C D(R(G))≥ 2C D(G) + 2 DDe(G) +(2m + n) M1 − 2m( 􏼁 + 􏽘
n

i�1
􏽘

m

j�1
τG ui( 􏼁dG ui, ej􏼐 􏼑 − s 􏽘

m

i,j�1
dG ei, ei( 􏼁

+ 􏽘
n

i�1
􏽘

m

j�1
δG ui( 􏼁dG ui, ej􏼐 􏼑 −

s

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + m 􏽘

n

i�1
τG ui( 􏼁 − sm 2m +

n

2
􏼒 􏼓.

(16)

Proof 6. (a) For upper bounds, we take by lemma 2,
τR(G)(ui) � 2τ(G)(ui) + r and τR(G)(wi) �

δ(G)(uj) + δ(G)(uk) − 2 � δG(ei).

Also dR(ui, uj) � dG(ui, uj), for ui, uj ∈ V(G). .
dR(wi, wj) � dG(ei, ej) + 2, for ei, ej ∈ E(G).
dR(ui, wj) � dG(ui, ej) + 1, for ui ∈ V(G) and ej ∈ E(G).

C D(R(G)) � 􏽘

ui,uj􏼈 􏼉⊆V(G)

dR(G) ui, uj􏼐 􏼑 τR(G) ui( 􏼁 + τR(G) uj􏼐 􏼑􏽨 􏽩,

�
1
2

􏽘

n

i�1,j�1
τR ui( 􏼁 + τR uj􏼐 􏼑􏽨 􏽩dR ui, uj􏼐 􏼑 +

1
2

􏽘

m

i�1,j�1
τR wi( 􏼁 + τR wj􏼐 􏼑􏽨 􏽩dR wi, wj􏼐 􏼑

+
1
2

􏽘

n

i�1
􏽘

m

j�1
τR ui( 􏼁 + τR wj􏼐 􏼑􏽨 􏽩dR ui, wj􏼐 􏼑′

≤ 􏽘
1
2

􏽘

n

i,j�1
2τG ui( 􏼁 + r + 2τG uj􏼐 􏼑 + r􏽨 􏽩dG ui, uj􏼐 􏼑 +

1
2

􏽘

m

i,j�1
2δG ei( 􏼁 + 2δG ej􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 2􏽨 􏽩

+
1
2

􏽘

n

i�1
􏽘

m

j�1
2τG ui( 􏼁 + r + 2δG ej􏼐 􏼑􏽨 􏽩 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩,

� 􏽘
n

i,j�1
τG ui( 􏼁 + τG uj􏼐 􏼑􏽨 􏽩dG ui, uj􏼐 􏼑 + r 􏽘

n

i,j�1
dG ui, uj􏼐 􏼑 + 􏽘

m

i,j�1
δG ei( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+ 􏽘

m

i,j�1
δG ei( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩 + 􏽘

n

i�1
􏽘

m

j�1
τG ui( 􏼁dG ui, ej􏼐 􏼑 + 􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁dG ui, ej􏼐 􏼑

+
r

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + 􏽘

n

i�1
􏽘

m

j�1
τG ui( 􏼁 +

r

2
􏽘

n

i�1
􏽘

m

j�1
+ 􏽘

n

i�1
􏽘

m

j�1
δG ej􏼐 􏼑.

� 2C D(G) + 2rW(G) + 2 DDe(G) + 2m M1 − 2m( 􏼁 + 􏽘

n

i�1
􏽘

m

j�1
τG ui( 􏼁dG ui, ej􏼐 􏼑+

+ 􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁dG ui, ej􏼐 􏼑 +

r

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + m 􏽘

n

i�1
τG ui( 􏼁 +

rmn

2
+ n M1 − 2m( 􏼁.

� 2C D(G) + 2rW(G) + 2 DDe(G) +(2m + n) M1 − 2m( 􏼁 + 􏽘

n

i�1
􏽘

m

j�1
τG ui( 􏼁dG ui, ej􏼐 􏼑+

+ 􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁dG ui, ej􏼐 􏼑 +

r

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + m 􏽘

n

i�1
τG ui( 􏼁 +

rmn

2
.

(17)
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For lower bounds, by lemma 6. τR(G)(ui) � 2τ(G)(ui) and τR(G)(wi) � [δ(G)(uj)

+ δ(G)(uk) − 2] − s � δG(ei) − s.

C D(R(G)) � 􏽘

ui,uj􏼈 􏼉⊆V(G)

dR(G) ui, uj􏼐 􏼑 τR(G) ui( 􏼁 + τR(G) uj􏼐 􏼑􏽨 􏽩

�
1
2

􏽘

n

i�1,j�1
τR ui( 􏼁 + τR uj􏼐 􏼑􏽨 􏽩dR ui, uj􏼐 􏼑 +

1
2

􏽘

m

i�1,j�1
τR wi( 􏼁 + τR wj􏼐 􏼑􏽨 􏽩dR wi, wj􏼐 􏼑 +

1
2

􏽘

n

i�1
􏽘

m

j�1
τR ui( 􏼁 + τR wj􏼐 􏼑􏽨 􏽩dR ui, wj􏼐 􏼑

≥
1
2

􏽘

n

i,j�1
2τG ui( 􏼁 + 2τG uj􏼐 􏼑􏽨 􏽩dG ui, uj􏼐 􏼑 +

1
2

􏽘

m

i,j�1
2δG ei( 􏼁 − s + 2δG ej􏼐 􏼑 − s􏽨 􏽩 dG ei, ej􏼐 􏼑 + 2􏽨 􏽩

+
1
2

􏽘

n

i�1
􏽘

m

j�1
2τG ui( 􏼁 + 2δG ej􏼐 􏼑 − s􏽨 􏽩 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩.

� 􏽘
n

i,j�1
τG ui( 􏼁 + τG uj􏼐 􏼑􏽨 􏽩dG ui, uj􏼐 􏼑 + 􏽘

m

i,j�1
δG ei( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+ 􏽘
m

i,j�1
δG ei( 􏼁 + δG ej􏼐 􏼑􏽨 􏽩 − s 􏽘

m

i,j�1
dG ei, ej􏼐 􏼑 − 2s 􏽘

m

i,j�1
+ 􏽘

n

i�1
􏽘

m

j�1
τG ui( 􏼁dG ui, ej􏼐 􏼑.

+ 􏽘
n

i�1
􏽘

m

j�1
δG ui( 􏼁dG ui, ej􏼐 􏼑 −

s

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + 􏽘

n

i�1
􏽘

m

j�1
τG ui( 􏼁 −

s

2
􏽘

n

i�1
􏽘

m

j�1
+ 􏽘

n

i�1
􏽘

m

j�1
δG ej􏼐 􏼑

� 2C D(G) + 2 DDe(G) + 2m M1 − 2m( 􏼁 − s 􏽘

m

i,j�1
dG ei, ei( 􏼁 − 2sm

2

+ 􏽘

n

i�1
􏽘

m

j�1
τG ui( 􏼁dG ui, ej􏼐 􏼑 + 􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁dG ui, ej􏼐 􏼑 −

s

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + m 􏽘

n

i�1
τG ui( 􏼁 −

smn
2

+ n M1 − 2m( 􏼁.

� 2C D(G) + 2 DDe(G) +(2m + n) M1 − 2m( 􏼁 + 􏽘
n

i�1
􏽘

m

j�1
τG ui( 􏼁dG ui, ej􏼐 􏼑 − sm 2m +

n

2
􏼒 􏼓

− s 􏽘
m

i,j�1
dG ei, ei( 􏼁 + 􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁dG ui, ej􏼐 􏼑 −

s

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + m 􏽘

n

i�1
τG ui( 􏼁.

(18)

If G is C3, C4􏼈 􏼉− free graph, then connection distance
index (CD)of R(G) can also be determined by taking r � 0
and s � 0 in :eorem 2.

Corollary 1. If G be a C3, C4􏼈 􏼉− free graph,then

C D(R(G)) � 2C D(G) + 2 DDe(G) +(2m + n) M1 − 2m( 􏼁

+ 􏽘

n

i�1
􏽘

m

j�1
τG ui( 􏼁dG ui, ej􏼐 􏼑

+ 􏽘
n

i�1
􏽘

m

j�1
δG ui( 􏼁dG ui, ej􏼐 􏼑 + m 􏽘

n

i�1
τG ui( 􏼁.

(19)

Theorem 3. If Q(G) is an edge-semitotal graph of G, then
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C D(Q(G)) �D D(G) + C D(G) + 2rW(G) + 2mn + n 􏽘
n

i�1
τG ui( 􏼁 + rn

2
+ 2sWe(G)

+
1
2

􏽘

m

i�1,j�1
τG xi( 􏼁 + τG yi( 􏼁 + τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+
1
2

􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁 + τG ui( 􏼁􏼂 􏼃 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

(r + s)

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + 1􏽨 􏽩

+
1
2

􏽘

n

i�1
􏽘

m

j�1
τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩.

(20)

Proof 7. By

lemma 7. τQ(G)(ui)⩽δG(ui) + τG(ui) + r and
τQ(G)(wi)⩽τ(G)(uj) + τ(G)(uk) + s.

To avoid confusion, we take edge ei � xiyi � ujuk for
some j and k, then τQ(G)(wi)⩽τ(G)(xi) + τ(G)(yi) + s. Also

dQ ui, uj􏼐 􏼑 � dG ui, uj􏼐 􏼑 + 1,

dQ wi, wj􏼐 􏼑 � dG ei, ej􏼐 􏼑 + 1,

dQ ui, wj􏼐 􏼑 � dG ui, ei( 􏼁 + 1,

C D(Q(G)) � 􏽘

ui,uj􏼈 􏼉⊆V(Q)

dQ(G) ui, uj􏼐 􏼑 τQ(G) ui( 􏼁 + τQ(G) uj􏼐 􏼑􏽨 􏽩,

�
1
2

􏽘
n

i�1,j�1
τQ ui( 􏼁 + τQ uj􏼐 􏼑􏽨 􏽩dQ ui, uj􏼐 􏼑 +

1
2

􏽘
m

i�1,j�1
τQ wi( 􏼁 + τQ wj􏼐 􏼑􏽨 􏽩dQ wi, wj􏼐 􏼑, +

1
2

􏽘
n

i�1
􏽘

m

j�1
τQ ui( 􏼁 + τQ wj􏼐 􏼑􏽨 􏽩dQ ui, wj􏼐 􏼑.

⩽
1
2

􏽘

n

i�1,j�1
δG ui( 􏼁 + τG ui( 􏼁 + r + δG uj􏼐 􏼑 + τG uj􏼐 􏼑 + r􏽨 􏽩 dG ui, uj􏼐 􏼑 + 1􏽨 􏽩

+
1
2

􏽘
m

i�1,j�1
τG xi( 􏼁 + τG yi( 􏼁 + s + τG xj􏼐 􏼑 + τG yj􏼐 􏼑 + s􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+
1
2

􏽘
n

i�1
􏽘

m

j�1
δG ui( 􏼁 + τG ui( 􏼁 + r + τG xj􏼐 􏼑 + τG yj􏼐 􏼑 + s􏽨 􏽩 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩.

�
1
2

􏽘
n

i�1,j�1
δG ui( 􏼁 + δG uj􏼐 􏼑􏽨 􏽩 dG ui, uj􏼐 􏼑􏽨 􏽩 +

1
2

􏽘
n

i�1,j�1
τG ui( 􏼁 + τG uj􏼐 􏼑􏽨 􏽩 dG ui, uj􏼐 􏼑􏽨 􏽩

+ r 􏽘
n

i�1,j�1
dG ui, uj􏼐 􏼑􏽨 􏽩 +

1
2

􏽘
n

i�1,j�1
δG ui( 􏼁 + δG uj􏼐 􏼑􏽨 􏽩

+
1
2

􏽘

n

i�1,j�1
τG ui( 􏼁 + τG uj􏼐 􏼑􏽨 􏽩 + r 􏽘

n

i�1,j�1
+
1
2

􏽘

m

i�1,j�1
τG xi( 􏼁 + τG yi( 􏼁 + τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩 + s 􏽘

m

i,j�1
dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+
1
2

􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁 + τG uj􏼐 􏼑􏽨 􏽩 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

(r + s)

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

1
2

􏽘

n

i�1
􏽘

m

j�1
τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩.

� D D(G) + C D(G) + 2rW(G) + 2mn + n 􏽘

n

i�1
τG ui( 􏼁 + rn

2
+ 2sWe(G)

+
1
2

􏽘
m

i�1,j�1
τG xi( 􏼁 + τG yi( 􏼁 + τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+
1
2

􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁 + τG ui( 􏼁􏼂 􏼃 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

(r + s)

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

1
2

􏽘

n

i�1
􏽘

m

j�1
τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩.

(21)
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If G is C3, C4􏼈 􏼉− free graph, then connection distance
index (CD) of Q(G) can also be determined by taking r � 0
and s � 0 in :eorem 3.

Corollary 2. If G is a C3, C4􏼈 􏼉− free graph, then

C D(Q(G)) �D D(G) + C D(G) + 2mn + n 􏽘

n

i�1
τG ui( 􏼁 +

1
2

􏽘

m

i�1,j�1
τG xi( 􏼁 + τG yi( 􏼁 + τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+
1
2

􏽘

n

i�1
􏽘

m

j�1
δG ui( 􏼁 + τG ui( 􏼁􏼂 􏼃 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

1
2

􏽘

n

i�1
􏽘

m

j�1
τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩.

(22)

Theorem 4. If T � T(G) is an total graph of G, then

C D(T(G)) �2C D(G) + 2rW(G) + 2sWe(G) + 􏽘
n

i�1
􏽘

m

j�1
τG ui( 􏼁􏼂 􏼃 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

1
2

􏽘

m

i�1,j�1
τG xi( 􏼁 + τG yi( 􏼁 + τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩

· dG ei, ej􏼐 􏼑 + 1􏽨 􏽩 +
(r + s)

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

1
2

􏽘

n

i�1
􏽘

m

j�1
τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩.

(23)

Proof 8. To avoid confusion, we take edge ei � xiyi � ujuk

for some j and k. By lemma 4, τT(G)(wi)⩽τ(G)(xi)+

τ(G)(yi) + s and τT(G)(ui) � 2τG(ui) + r

Also

dT(u, v) � dG(u, v),

dT wi, wj􏼐 􏼑 � dG ei, ej􏼐 􏼑 + 1,

dT ui, wj􏼐 􏼑 � dG ui, ei( 􏼁 + 1,

C D(T(G)) � 􏽘
u,v{ }⊆V(Q)

dT(G)(u, v) τT(G)(u) + τT(G)(v)􏽨 􏽩,

�
1
2

􏽘

n

i�1,j�1
τT ui( 􏼁 + τQ uj􏼐 􏼑􏽨 􏽩dT ui, uj􏼐 􏼑 +

1
2

􏽘

m

i�1,j�1
τT wi( 􏼁 + τT wj􏼐 􏼑􏽨 􏽩dT wi, wj􏼐 􏼑

+
1
2

􏽘

n

i�1
􏽘

m

j�1
τT ui( 􏼁 + τT wj􏼐 􏼑􏽨 􏽩dT ui, wj􏼐 􏼑

⩽
1
2

􏽘

n

i�1,j�1
2τG ui( 􏼁 + r + 2τG uj􏼐 􏼑 + r􏽨 􏽩 dG ui, uj􏼐 􏼑􏽨 􏽩

+
1
2

􏽘

m

i,j�1
τG xi( 􏼁 + τG yi( 􏼁 + s + τG xj􏼐 􏼑 + τG yj􏼐 􏼑 + s􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+
1
2

􏽘

n

i�1
􏽘

m

j�1
2τG ui( 􏼁 + r + τG xj􏼐 􏼑 + τG yj􏼐 􏼑 + s􏽨 􏽩 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩
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� 􏽘

n

i�1,j�1
τG ui( 􏼁 + τG uj􏼐 􏼑􏽨 􏽩 dG ui, uj􏼐 􏼑􏽨 􏽩 + r 􏽘

n

i�1,j�1
dG ui, uj􏼐 􏼑􏽨 􏽩

+
1
2

􏽘

n

i�1,j�1
τG xj􏼐 􏼑 + τG yj􏼐 􏼑 + τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+ s 􏽘
m

i,j�1
dG ei, ej􏼐 􏼑 + 1􏽨 􏽩 + 􏽘

n

i�1
􏽘

m

j�1
τG uj􏼐 􏼑􏽨 􏽩 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩

+
(r + s)

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

1
2

􏽘

n

i�1
􏽘

m

j�1
τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩

� 2C D(G) + 2rW(G) + 2sWe(G) + 􏽘
n

i�1
􏽘

m

j�1
τG ui( 􏼁􏼂 􏼃 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩

+
1
2

􏽘

m

i�1,j�1
τG xi( 􏼁 + τG yi( 􏼁 + τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+
(r + s)

2
􏽘

n

i�1
􏽘

m

j�1
dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

1
2

􏽘

n

i�1
􏽘

m

j�1
τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩.

(24)

If G is C3, C4􏼈 􏼉− free graph, then connection distance
index (CD) of T(G) can also be determined by taking r � 0
and s � 0 in 'eorem 4.

Corollary 3. If G is a C3, C4􏼈 􏼉− free graph, then

C D(T(G)) � 2CD(G) +
1
2

􏽘

m

i�1,j�1
τG xi( 􏼁 + τG yi( 􏼁 + τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩

+ 􏽘
n

i�1
􏽘

m

j�1
τG ui( 􏼁􏼂 􏼃 dG ui, ej􏼐 􏼑 + 1􏽨 􏽩 +

1
2

􏽘

n

i�1
􏽘

m

j�1
τG xj􏼐 􏼑 + τG yj􏼐 􏼑􏽨 􏽩 dG ei, ej􏼐 􏼑 + 1􏽨 􏽩.

(25)

6. Conclusion

In previous section, first of all, connection numbers of old
(black) vertices and new (white) were determined for de-
rived graph F(G) where F ∈ S, R, Q, T{ } (by Lemma 1,
Lemma 2,Lemma 3 and Lemma 4 ) . It was found that exact
values of connection numbers for C3, C4􏼈 􏼉− free graph and
S(G) were determined. Bounded values of R(G), Q(G) and
T(G) for C3, C4􏼈 􏼉− graphs were determined. 'en, finally,
exact and bounded values of connection distance (CD) of
derived graphs S(G), R(G), Q(G), T(G){ } were determined
by 'eorems and Corollaries. International Academy of
Mathematical Chemistry declared better reports for the
chemical capability of the Zagreb connection indices than
the ordinary Zagreb indices for the entropy and acentric
factor of the octane isomers.
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