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Analytic hierarchy process (AHP) is a well-known attribute weighting method in multiattribute decision-making. Its major
requirement is to satisfy the consistency of pairwise matrix (PM). To solve this problem, we �rst propose a new consistency
improvement method of PM based on consistency ratio (CR) decreasing rate. In this method, we calculate the CR decreasing rates
of all the PMs reconstituted by replacing all elements of the PMwith the lower and upper neighbouring 9-point scales and �nd the
element withmaximumCR decreasing rate, and thenmodify it to its lower or upper neighbouring scale. Second, we develop third-
order approximate polynomial for random consistency index using least square method. It enables to determine the RI value
according to the number of attributes without a numerical table. ­ird, we propose the �nal PM determining method and �nal
attribute weighting method considered decision makers’ levels based on the CR values of the individual PMs in case several
decision makers perform their own pairwise comparisons. We test the performances of the proposed and some previous
consistency improvement methods with two numerical examples. ­e results demonstrate that the proposed method improves
the consistency of PM better and faster with smaller amount of modi�cation than that of the previous methods, while it modify the
elements of the PM to 9-point scales, necessarily. We apply the proposed method to hip joint prosthesis material selection. ­e
proposed methods may be widely used in practical applications of AHP.

1. Introduction

Determining a reasonable attribute weights plays a vital role
in multiattribute decision-making (MADM) and multi-
objective optimization (MOO) because the decision-making
and optimization results may di�er according to the attri-
bute weights. Analytic hierarchy process (AHP) is well-
known attribute weighting method [1]. AHP determines the
attribute weights based on pairwise comparison evaluation
data for the pairs of attributes. ­e 9-point scales are used to
transform the decision maker’s judgments into numerical
quantities [2]. ­e essential feature of AHP is the pairwise

comparisons between the attributes instead of the direct
allocation of the weights [3]. ­e details of AHP have been
described in the literature.

AHP has been widely applied to calculate the subjective
attribute weights in many practical MADM and MOO
problems [4, 5]. Soni et al. [6] determined the criteria
weights using AHP for material selection of reinforced
sustainable composites by recycling waste plastics and agro-
waste. Zhong et al. [7] constructed a cost evaluation system
with 5 indices in the �rst level and 22 indices in the second
level using AHP. Radulescu et al. [8] calculated the overall
weights of the criteria as a linear combination of the
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individual weights obtained from the group AHP and ex-
tended entropy weighting method for evaluating the fourth
wave of COVID-19 pandemic. Peng andWu [9] determined
the comprehensive weights of each index using AHP to score
the index system for evaluating the benefit development of
the offshore wind power after the cancellation of the public
subsides. Wei et al. [10] constructed the evaluation model
using AHP and fuzzy comprehensive evaluation. Mathew
et al. [11] calculated the weights of the criteria using fuzzy
AHP and determined the final ranking of the alternatives
using spherical fuzzy TOPSIS. Rawa et al. [12] proposed an
economical-technical-environmental operation for power
networks with wind-solar-hydropower generation by using
AHP and improved grey wolf algorithm. ,ey used a
weighted sum strategy using AHP to transform the multi-
objective problem into a normalized single objective one.
Okudan and Budayan [13] used fuzzy AHP for conducting
the evaluation of project characteristics affecting risk oc-
currences in the construction projects. Dano [14] analysed
the impacts of flash hazards using AHP and identified the
most effective methods to reduce the flash flood impacts
using expert’s opinions in Jeddah. Chen et al. [15] dealt with
the uncertainty of the wind power, the load demand, and the
multiobjective function by using fuzzy chance constraint
programming and improved AHP.

For group decision-making problems, hesitant fuzzy set,
complex intuitionistic fuzzy set, and probabilistic hesitant
fuzzy set have been introduced to handle and model the
uncertainty and vagueness in decision-making very effec-
tively, reflect the importance of different numerical values
more clearly, elicit the decision makers’ knowledge, and
develop more effective decision-makingmodel. [16–18] Rani
and Garg [16] proposed a novel algorithm for multiattribute
group decision-making using complex intuitionistic fuzzy
values. Jin et al. [17] proposed a decision-making model
using probabilistic hesitant fuzzy preference relations for
reflecting clearly the importance of different numerical
values and eliciting the decision makers’ knowledge in the
group decision-making problems. Liu et al. [18] calculated
the probabilities of elements in the probabilistic hesitant
fuzzy element and the probability of risk status by using two
nonlinear programming models. Khan et al. [19] proposed a
performancemeasure using anMADMmethod based on the
complex T-spherical fuzzy power aggregation operators. Liu
et al. [20] developed a novel correlation coefficient to
measure the strength of the relationship between the hesitant
fuzzy sets.

Although AHP is a useful tool for attribute weighting, it
has some drawbacks. One drawback is that it is difficult to
conduct pairwise comparison in practical applications. Yang
et al. [5] proposed a simplest questionnaire to conduct the
pairwise comparison, easily and conventionally. Another
drawback is that it is difficult to satisfy the consistency of
pairwise matrix (PM) in practical applications. To determine
the reasonable attribute weights using AHP, the consistency
of PM must be satisfied. When it does not satisfy the
consistency, it is need to repair the primary PM. In order to
satisfy the consistency of the PM, some researchers proposed
the reconstitution methods of the inconsistent PM. Girsang

et al. [21] proposed ANTAHP method using ant optimi-
zation algorithm to reconstitute the inconsistent PM by
minimizing the distance between the primary and modified
PMs. Wu et al. [22] improved the inconsistency of the PM
using marginal optimization method. ,e method is based
to increase (or decrease) all elements by a fixed value, and it
calculates the marginal effect of each modification. Zeshui
and Cuiping [23] proposed a consistency improvement
method based on auto-adaptive process. In the method, the
element aij of the inconsistent PM A is replaced by bij � aijα
(wi/wj)

1−α, where w � ((w1, . . . , wi, . . . , wn)T is the weight
vector obtained from A. ,e generated matrix B� [bij] has a
reduced CR. ,is process is repeated until the consistency is
satisfied. Cao et al. [24] proposed a heuristic method to
modify inconsistent PM. ,ey decomposed the primary PM
as the Hadamard product of the consistent PM and a re-
ciprocal deviation matrix. ,ey constituted a modified PM
by convex combination of the reciprocal zero deviation
matrices. ,ey proposed auto-adaptive modification algo-
rithm using such convex combinations. Yang et al. [25]
modified the inconsistent PM by combining the particle
swarm optimization and Taguchi method. Benı́tez et al. [26]
proposed a linearization method to provide the closest
consistent PM to the inconsistent PM by using orthogonal
projection in a linear space.

For consistency improvement, it needs to pay attention
to guarantee a good balance between improvement of
consistency and preservation of primary information.
However, the previous methods are lacking in guaranteeing
such balance. On the other hand, the elements of the PM are
9-point scales because the pairwise comparison is performed
by means of 9-point scales {1/9, 1/8, . . ., 8, 9} in the con-
ventional AHP. However, in the previous methods, the el-
ements of the reconstituted PMs are no 9-point scales, and
therefore, the PMs obtained from the previous methods are
no inherent ones. To deal with this shortcoming, we propose
a new consistency improvement method according to the
following principles:

(i) ,e amount of consistency improvement of the PM
should be as large as possible, and the deviation
between the primary and reconstituted PMs and the
number of the modified elements should be as small
as possible.

(ii) ,e elements of the inconsistent PM should be
replaced with the lower or upper neighbouring 9-
point scales, and the elements of the reconstituted
PM should be 9-point scales.

When two or more decision makers take part in the
pairwise comparison between the attributes, the PMs and the
attribute weights may differ according to their knowledge
and opinions. ,erefore, it is necessary to constitute a final
PM by synthesizing the individual PMs obtained from each
decision makers and determine the final attribute weighting
from the final PM. It needs to consider the decision makers’
levels to constitute the final PM. However, there is no
reasonable objective method to determine the decision
makers’ levels, while the previous methods are generally
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subjective ones. To overcome this shortcoming, we propose a
new objective method to determine the decision makers’
levels based on the CR values of their PMs. ,e worse the
consistency of the PM is, the more mistakes the decision
maker’s judgment has, and therefore, we can regard that the
CR value reflects the decision maker’s level.

We propose a new consistency improvement method of
pairwise matrix based on consistency ratio decreasing rate
and attribute weighting method considered decisionmakers’
levels in analytic hierarchy process and apply the methods to
hip joint prosthesis material selection.

,e novelties and advantages of the proposed methods
are as follows:

(i) In the CR decreasing rate-based consistency im-
provement method of inconsistent PM, the ele-
ments of the inconsistent PM are modified to the
adjacent 9-point scales, and all the elements of the
reconstituted PM are the 9-point scales, not real
numbers. ,is method improves the consistency
more, better, and faster with smaller number of
elements and smaller amount of modification, and it
guarantees a very good balance between consistency
improvement and information preservation of the
primary PM.

(ii) ,e approximate formula is used to determine the
RI value according to the number of attributes,
not the numerical table for RI. It enables to test the
consistency of PM without a numerical table for
RI.

(iii) In the final attribute weighting method considered
decision makers’ levels, the CR value is used as an
objective measure that reflects the decision maker’s
level. It is possible to determine the decision
makers’ levels objectively, not subjectively. It en-
ables to determine the attribute weights, more
scientifically and reasonably. In this method, the
elements of the final PM are also 9-point scales, and
it enables to preserve the inherent characteristics of
AHP.

,e rest of this paper is organized as follows: In
Section 2, we describe a new consistency improvement
method of PM based on CR decreasing rate, a devel-
opment method of approximate polynomial for RI
according to number of attributes, and a constitution
method of final PM and final attribute weighting method
considered decision makers’ levels. In Section 3, we
describe the numerical test results of the proposed
method and its application to hip joint prosthesis ma-
terial selection. In Section 4, we present the conclusions.
In Appendix section, we describe the attribute weighting
method using AHP with the simplest questionnaire,
development method of approximate polynomial by least
square method, and three well-known MADM methods
(MADMs) such as simple additive weighting (SAW)
method, technique for order preference by similarity to
ideal solution (TOPSIS) method, and grey relational
analysis (GRA) method used in this work.

2. Methodology

2.1. CR Decreasing Rate-Based Consistency Improvement
Methodof InconsistentPM. Let CR(A) be the CR value of the
PM A� (aij)n×n.

,e main steps of a new consistency improvement
method are as follows:

Step 1. For each element alm (l � 1, n − 1, m � l + 1, n)
in the upper triangular matrix of the PM A� (aij)n×n,
reconstitute the PM A−

lm � (a−
ij)n×n by replacing the

element alm with the lower neighbouring scale h−
lm, and

then calculate its CR value CR(A−
lm) and CR decreasing

rate dC Rr−
lm as follows:

dC Rr
−
lm �

dC R
−
lm

alm − h
−
lm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 1/alm − 1/h−

lm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

, (1)

where

dC R
−
lm �CR(A) −CR A

−
lm( 􏼁,

a
−
lm � h

−
lm,a

−
ml �

1
a

−
lm

,a
−
ij � aij, i,j � 1,n,(i, j)≠(l,m).

(2)

,e lower and upper neighbouring scales of the 9-point
scales {1/9, 1/8, . . ., 8, 9} are shown in Table 1.
Step 2. Find the maximum value of the CR decreasing
rate dC Rr−

r1s1
from {dC Rr−

lm; l � 1, n − 1, m � l + 1, n}
as follows:

dC Rr
−
r1s1

� max
1≤l<m≤n

dC Rr
−
lm􏼈 􏼉. (3)

Step 3. For each element alm (l � 1, n − 1, m � l + 1, n)
in the upper triangular matrix of the PM A� (aij)n×n,
reconstitute the PM A+

lm � (a+
ij)n×n by replacing the

element alm with the upper neighbouring scale h+
lm, and

then calculate its CR value CR(A+
lm) and CR decreasing

rate dC Rr+
lm as follows:

dC Rr
+
lm �

dC R
+
lm

alm − h
+
lm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 1/alm − 1/h+

lm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

, (4)

where

dC R
+
lm �CR(A) −CR A

+
lm( 􏼁,

a
+
lm � h

+
lm,a

+
ml �

1
a

+
lm

,a
+
ij � aij, i,j � 1,n,(i, j)≠(l,m).

(5)

Step 4. Find the maximum value of the CR decreasing
rate dC Rr+

r2s2
from {dC Rr+

lm; l � 1, n − 1, m � l + 1, n}
as follows:

dC Rr
+
r2s2

� max
1≤l<m≤n

dC Rr
+
lm􏼈 􏼉. (6)

Step 5. If dC Rr−
r1s1
≥dC Rr+

r2s2
, then reconstitute the

PM B � (bij)n×n by replacing the element ar1s1
with the
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lower neighbouring scale h−
r1s1

in the PM A� (aij)n×n,
where

br1s1
� h

−
r1s1

, bs1r1
�

1
br1s1

, bij � aij,

i, j � 1, n, (i, j)≠ r1, s1( 􏼁.

(7)

If dC Rr−
r1s1
<dC Rr+

r2s2
, then reconstitute the PM B �

(bij)n×n by replacing the element ar2s2
with the upper

neighbouring scale h+
r2s2

in the PM A� (aij)n×n, where

br2s2
� h

+
r2s2

, bs2r2
�

1
br2s2

, bij � aij,

i, j � 1, n, (i, j)≠ r2, s2( 􏼁.

(8)

Step 6. Calculate the CR value CR(B) of the recon-
stituted PM B � (bij)n×n.
Step 7. If CR(B)>CR0, then A�B and go to Step 1.
Step 8. If CR(B)≤CR0, then calculate the principal
eigenvector (v � v1, . . . , vj, . . . , vn)T from the recon-
stituted PM B � (bij)n×n.
Step 9. Calculate the attribute weights (w1, . . . ,

wj, . . . , wn)T by normalizing (v � v1, . . . , vj, . . . , vn)T

as follows:

wj �
vj

􏽐
n
k�1 vk

, j � 1, n. (9)

We call this method CR decreasing rate-based method.
Let A� (aij)n×n and B� (bij)n×n be the primary incon-

sistent PM and reconstituted PM, respectively.
To evaluate the performance of the consistency im-

provement method of the inconsistent PM, we use the
following three measures:

(i) CR decreasing amount,

dC R(A, B) � CR(B) − CR(A), (10)

where CR(A) and CR(B) are the CR values of the
primary PM A and the reconstituted PM B,
respectively.

(ii) Matrix deviation,

dM(A, B) � 􏽘
n

i�1
􏽘

n

j�1
aij − bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (11)

(iii) CR decreasing rate,

dC Rr(A, B) �
dC R(A, B)

dM(A, B)
. (12)

,e greater the values of dCR(A,B) and dCRr(A,B) are,
the better the performance of the consistency improvement
method is. ,e smaller the value of dM(A,B) is, the better the
reconstituted PM preserves the information of the primary
PM. ,e CR decreasing rate dCRr(A,B) becomes the major
measure to evaluate the performance of the consistency
improvement method of PM from among above three
measures.

2.2. Development Method of Approximate Polynomial for RI
According to the Number of Attributes. We develop m-th
order approximate polynomial for RI as the following form:

RI � RIm(n) � a0 + a1n . . . + am−1n
m− 1

+ amn
m

, (13)

with the data set {(n, RIn), n � 3, 15.}, where n is the number
of attributes and RIn is the corresponding RI value (Table 2).

,e MAE, MRE, and MSE of the m-th order approxi-
mate polynomial are as follows:

MAEm �
1
13

􏽘

15

n�3
RIn − RIm(n)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

MREm �
1
13

􏽘

15

n�3

RIn − RIm(n)

RIn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%,

MSEm �
1
13

􏽘

15

n�3
RIn − RIm(n)( 􏼁

2
.

(14)

,e main steps to develop the approximate polynomial
for RI value according to the number of attributes are as
follows:

Step 1. Develop six approximate polynomials
RI�RIm(n); m � 1, 6 with the data {(n, RIn), n � 3, 15.}
(Table 2).
Step 2. Evaluate the MAE, MRE, and MSE of six ap-
proximate polynomials RI�RIm(n); m � 1, 6.
Step 3. Select the suitable approximate polynomial
RI�RIr(n) with acceptable MAE, MRE, and MSE from
among six approximate polynomials RI�RIm(n); m �

1, 6.

2.3. Constituting Method of Final PM Constituting Method
and Final Attribute Weighting Method Considered Decision
Makers’ Levels. LetM be the number of the decision makers.

,e main steps to constitute the final PM and deter-
mining the final attribute weights considered decision
makers’ levels are as follows:

Step 1. Constitute the simplest questionnaires by M
decision makers and constitute M PMs

Table 1: Lower and upper neighbouring scales of the 9-point scales.

9-Point scale 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9
Lower neighbouring scale 1/9 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8
Upper neighbouring scale 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 9
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{A(m) � (a
(m)
ij )n×n; m � 1, M } from the simplest

questionnaires, where A(m) � (a
(m)
ij )n×n is the PM

constituted from m-th decision maker’s questionnaire.
Step 2. Test the consistency of the PMs.
Step 3. Reconstitute the consistent PM by modifying
the inconsistent PM using the CR decreasing rate-based
consistency improvement method.
Denote the consistent PMs as B(m) � (b

(m)
ij )n×n; m �

1, M.
Step 4. Calculate the CR value CR(m) of the PM B(m) �

(b
(m)
ij )n×n; m � 1, M.

Step 5. Calculate the inverse values of the CR values
{ICR(m)� 1/CR(m); m � 1, M.}.
Step 6. Normalize the inverse values of the CR values
{ICR(m); m � 1, M} and determine the normalized
values as the decision makers’ levels {hm; m � 1, M}.

hm �
ICR(m)

􏽐
M
j�1 ICR

(j)
. (15)

Commonly, the greater the CR value is, the worse the
consistency of the PM is. ,e worse the consistency of
the PM is, the more mistakes the decision maker’s
judgment has. ,erefore, we can regard that the inverse
value of the CR value of the PM reflects the decision
maker’s level. ,is is why we assign the normalized
inverse values of CR values to the decision makers’
levels.

Step 7. Constitute the composite PM B(0) � (b
(0)
ij )n×n as

the geometric mean of the individual PMs
{B(m) � (b

(m)
ij )n×n; m � 1, M} as follows:

b
(0)
ij � 􏽙

M

m�1
b

(m)
ij􏼐 􏼑

hm
, i, j � 1, n. (16)

,e elements of B(0) � (b
(0)
ij )n×n may be no 9-point

scales.
Step 8. Constitute the final PM A(0) � (a

(0)
ij )n×n by

transforming the elements of B(0) � (b
(0)
ij )n×n to the

nearest neighbouring 9-point scales.
,e final PM A(0) � (a

(0)
ij )n×n reflects not only the

decision makers’ pairwise judgments but also their
levels.
Step 9. Determine the final attribute weights
(w1, . . . , wj, . . . , wn)T by normalizing the principal
eigenvector (v � v1, . . . , vj, . . . , vn)T of the final PM
A(0) � (a

(0)
ij )n×n.

Figure 1 shows the flowchart of the proposed methods.

3. Results and Discussion

3.1. Numerical Test Results of the Proposed Consistency Im-
provement Method. We test the performance of proposed
consistency improvement method of PM by applying it to
two examples and compare with the previous methods.

Example 1. ,e primary PM [21, 22] is as follows:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,CR � 0.169087. (17)

Table 2: RI value according to the number of attributes [28].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RI 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59
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,e reconstituted PM using the ANTAHPmethod [21] is
as follows:

1 4.2 2.4 7.4 5.8 5.4
1
2.4

1
3.4

1
4.2

1
1
3

4.4 2.6 2.4 1/4
1
6.8

1
2.4

3 1 6.8 3.4 4.2 4.4
1
4.2

1
7.4

1
4.4

1
6.8

1
1
2.8

1
3.4

1
7

1
9

1
5.8

1
2.6

1
3.4

2.8 1
1
1.8

1
5

1
6.8

1
5.4

1
2.4

1
4.2

3.4 1.8 1
1
5

1
6.8

2.4 4
1
4.4

7 5 5 1
1
2

3.4 6.8 4.2 9 6.8 6.8 2 1
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,CR � 0.099838. (18)

Select the attributes suited to given MADM problems

Select the decision makers that take part in the pairwise 
comparison between the attributes

Record the simplest questionnaires by all the decision 
makers

Constitute PMs from the simplest questionnaires from all 
the decision makers

Determine the RI value according to the number of 
attributes using the approximate polynomial

Calculate the CR values of all the PMs and test the 
consistency

Reconstitute the inconsistent PMs using the CR 
decreasing rate-based consistency improvement method

Constitute the final PM and determine the final attribute 
weights considered decision makers’ levels

Figure 1: Flowchart of the proposed methods.
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,e reconstituted PMs using Wu method [22] are as
follows:

In case of d� 0.1 (where d is the fixed modifying
amount),

1 4.3 2.3 77 53 5.3 0.4545 0.303

023256 1 1 03333 43 2.3 0.2326 0.1587

043478 3.003 30003 1 67 4.3 5.3 0.2326

0.12987 0.23256 023256 014925 1 07692 0.1471 0.1149

0.18868 043478 043478 027027 22999 1 0.2326 0.1493

0.18868 043478 023256 33003 13001 1 0.2326 0.1493

2.2002 42992 018868 67981 42992 42992 1 0.3846

3.3003 63012 42992 87032 66979 66979 2.6001 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, CR � 0.099955. (19)

In case of d� 0.01,

1 4.28 2.28 7.72 5.28 5.28 0.4386 0.3049

0.23364 1 0.3367 4.28 2.28 2.28 0.23360 0.1592

0.4386 2.97 1 6.72 3.72 4.32 5.28 0.2336

0.12953 0.23364 0.14881 1 0.4386 0.3049 0.1484 0.1147

0.18939 0.4386 0.26882 2.28 1 0.7812 0.2336 0.1488

0.18939 0.4386 0.23148 3.27981 1.2801 1 0.2336 0.1488

2.28 4.2808 0.18939 6.7385 4.2808 4.2808 1 0.3802

3.2798 6.2814 4.2808 8.7184 6.7204 6.7204 2.6302 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,CR � 0.099825. (20)

In case of d� 0.001,

1 4.282 2.282 7.718 5.282 5.282 0.4382 0.3047

0.23354 1 0.3364 4.282 2.282 2.282 0.2335 0.1592

0.43821 2.9727 1 6.718 3.718 4.328 5.282 0.2335

0.12957 0.23354 0.14885 1 0.4382 0.3047 0.1483 0.1147

0.18932 0.43821 0.26896 2.2821 1 0.78 0.2335 0.1489

0.18932 0.43821 0.23105 3.2819 1.2821 1 0.2335 0.1489

2.2821 4.2827 0.18932 6.7431 4.2827 4.2827 1 0.3802

3.2819 6.2814 4.2827 8.7184 6.7159 6.7159 2.6302 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,CR � 0.099997. (21)

,e reconstituted PM using Xu and Wei method [23] is
as follows:
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1 4.524 2.339 7.523 5.888 5.686 0.425 0.292

0.221 1 0.326 4.516 2.671 2.580 0.222 0.147

0.427 3.067 1 6.749 3.460 4.188 4.155 0.249

0.133 0.221 0.148 1 0.373 0.287 0.134 0.104

0.170 0.374 0.289 2.681 1 0.561 0.197 0.147

0.176 0.388 0.234 3.479 1.784 1 0.204 0.153

2.354 4.497 0.241 7.479 5.073 4.899 1 0.501

3.419 6.786 4.024 9.624 6.783 6.551 1.996 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,CR � 0.096964. (22)

,e reconstituted PM using Cao method [24] is as
follows:

1 4.44412 2.3682 7.6743 5.8559 5.6079 0.4201 0.2968

0.2252 1 0.3210 4.4224 2.6175 3.5392 0.2268 0.1486

0.4223 3.1151 1 6.9149 3.5351 4.2774 4.5105 0.2487

0.1303 0.2261 0.1446 1 0.3805 0.2927 0.1313 0.1030

0.1708 0.3820 0.2829 2.6278 1 0.5722 0.1960 0.1444

0.1783 0.3938 0.2338 3.4166 1.7478 1 0.2055 0.1494

2.3804 4.4099 0.2217 7.6136 5.1012 4.8661 1 0.5004

3.3689 6.7293 4.0215 9.7130 6.9235 6.6949 1.9984 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,CR � 0.107316. (23)

,e reconstituted PM using the proposed method is as
follows (CR0 � 0.1.):

1 5 3 7 6 6
1
3

1
4

1
5

1
1
3

5 3 3
1
5

1
7

1
3

3 1 6 3 4 1
1
5

1
7

1
5

1
6

1
1
3

1
4

1
7

1
8

1
6

1
3

1
3

3 1
1
2

1
5

1
6

1
6

1
3

1
4

4 2 1
1
5

1
6

3 5 1 7 5 5 1
1
2

4 7 5 8 6 6 2 1
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,CR � 0.087973. (24)

Table 3 shows the comparison results between some
previous and proposed consistency improvement methods.
,e CR, dCR, and dCRr are, respectively, 0.087973, 0.081114,

and 0.013905 bymodifying only two elements with the dM of
5.833333 using the proposed method. ,e CR, dCR, and
dCRr are, respectively, 0.096964, 0.072123, and 0.004792 by
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modifying 56 elements with the dM of 15.050557 using the
previous Cao’s method.

Example 2. ,e primary inconsistent PM [26] is as follows:
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,CR � 0.112090. (25)

,e reconstituted PM using the Benı́tez method [26] is as
follows:

1 0.526 0.154 0.794 0.471 1.738 1.17

1.902 1 0.293 1.510 0.896 3.306 2.225

6.487 3.411 1 5.149 3.055 11.28 7.590

1.260 0.662 0.194 1 0.593 2.190 1.474

2.123 1.116 0.327 1.685 1 3.691 2.484

0.575 0.302 0.089 0.457 0.271 1 0.673

0.855 0.449 0.132 0.678 0.403 1.486 1
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,

CR � 0.099677.

(26)

,e reconstituted PMs using the proposed method are as
follows:

In case of CR0 � 0.01,
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,CR � 0.009261. (27)

In case of CR0 � 0.005,
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,CR � 0.0004667. (28)

In case of CR0 � 0.001,

Table 3: Comparison results between some consistency improvement methods about Example 1.

Performance measure ANT-AHP [21]
Wu et al. [22]

Zeshui and Cuiping [23] Cao et al. [24] Proposed
methodd� 0.1 d� 0.01 d� 0.001

CR 0.099838 0.099955 0.099825 0.099997 0.096964 0.107316 0.087973
dCR 0.069248 0.069130 0.069262 0.069090 0.072123 0.061771 0.081114
dM 14.842974 19.457000 20.009000 19.956000 15.050557 16.605557 5.833333
dCRr 0.004665 0.003553 0.0034615 0.003462 0.004792 0.003720 0.013905
Number of modified elements 46 54 56 56 56 56 2
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,CR � 0.000772. (29)

Table 4 shows the comparison result between Benı́tez
method [26] and the proposed method.

,e CR, dCR, and dCRr are, respectively, 0.000772,
0.111318, and 0.005214 by modifying 22 elements with the
dM of 21.35 using the proposed method (CR0 � 0.001). ,e

CR, dCR, and dCRr are, respectively, 0.000007693, 0.112082,
and 0.003194 by modifying 42 elements with the dM of
35.096667 using the previous Benı́tez’s method.

As can be seen in Tables 3 and 4, the proposed method is
much better than the previous ones from the viewpoints of
CR, dCR, dM, dCRr, and the number of modified elements.

3.2. Approximate Polynomial for Random Consistency Index
(RI) According to the Number of Attributes. We develop
approximate polynomial for RI according to the number of
attributes by using the proposed method in Section 3.2.

Table 5 and Figures 2 and 3 show the performance test
results of approximate polynomials for RI with different
orders.

From Table 5 and Figures 2 and 3, we can know that
third-order approximate polynomial is appropriate from the
viewpoints of the performance and complexity.

,ird-order approximate polynomial for RI is as follows:

RI � 0.001311n
3

− 0.045332n
2

+ 0.533262n − 0.615824.

(30)

Table 6 shows the performance test result of the above
third-order approximate polynomial.

As the result, the approximate formula of CR is as
follows:

CR �
CI

RI
�

λmax − n

(n − 1)RI
�

λmax − n( 􏼁

(n − 1) 0.00311n
3

− 0.045332n
2

+ 0.533262n − 0.615824􏼐 􏼑􏽨 􏽩
. (31)

By using (30) and (31), we can directly calculate the RI
value and CR value without the numerical table for RI values
according to the number of attributes and evaluate the
consistency of the constituted PM rapidly.

On the other hand, we test the performance of the
following previous approximate formula for RI: [4].

RI �
1.98(n − 2)

n
. (32)

Table 7 shows the performance test result of the previous
approximate formula (32).

From Tables 6 and 7, we know that the proposed third-
order approximate polynomial (30) has much better per-
formance than the previous approximation formula (32).

3.3. Application to Hip Joint Prosthesis Material Selection.
We use the proposed consistency improvement method of
PM based on CR decreasing rate to hip joint prosthesis
material selection [27].

,e alternative materials for hip joint prosthesis are,
respectively, stainless steels 316 (A1), stainless steels 317
(A2), stainless steels 321 (A3), stainless steels 347 (A4), Co-
Cr alloys-cast alloy (A5), Co-Cr alloys-wrought alloy (A6),

unalloyed titanium (A7), Ti-6Al-4V (A8), composites
(fabric reinforced)-epoxy-70% glass (A9), composites
(fabric reinforced)-epoxy-63% carbon (A10), and com-
posites (fabric reinforced)-epoxy-62% aramid (A11). ,e
material attributes are, respectively, tissue tolerance (TT),
corrosion resistance (CR), tensile strength (TS) (MPa),
fatigue strength (FS) (MPa), relative toughness (RT), rel-
ative wear resistance (RWR), elastic modulus (EM) (GPa),
specific gravity (SG) (g/cc), and cost (C). Table 8 shows
some hip joint prosthesis materials and their properties.
[27].

First, we conduct the correlation analysis between the
properties of hip joint prosthesis materials.

Table 9 shows the correlation coefficients between
properties of hip joint prosthesis materials. As shown in
Table 9, the elastic modulus and specific gravity have the
high correlation coefficients with the tissue tolerance, fatigue
strength, and relative wear resistance.

,erefore, we remove two properties such as EM (elastic
modulus) and SG (specific gravity) from the consideration.

Consequently, we constitute the decision matrix with
seven attributes: TT, CR, TS, FS, RT, RWR, and C. Table 10
shows the decision matrix.
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Table 4: Comparison result between Benı́tez method and the proposed method about Example 2.

Performance measure Benı́tez method [26] Proposed method
CR0 � 0.005 CR0 � 0.01 CR0 � 0.005 CR0 � 0.001

CR 0.000007693 0.009261 0.004667 0.000772
dCR 0.112082 0.10283 0.10742 0.111318
dM 35.096667 15.467 18.05 21.35
dCRr 0.003194 0.006648 0.0059514 0.005214
Number of modified elements 42 14 16 22

Table 5: Performance test results of approximate polynomials for RI with different orders.

m Mean absolute
error

Maximum of absolute
errors

Mean relative error
(%)

Maximum of relative
errors (%)

Mean-squared error
(%)

Maximum of
squared errors (%)

1 0.11101 0.33637 10.756 57.995 0.018312 0.11315
2 0.046806 0.11791 4.3837 20.33 0.0031264 0.013903
3 0.016633 0.038921 1.5316 5.4092 0.00040314 0.0015149
4 0.0078826 0.0228 0.6634 1.7273 9.4729·10−5 0.00051983
5 0.0056381 0.014733 0.42149 1.1161 4.8904·10−5 0.00021705
6 0.0049297 0.01272 0.3941 0.96365 3.9756·10−5 0.0001618
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Figure 2: Performance test results of approximate polynomials for RI with different orders: (a) m� 1, (b) m� 2, (c) m� 3, (d) m� 4,
(e) m� 5, and (f) m� 6.
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Figure 3: MAE, MRE, and MSE values of the approximate polynomials for RI according to different orders: (a) MAE, (b) MRE, and
(c) MSE.

Table 6: Performance test result of the third-order approximate polynomial for RI (equation (21)).

n RI Calculated RI Absolute error Relative error (%) Squared error
3 0.58 0.61137 0.031374 5.4092 0.0009843
4 0.9 0.87582 0.024176 2.6862 0.00058447
5 1.12 1.0811 0.038921 3.4751 0.0015149
6 1.24 1.235 0.004995 0.40282 2.495·10−5

7 1.32 1.3455 0.02547 1.9295 0.0006487
8 1.41 1.4203 0.01034 0.73331 0.00010691
9 1.45 1.4675 0.017483 1.2057 0.00030564
10 1.49 1.4948 0.0047652 0.31981 2.2707·10−5

11 1.51 1.5101 5.4945·10−5 0.0036387 3.019·10−9

12 1.53 1.5212 0.0087812 0.57394 7.711·10−5

13 1.56 1.5361 0.023876 1.5305 0.00057007
14 1.57 1.5626 0.0073626 0.46896 5.4208·10−5

15 1.59 1.6086 0.018626 1.1715 0.00034694
Mean 0.016633 1.5316 0.00040314
Max 0.038921 5.4092 0.0015149

Table 7: Performance test result of the previous approximate formula for RI (equation (23)).

n RI Calculated RI Absolute error Relative error (%) Squared error
3 0.58 0.66 0.08 13.793 0.0064
4 0.9 0.99 0.09 10 0.0081
5 1.12 1.188 0.068 6.0714 0.004624
6 1.24 1.32 0.08 6.4516 0.0064
7 1.32 1.4143 0.094286 7.1429 0.0088898
8 1.41 1.485 0.075 5.3191 0.005625
9 1.45 1.54 0.09 6.2069 0.0081
10 1.49 1.584 0.094 6.3087 0.008836
11 1.51 1.62 0.11 7.2848 0.0121
12 1.53 1.65 0.12 7.8431 0.0144
13 1.56 1.6754 0.11538 7.3964 0.013314
14 1.57 1.6971 0.12714 8.0983 0.016165
15 1.59 1.716 0.126 7.9245 0.015876
Mean 0.097678 7.6801 0.00991
Max 0.12714 13.793 0.016165
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As shown in Table 10, there are 11 alternative materials
with 7 attributes. Excepting C (cost), six attributes are benefit
attributes among seven attributes, while C (cost) is cost
attribute.

,e material attribute weights are determined by using
the AHP with simplest questionnaire by three decision
makers. Table 11 shows the simplest pairwise comparison
questionnaire completed by the first decision maker.

From Table 11, the first decision maker’s PM is as
follows:
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. (33)

,e consistency test result of the PM A(1) is as follows:

λmax � 7.913828,CI � 0.152305,CR � 0115382> 01. (34)

,erefore, we should modify the PM A(1) until CR< 0.1
using the proposed consistency improvement method.

Table 8: Alternative materials and their attribute values [27].

Alternative material TT CR TS FS RT RWR EM SG C
A1 10 7 517 350 8 8 200 8 1
A2 9 7 630 415 10 8.5 200 8 1.1
A3 9 7 610 410 10 8 200 7.9 1.1
A4 9 7 650 430 10 8.4 200 8 1.2
A5 10 9 655 425 2 10 238 8.3 3.7
A6 10 9 896 600 10 10 242 9.1 4
A7 8 10 550 315 7 8 110 4.5 1.7
A8 8 10 985 490 7 8.3 124 4.4 1.9
A9 7 7 680 200 3 7 22 2.1 3
A10 7 7 560 170 3 7.5 56 1.6 10
A11 7 7 430 130 3 7.5 29 1.4 5

Table 9: Correlation coefficients between properties of hip joint prosthesis materials.

TT CR TS FS RT RWR EM SG C
TT 1.000 0.161 0.229 0.780 0.530 0.792 0.966 0.961 −0.479
CR 1.000 0.570 0.476 −0.008 0.484 0.175 0.101 −0.127
TS 1.000 0.729 0.287 0.465 0.300 0.268 −0.157
FS 1.000 0.681 0.792 0.848 0.832 −0.492
RT 1.000 0.251 0.624 0.688 −0.624
RWR 1.000 0.815 0.744 −0.129
EM 1.000 0.985 −0.472
SG 1.000 −0.576
C 1.000
In this table, the bold values indicate higher correlation coefficients (ñ>0.8) than others.

Table 10: Decision matrix.

Alternative materials TT CR TS FS RT RWR C
A1 10 7 517 350 8 8 1
A2 9 7 630 415 10 8.5 1.1
A3 9 7 610 410 10 8 1.1
A4 9 7 650 430 10 8.4 1.2
A5 10 9 655 425 2 10 3.7
A6 10 9 896 600 10 10 4
A7 8 10 550 315 7 8 1.7
A8 8 10 985 490 7 8.3 1.9
A9 7 7 680 200 3 7 3
A10 7 7 560 170 3 7.5 10
A11 7 7 430 130 3 7.5 5
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In the first iteration, we first reconstitute the PM by
replacing all elements of A(1) with the lower neighbouring
scales and calculate CR values and CR decreasing rates
(Table 12).

From Table 12, the maximum CR decreasing rate is
0.0077709 (CR� 0.10632) when we replace the element
a67 � 3 in the primary PM with the lower neighbouring scale
2.

We next reconstitute the PM by replacing all elements of
A(1) with the upper neighbouring scales and calculate the CR
values and CR decreasing rates (Table 13).

From Table 13, the maximum CR decreasing rate is
0.010371 (CR� 0.10449) when we replace the element
a37 �1/5 in the primary PM with the upper neighbouring
scale 1/4.

As 0.0077709< 0.010371, we decide to modify the ele-
ment a37 �1/5 of the primary PM to the upper neighbouring
scale 1/4. ,e reconstituted PM is as follows:
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,CI � 010449> 01. (35)

As CR� 0.10449> 0.1, we should modify the PM B(1)
1

until CR< 0.1 again.

In the next iteration, we first reconstitute the PM B
(1)
1 by

replacing all elements with the lower neighbouring scales
and calculate the CR values and CR decreasing rates
(Table 14).

From Table 14, the maximum CR decreasing rate is
0.0071198 (CR� 0.096187) when we replace the element
a67 � 3 with the lower neighbouring scale 2.

We next reconstitute the PM by replacing all elements
with the upper neighbouring scales and calculate the CR
values and CR decreasing rates (Table 15).

From Table 15, the maximum CR decreasing rate is
0.010142 (CR� 0.093506) when we replace the element
a37 �1/4 with the upper neighbouring scale 1/3. As
0.0071198< 0.010142, we decide to modify the element
a37 �1/4 to the upper neighbouring scale 1/3. ,e recon-
stituted PM is as follows:
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,CR(1)
� 0.093506.< 0.1. (36)

As CR� 0.093506< 0.1, the reconstituted PM B(1) sat-
isfies the consistency.

By the similar way, the reconstituted PMs based on the
PMs constituted by the second and third decisionmakers are
as follows:

Table 11: Simplest pairwise comparison questionnaire completed by the first decision maker.

Tissue
tolerance

Corrosion
resistance

Tensile
strength

Fatigue
strength

Relative
toughness

Relative wear
resistance Cost

Tissue tolerance 1 1 5 5 3 5 5
Corrosion resistance 1 5 5 3 5 5
Tensile strength 1 5 5 3 5
Fatigue strength 1 3 3 5
Relative toughness 1 3 5
Relative wear
resistance 1 3

Cost 1
It indicates that the value is the maximum. I have no objection to remove the Bold type.

14 Mathematical Problems in Engineering



B
(2)

�

1 1/3 7 5 3 5 5

3 1 5 5 3 5 7
1
7

1
7

1
1
3

1
5

1 1

1
5

1
5

3 1
1
3

3 5

1
3

1
3

5 3 1 3 5

1
5

1
5

1
1
3

1
3

1 3

1
5

1
7

1
1
5

1
5

1
3

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,CR(2)
� 0.071796< 0.1,

Table 12: CR decreasing rates by replacing all elements with the lower neighbouring scales.

dC Rr−
pq 2 3 4 5 6 7

1 −0.004171 −0.0077567 0.0038198 0.0042379 0.00012511 −0.0028697
2 −0.0077567 0.0038198 0.0042379 0.00012511 −0.0028697
3 −0.0022949 0.00080871 −0.0031613 −0.010273
4 −0.0077696 0.0061679 0.0062029
5 0.00035439 0.0018634
6 0.0077709
It indicates that the value is the maximum. I have no objection to remove the Bold type.

Table 13: CR decreasing rates by replacing all elements with the upper neighbouring scales.

dC Rr+
pq 2 3 4 5

1 −0.004171 0.0051298 −0.004292 −0.0058214 −0.001012 0.0013276
2 0.0051298 −0.004292 −0.0058214 −0.001012 0.0013276
3 0.0014299 −0.0021998 0.0007321 0.010371
4 0.0063837 −0.0075791 −0.0065044
5 −0.0025883 −0.0025898
6 −0.0090527
It indicates that the value is the maximum. I have no objection to remove the Bold type.

Table 14: CR decreasing rates by replacing all elements with the lower neighbouring scales.

dC Rr−
pq 2 3 4 5 6 7

1 −0.0042129 −0.007257 0.0037917 0.0042349 5.7868e− 05 −0.0032652
2 −0.007257 0.0037917 0.0042349 5.7868e− 05 −0.0032652
3 −0.0026355 0.00050903 −0.0036426 −0.010371
4 −0.0078255 0.0062676 0.0057371
5 0.00031694 0.0014975
6 0.0071198

Table 15: CR decreasing rates by replacing all elements with the upper neighbouring scales.

dC Rr+
pq 2 3 4 5 6 7

1 −0.0042129 0.0047588 −0.0042749 −0.0058397 −0.00096572 0.0016549
2 0.0047588 −0.0042749 −0.0058397 −0.00096572 0.0016549
3 0.0018419 −0.0018135 0.0013729 0.010142
4 0.0064268 −0.0076851 −0.0060728
5 −0.0025853 −0.0022606
6 −0.0084573
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,CR(3)
� 0.076189< 0.1.

(37)

Based on the CR values {0.093506, 0.071796, 0.076189},
three decision makers’ levels are determined as follows:

h1 � 0.28331,

h2 � 0.36898,

h3 � 0.34771.

(38)

By using (31), the composite PM is as follows:

B
(0)

�

1 09769 63635 5 35831 56206 5
10236 1 56206 5 35831 56206 56609
015715 017792 1 028842 02 073253 049995
02 02 34672 1 033333 3 41863

027909 027909 5 3 1 35831 41863
017792 017792 13651 033333 027909 1 20475
02 017665 2.0002 0.23887 0.23887 0.4884 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (39)

By transforming the elements of B(0) � (b
(0)
ij )n×n to the

nearest neighbouring 9-point scales, the final PM is as follows:
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. (40)
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,e CR value of the final PM A(0) is CR(0) � 0.064623,
and therefore the final PM satisfies the consistency.

,e final attribute weights calculated from the final PM
A(0) are as follows:

0.31665, 0.32205, 0.031323, 0.093804, 0.14673, 0.048864, 0.040575. (41)

With these attribute weights, we can select the best hip
joint prosthesis material using the well-known three
MADMs such as SAW, TOPSIS, and GRA.

Table 16 and Figure 4 show the comprehensive scores of
the alternatives from three MADMs.

Table 17 shows the ranking of the comprehensive scores
of the alternatives from three MADMs.

From Table 17, we know that the final ranking of the
alternative materials is as follows:

A6>A5>A8>A7>A1>A4>A2>A3>A9>A11>A10. (42)

,erefore, we can select A6 (Co-Cr alloys-wrought alloy)
as the best hip joint prosthesis material, and the next are A5

(Co-Cr alloys-cast alloy), A8 (Ti-6Al-4V), A7 (unalloyed
titanium), and so on.

Table 16: Comprehensive scores of the alternatives from three MADMs.

MADMs
Alternative materials

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
SAW 0.532 0.491 0.480 0.493 0.680 0.874 0.617 0.680 0.078 0.042 0.049
TOPSIS 0.508 0.439 0.437 0.439 0.677 0.797 0.608 0.621 0.080 0.045 0.059
GRA 0.640 0.574 0.570 0.575 0.701 0.847 0.652 0.694 0.360 0.344 0.348
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Figure 4: Comprehensive scores of the alternatives from three MADMs.
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4. Conclusions

We proposed a new consistency improvement method of
inconsistent PM based on CR decreasing rate, developed an
approximate polynomial for RI according to the number of
attributes, and proposed a method to determine final PM and
final attribute weights considered decision makers’ levels. We
compared the performances of the proposed and previous
consistency improvement methods with two numerical ex-
amples, and then applied the proposed methods to determine
material attribute weights in hip joint prosthesis material
selection.

,e main conclusions are as follows:

(i) ,e CR decreasing rate-based consistency im-
provement method of PM improves the consistency
better with much smaller modification amounts and

guarantees a very good balance between improve-
ment of consistency and preservation of primary
information.

(ii) ,e approximate polynomial for RI enables to
calculate the RI value according to the number of
attributes without the numerical table for RI.

(iii) ,e proposed method for constituting the final PM
and determining the final attribute weights enables
to reflect the decision makers’ levels well, and it is
useful for group AHP.

,e limitation of this work is that we do not deal with the
uncertainty of the pairwise comparison judgments. To
handle the fuzziness and vagueness effectively, elicit the
decision makers’ knowledge and develop more effective
decision-making model; future work needs to introduce the
hesitant fuzzy set, complex intuitionistic fuzzy set, and so on.

Appendix

A. Preliminaries

A.1. Method to determine attribute weights using AHP with
simplest questionnaire. Let considered attributes be noted
C1, . . ., Cj, . . ., Cn and the weights of these attributes be noted
w1, . . . , wj, . . . , wn, where n is the number of the attributes
and wjj is the weight of j-th attribute Cj.

Table 17: Ranking of the alternatives using three MADMs.

MADMs
Alternative materials

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
SAW 5 7 8 6 2 1 4 3 9 11 10
TOPSIS 5 7 8 6 2 1 4 3 9 11 10
GRA 5 7 8 6 2 1 4 3 9 11 10
Final ranks 5 7 8 6 2 1 4 3 9 11 10
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Figure 5: Recording method of the pairwise comparison judgment value on the recording cell cell(i, j) [5].

Table 18: Recording value according to verbal judgment.

Verbal judgment Recording
value

Equal importance 1
Weak importance 3
Strong importance 5
Demonstrated importance 7
Extreme importance 9
Intermediate values between two adjacent judgments 2, 4, 6, 8
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,e main steps for determining the attribute weights
using AHP with simplest questionnaire are as follows: [5]

Step 1. Record the pairwise comparison judgment
values for the importance of the attributes in the
simplest questionnaire.
In the simplest questionnaire, the attributes C1, . . ., Cj,
. . ., Cn are listed in the same order at the first row and
first column, respectively. ,e cell with slash “\” () is
called recording cell. Figure 5 shows the recording
method of the pairwise comparison judgment value.
,e recording cell cell(i, j) corresponds to i-th attribute
Ci at the first column and j-th attribute Cj at the first
row (i � 1, n − 1, j � i + 1, n).
Compare i-th attribute Ci at the first column and j-th
attribute Cj at the first row facing the recording
cell cell(i,j). If i-th attribute Ci at the first column is
more important over j-th attribute Cj at the first row,
then record the judgment value a in the left area of the
recording cell as . If j-th attribute Cj at the first row is
more important over i-th attribute Ci at the first col-
umn, then record the judgment value a in the right area
of the recording cell as . If two attributes Ci and Cj have
an equal importance, then record the number 1 in the
arbitrary area. Table 18shows the recording value
according to the verbal judgment.
By the similar way, record all the recording cells in the
simplest questionnaire.
Step 2. Constitute the PM A� (aij)n×n based on the
complete questionnaire.
,e recording cell cell(i,j) corresponds to the element
aij of the upper triangular matrix in the PM A. If the
state of cell(i,j) is , then aij is a (aij � a). If the state of
cell(i, j) is , then aij is 1/a (aij � 1/a). From the states of
all the recording cells, all the elements of the upper
triangular matrix are determined in A. ,e lower tri-
angular elements are always the positive reciprocal of
the upper triangular elements (aji � 1/aij). All the
principal diagonal elements are equal to 1. (aii � 1; i �

1, n)
Step 3. Determine the principal eigenvector
v � (v1, . . . , vj, . . . , vn)T of A� (aij)n×n using the ei-
genvector method.
,e principal eigenvector v � (v1, . . . , vj, . . . , vn)T can
be determined from the following equation:

Av � λmaxv, (A.1)

where λmax is the maximum eigenvalue ofA and v is the
corresponding eigenvector.
Step 4. Test the consistency of A using the consistency
ratio (CR):

CR �
CI
RI

, (A.2)

where CI is the consistency index ofA. It is calculated as
follows:

CI �
λmax − n( 􏼁

(n − 1)
. (A.3)

RI is the random consistency index (RI) (Table 2). If
CR<CR0, then the PM satisfies the consistency.
Otherwise, the PM should be modified. CR0 is the
consistency threshold value. Usually, CR0 is 0.1.
Step 5. Calculate the attribute weights w1. . ., wj. . ., wn

by normalizing the principal eigenvector
v � (v1, . . . , vj, . . . , vn)T of the consistent PM A as
follows:

wj �
vj

􏽐
n
k�1 vk

, j � 1, n. (A.4)

A.2. Development method of approximate polynomial by least
square method. To develop approximate polynomial
Pm(x)� a0 + a1x+ . . .+ am−1xm−1 + amxm with a set of data
(xn, yn), n� l, 2, . . ., N, least square method could be used
[29, 30].

It requires to determine the coefficients a0, a1, . . ., am−1,
am to minimize the following function:

E � 􏽘
N

n�1
yn − Pm xn( 􏼁( 􏼁

2
. (A.5)

From zE/zai � 0; i � 0, m, we have a system of m+ 1
linear equations for m+ 1 unknowns ai,
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(A.6)

,is system will have a unique solution a0, a1, . . ., am−1,
am.

For evaluating the performance of the approximate poly-
nomial, the mean absolute error (MAE), mean relative error
(MRE), and mean squared error (MSE) are commonly used.

,e MAE, MRE, and MSE of the approximate poly-
nomial are as follows:
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MAEm

MREm �
1
N

􏽘

N

n�1

yn − Pm xn( 􏼁
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× 100%,

MSEm �
1
N

􏽘

N

n�1
yn − Pm xn( 􏼁􏼂 􏼃

2
.

(A.7)

,e error may be reduced by increasing the polynomial
order. However, for the high-order polynomial, the curve
shows oscillatory behaviour. ,erefore, the low-order
polynomial with acceptable error is used commonly

A.3. Some well-known multiattribute decision-making
methods. Multiattribute decision-making (MADM)method
comprehensively evaluates the comprehensive scores of the
alternatives based on multiple evaluating attributes and
select the best one to have good performance from the al-
ternatives. Simple additive weighting (SAW) method,
technique for order preference by similarity to ideal solution
(TOPSIS) method, and grey relational analysis (GRA)
method are well-known MADMs [31–34].

Let the considered alternatives be A1, A2, . . ., An (n≥ 2)
and the evaluating attributes be x1, . . ., xk, . . ., xp, where n
and p are, respectively, the numbers of alternatives and
attributes. ,e alternatives are evaluated on the basis of p
attributes and their values constitute a decision-matrix
X� (xik)n×p, where xik is the performance value of k-th at-
tribute for i-th alternative (i � 1, n, k � 1, p).

A.3.1. SAW. ,e main steps of the SAW method are as
follows [33, 34]:

Step 1. Constitute a normalized decision-matrix
Z� (zik)n×p from the decision-matrix X� (xik)n×p.
,ere are some available normalization formulas such
as vector normalization formula, linear sum-based
normalization formula, linear ratio-based normaliza-
tion formula, and linear min-max normalization for-
mula [31, 34]. In this paper, the following linear min-
max normalization formula is applied.

zik �

xik − xkmin( 􏼁

xkmax − xkmin( 􏼁
; k ∈ K

+
,

xkmax − xik( 􏼁

xkmax − xkmin( 􏼁
; k ∈ K

−
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(A.8)

where K+ and K− are the sets of the indices for the
benefit and cost attributes and xkmin and xkmax are the
minimum and maximum values of k-th attribute,
respectively.
Step 2. Calculate the following simple weighted sums of
all the alternatives:

Si � 􏽘

p

k�1
wkzik; i � 1, n, (A.9)

where wk denotes the k-th attribute weight.
(wk ≥ 0, k � 1, p, 􏽐

p

k�1 wk � 1.)
Step 3. Rank the alternatives in the descending order
based on S1, . . ., Si, . . ., Sn, and select the alternative
with the maximum value as the best one.

A.3.2. TOPSIS. ,emain steps of the TOPSIS method are as
follows [32, 34, 35]:

Step 1. Constitute a normalized decision-matrix
Z� (zik)n×p from the decision-matrix X� (xik)n×p using
equation (A.10).
Step 2. Constitute the weighted normalized decision-
matrix V� (vik)n×p as follows:

vik � wk × zik, i � 1, n, k � 1, p. (A.10)

Step 3. Determine the positive ideal solution (PIS) V+ �

(v+
1 , · · · , v+

k , · · · , v+
p) and the negative ideal solution

(NIS) V− � (v−
1 , · · · , v−

k , · · · , v−
p) as follows:

v
+
k � max

1≤i≤n
vik, v

−
k � min

1≤i≤n
vik. (A.11)

Step 4. Calculate the distances from the alternatives to
the PIS and NIS as follows:

D
+
i �

������������

􏽘
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2
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2

􏽶
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; i � 1, n.

(A.12)

Step 5. Calculate the relative closeness values of the
alternatives as follows:

Ci �
D

−
i

D
+
i + D

−
i( 􏼁

; i � 1, n. (A.13)

Step 6. Rank the alternatives in the descending order
based on C1, . . ., Ci, . . ., Cn, and select the alternative
with the maximum value as the best one.

A.3.3. GRA. ,e main steps of the GRA method are as
follows [34]:

Step 1. Constitute a normalized decision-matrix
Z� (zik)n× p from X� (xij)n× p using equation (A.10).
Step 2. Set {(zi1, . . ., zik,. . ., zip); i � 1, n} as n com-
parative sequences.
Step 3. Determine the PIS Z+ � (z+

1 , · · · , z+
k , · · · , z+

p) and
set it as a reference sequence, where z+

k � max1≤i≤nzik.
Step 4. Calculate the maximum andminimum values of
the absolute deviations between the PIS (reference
sequence) Z+ � (z+

1 , · · · , z+
k , · · · , z+

p) and n alternatives

20 Mathematical Problems in Engineering



(comparative sequences) {(zi1,. . ., zik,. . .,rip); i � 1, n} as
follows:

Δmin � min
1≤i≤n

min
1≤k≤p
Δik􏼈 􏼉,Δmax � min

1≤i≤n
min
1≤k≤p
Δik􏼈 􏼉, (A.14)

where

Δik � z
+
k − zik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌; i � 1, n, k � 1, p. (A.15)

Step 5. Calculate the grey relational coefficients between
j-th attributes of i-th alternatives and PIS as follows:

ξik �
Δmin + ρ · Δmax

Δik + ρ · Δmax
, i � 1, n, k � 1, p, (A.16)

where ρ is the distinguishing coefficient and it is
normally selected as 0.5.
Step 6. Calculate the grey relational grades of the al-
ternatives as follows:

ci � 􏽘

p

k�1
wkξik. (A.17)

Step 7. Rank the alternatives in the descending order
based on c1, . . ., ci, . . ., cn, and select the alternative
with the maximum value as the best one.
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