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�is article presents a study of the existence and uniqueness of solutions for a system of hybrid fractional di�erential equations
involving fractional derivatives of the Caputo-Hadamard type with three-point hybrid boundary conditions. In addition to this,
the “Hyres–Ulam” stability of the solutions for this type of equation is veri�ed, and �nally a numerical example was presented to
support our theoretical results.

1. Introduction

Fractional calculus has sprouted as a remarkable domain of
realization given its extensive applications in the mathe-
matical modeling of numerous complex and nonlocal
nonlinear systems. Fractional di�erential equations were
applied in several �elds. In the recent past, fractional dif-
ferentials have drawn the attention of researchers in various
�elds of research of engineering, bioengineering, mathe-
matics, physics, viscosity, electrochemistry, and other
physical processes (see [1–3]).

�e di�erence between the ordinary di�erential equation
and the fractional di�erential equation is that the latter is an
equation that contains fractional derivatives and also comes
in a relationship so that the de�nition of the fractional
derivative is an integral equation on the other side of this

equation. �e Hadamard fractional derivative contains a
logarithmic function of an arbitrary exponent in the kernel
of the integral appearing in its de�nition.

For the details of Hadamard fractional calculus, we
mention the reader to the articles [4–6]. Fractional di�er-
ential equations involving Hadamard derivatives attracted
remarkable interest in the latest years; for example, see
[7–20] and [21, 22].

Freshly, some authors have studied di�erent charac-
teristics of Hybrid FDEs including the existence of solutions
(see [23–37]), and some go further and studied Hyers–Ulam
stability for FDEs by di�erent mathematical theories; see
[28–30] for some details.

In 2019, the authors [12] published a study investigating
the existence results for the following boundary value
problem:

HD
p
z(ω) � f(ω, z(ω)),ω ∈ [1, T], 0<p≤ 1, c1z(1) + c2z(T) � c

H
3 I

qz(η) + φ, 0< q≤ 1.{ (1)
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where HD
p is the Caputo–Hadamard fractional derivative;

let B denote Banach space. f ∈ [1, T] × B⟶ B is a con-
tinuous function, ci ∈ R, i � 1, 2, 3, and η ∈ (1, T),φ ∈ B.

In 2022, the authors [38] published a study investigating
the existence results for the following FDE:

H
D

α,β;ψ z(ϖ)
w(ϖ, z(ϖ))

􏼠 􏼡 � χ(ϖ, y(ϖ)), ϖ ∈ (0, T], 0

< α< 1, 0≤ β≤ 1,

lim
ϖ⟶0+

(ψ(ϖ) − ψ(0))
1− ξ

z(ϖ) � z0 ∈ R,

(2)

where HD
α,β;ψ denoted Psi-Hilfer fractional derivative of

order α and type β, w ∈ C([0, T] × R,R\ 0{ }),,
χ ∈ C([0, T] × R,R)., ξ � μ + v(1 − μ).

Some researchers focus on having solutions to a system
of equations only (see [8, 25, 26, 29, 31]). However, others
went deeper in their research beyond the issue of verifying
the issue of the existence of a solution to such equations and
studied the issue of the stability of these solutions (see
[21, 35–37]).

(is paper aims to investigate the existence of solutions
for the following nonlinear sequential hybrid fractional
differential equation given by

CH
D

p u(t)

z1(t, u(t), v(t))
􏼠 􏼡 � w1(t, u(t), v(t)), t ∈ [1, e], p ∈ (1, 2],

CH
D

q v(t)

z2(t, u(t), v(t))
􏼠 􏼡 � w2(t, u(t), v(t)), q ∈ (1, 2].

(3)

Subject to the following boundary conditions:

u(t)

z1(t, u(t), v(t))
􏼠 􏼡

t�1
� 0,

CH
D

u(t)

z1(t, u(t), v(t))
􏼠 􏼡

t�e

� λ1
CH

D
u(t)

z1(t, u(t), v(t))
􏼠 􏼡

t�η1

,

v(t)

z2(t, u(t), v(t))
􏼠 􏼡

t�1
� 0,

CH
D

v(t)

z2(t, u(t), v(t))
􏼠 􏼡

t�e

� λ2
CH

D
v(t)

z2(t, u(t), v(t))
􏼠 􏼡

t�η2

,

(4)

where CHD
c
, c � p, q􏼈 􏼉 is the Caputo–Hadamard fractional

derivative of order 1 < c≤ 2,λ1, λ2 ∈ [0, 1), and.
η1, η2 ∈ (1, e).

Recently, interest in fractional differential equations has
become so considerable that we can say that this field is an
independent science in its own right. In fact, the follower of
this topic in the literature notices immediately that a good
number of researchers interested in the field did not pay
much attention to the hybrid type, even the stability is not
always investigated.

(e findings of this paper must be novel and generalize
several earlier findings that are important to the research. To
the best of our knowledge, there are no articles that discuss
boundary value problems for systems of fractional differ-
ential equations with y-Caputo and no articles that inves-
tigate Ulam–Hyers stability for differential equations that
contain y-Caputo derivatives.

(is work is organized as follows. (e second section is
devoted to illuminating the fundamental principles of
fractional calculus and the associated definitions and
lemmas. Leray-Schauder, Krasnoselskii, and Banach fixed
point theorems are applied in Section 3 to show their ex-
istence and uniqueness results. In Section 4, the stability of
Hyers–Ulam solutions is examined, and a set of require-
ments are established that ensure the stability of these so-
lutions. Section 5 provides some examples provided to
sustain the theoretical results. In Section 6, a conclusion with
future work is also introduced.

2. Preliminaries

(is section is dedicated to presenting some definitions,
Lemmas, and theorems related to the fixed point concept of
solutions of differential equations, which will be used to
verify the existence of a solution to the system of equations
given by (3)

Definition 1 (see [12]). (e Hadamard fractional integral of
order ] for a continuous function φ is defined as

H
I
]
φ(ω) �

1
Γ(])

􏽚
ω

a
ln

ω
τ

􏼒 􏼓
q− 11

τ
φ(τ)dτ, ]> 0. (5)

Definition 2 (see [12]). (e Hadamard fractional derivative
of order ]> 0 for a continuous function φ: [a,∞)⟶ R is
defined as

H
D

]
φ(ω) � δn H

I
]
φ􏼐 􏼑(ω), n − 1< ]< n, n � []] + 1, (6)

where δ � ω(d/dω), []] denotes the integer part of the real
number ].

Definition 3 (see [12]). (e Caputo–Hadamard fractional
derivative of order ] for at least n − times differentiable
function φ: [a,∞)⟶ R is defined as

CH
D

]
φ(ω) �

1
Γ(n − ])

􏽚
ω

a
ln

ω
τ

􏼒 􏼓
n− ]− 1

δng(τ)

τ
dτ. (7)

Remark 1. For properties and more notes on the Caputo-
Hadamard derivative, we ask the reader to refer to reference
[8].

Lemma 1 (see [12]). Let u ∈ Cn
δ([a, T],R),whereCn

δ[a, T] �

u: [a, T]⟶ R: δ(n− 1)
􏽮 u ∈ C[a, T]}. 6en, HI

]
(HD

]
u)

(ω) � u(ω) − 􏽐
n
k�1 ck(lnω/a)]− k, and
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H
I
] CH

D
]
u􏼐 􏼑(ω) � u(ω) − 􏽘

n− 1

k�0
ck ln

ω
a

􏼒 􏼓
k

. (8)

Theorem 1 (Banach’s contraction mapping principle [23]).
Let (S, d) be a complete metric space, H: S⟶ S is a

contraction, then

(i) H has a unique fixed point s ∈ S, that is, H(s) � s

(ii) ∀s0 ∈ S, we have limn⟶∞Hn(u0) � u

Theorem 2 (nonlinear alternative of Leray–Schauder type
[23]).
Assume that V is an open subset of a Banach space U, 0 ∈ V

and F: V⟶ U be a contraction such that F(V) is bounded,
then either

(i) F has a fixed point in V or
(ii) ∃μ ∈ (0, 1) and v ∈ zV such that v � μF(v) holds

Theorem 3 (Arzela–Ascoli theorem [23]). F ⊂ C(U,R) is
compact if and only if it is closed, bounded, and
equicontinuous.

Theorem 4 (Krasnoselskii’s theorem [23]). Let (E, ‖ · ‖) be
Banach space, B be closed convex subset of E, A be an open

subset of B, and p ∈ A. Assume that G: A⟶ B can be
written as G � G1 + G2. In addition, G(A) is bounded set in B

satisfying the following:

(i) It is continuous and completely continuous
(ii) It is a contraction, that is, there is a continuous

nondecreasing function

ϕ: [0,∞]⟶ [0,∞] with ϕ(x)>x, x> 0, such that
|G2(x) − G2(y)|≤ϕ(‖x − y‖), for any x, y ∈ A.

6en, one of the following holds:

(i) G has a fixed point in A

(ii) 6ere are a ∈ zA and λ ∈ (0, 1) with
a � λG(a) + (1 − λ)p

In the next section, we will present the most important
results of this study, as we will review finding a solution to (3).
Using this result, we obtain the operator and then we develop
theories that study the existence and uniqueness of solutions
for such a system of equations.

3. Existence Result

Lemma 2. Given h ∈ C([1, e],R), the integral solution to the
problem

CH
D

p u(t)

z1(t, u(t), v(t))
􏼠 􏼡 � h(t), t ∈ [1, e], p ∈ (1, 2],

u(t)

z1(t, u(t), v(t))
􏼠 􏼡

t�1
� 0,

CH
D

u(t)

z1(t, u(t), v(t))
􏼠 􏼡

t�e

� λ1
CH

D
u(t)

z1(t, u(t), v(t))
􏼠 􏼡

t�η1

,
⎧⎨

⎩

(9)

is given by

u(t) � z1(t, u(t), v(t))

×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
h(r)

dr

r
+

log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2
h(r)

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

h(r)
dr

r
􏼢 􏼣􏼠 􏼡.

(10)

Proof. First, we apply HI
p

1 to the equation
CHD

p
(u(t)/z1(t, u(t), v(t))) � h(t); using the properties of

Caputo–Hadamard fractional derivatives, we get

u(t)

z1(t, u(t), v(t))
� −

H
I

p

1h(t) + a0 + a1log t. (11)

Observe that CHDu(t)/z1(t, u(t), v(t)) � − HI
p− 1
1

h(t) + a1.

(e first boundary condition (u(t)/z1(t, u(t),

v(t)))t�1 � 0, yields a0 � 0; thus,

u(t)

z1(t, u(t), v(t))
� −

H
I

p

1h(t) + a1log t. (12)

Using the second boundary condition CHD(u(t)/z1
(t, u(t), v(t)))t�e � λ1CHD(u(t)/z1(t, u(t), v(t)))t�η1 yields

a1 �
1

1 − λ1
H

I
p− 1
1 h(e) − λ1

H
I

p− 1
1 h η1( 􏼁􏼔 􏼕, (13)

which on substituting in (11) gives

u(t)

z1(t, u(t), v(t))
� −

H
I

p

1h(t) +
1

1 − λ1

H
I

p− 1
1 h(e) − λ1

H
I

p− 1
1 h η1( 􏼁􏼔 􏼕log t.

(14)

Alternatively, we have
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u(t) � z1(t, u(t), v(t))

×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
h(r)

dr

r
􏼠 􏼡 +

log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2
h(r)

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

h(r)
dr

r
􏼢 􏼣, t ∈ [1, e].

(15)

(e proof is completed.
Let H � C[1, e] denote the Banach space of all contin-

uous functions with the norm defined as ‖h‖ � sup
0≤t≤1

|h(t)|.

(e product space (H × H, ‖(u, v)‖) with the norm
‖(u, v)‖ � ‖u‖ + ‖v‖,, ∀(u, v) ∈ H × H is indeed a Banach
space too. By lemma 2, we define an operator
ƛ: H × H⟶ H × H as

ƛ(u, v)(t) �
ƛ1(u, v)(t)

ƛ2(u, v)(t)
􏼠 􏼡, (16)

where

ƛ1(u, v)(t) � z1(t, u(t), v(t))

×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
w1(r, u(r), v(r))

dr

r
􏼠 +

log t

1 − λ1( 􏼁Γ(p − 1)

· 􏽚
e

1
log

e

r
􏼒 􏼓

p− 2
w1(r, u(r), v(r))

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

w1(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡,

ƛ2(u, v)(t) � z2(t, u(t), v(t))

×
− 1
Γ(q)

􏽚
t

1
log

t

r
􏼒 􏼓

q− 1
w2(r, u(r), v(r))

dr

r
􏼠 +

log t

1 − λ2( 􏼁Γ(q − 1)

· 􏽚
e

1
log

e

r
􏼒 􏼓

q− 2
w2(r, u(r), v(r))

dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2

w2(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡.

(17)

To construct the necessary conditions for the results of
uniqueness and existence of a problem (3), let us consider
the following hypotheses:

(1) (Ξ1) Let the functions z1, z2 be assumed to be
continuous and bounded, that is, ∃λz1

, λz2
> 0 such

that

z1(t, u, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ λz1
,

z2(t, u, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ λz2
,∀(t, u, v) ∈ [1, e] × R

2
.

(18)

(2) (Ξ2) Let the functions w1, w2 are assumed to be
continuous, and ∃υi, τi > 0, (i � 1, 2) such that

w1 t, u1, v1( 􏼁 − w1 t, u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ υ1 u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + υ2 v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

w2 t, u1, v1( 􏼁 − w2 t, u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ τ1 u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + τ2 v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀t ∈ [1, e], ui, vi ∈ R, (i � 1, 2).
(19)

(3) (Ξ3) (ere are positive constants ω0, θ0 and
ωi, θi ≥ 0 (i � 1, 2) such that |w1(t, u, v)|≤ω0+

ω1|u| + ω2|v|, and |w2(t, u, v)|≤ θ0 + θ1|u|+

θ2|v|, ∀t ∈ [1, e], u, v ∈ R, (i � 1, 2).

(4) (Ξ4) Let R ⊂ H × H be a bounded set, then
∃κi > 0, (i � 1, 2) such that |w1(t, u(t), v(t))|≤ κ1,
and |w2(t, u(t), v(t))| ≤ κ2, ∀(u, v) ∈ R.

To facilitate the calculations as follows, let us say

Λ1 � sup
1≤t≤e

− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1dr

r
􏼠 +􏼨
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+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2dr

r
􏼢 􏼣􏼡􏼩, ≤

1
Γ(p + 1)

+
1

1 − λ1( 􏼁Γ(p)
1 + λ1 log η1( 􏼁

p− 1
􏽨 􏽩,

Λ2 � sup
1≤t≤e

− 1
Γ(q)

􏽚
t

1
log

t

r
􏼒 􏼓

q− 1dr

r
􏼠 +􏼨

+
log t

1 − λ2( 􏼁Γ(q − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

q− 2dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2dr

r
􏼢 􏼣􏼡􏼩, ≤

1
Γ(q + 1)

+
1

1 − λ2( 􏼁Γ(q)
1 + λ2 log η2( 􏼁

q− 1
􏽨 􏽩.

(20)

□

Theorem 5. If both (Ξ1) and (Ξ2) are satisfied and assume
that [λz1

Λ1(υ1 + υ2) + λz2
Λ2(τ1 + τ2)]< 1, then the bound-

ary value problem (3) has a unique solution.

Proof. Let Nw1
� sup

1≤t≤e
|w1(t, 0, 0)|, Nw2

� sup
1≤t≤e

|w2(t, 0, 0)|,

then we select ε≥ λz1
Λ1Nw1

+ λz2
Λ2Nw2

/1 − (λz1
Λ1

(υ1 + υ2) + λz2
Λ2(τ1 + τ2)); next, we show ƛQε ⊂ Qε, where

Qε � (u, v) ∈ H × H: ‖(u, v)‖≤ ε{ }. (21)

Observe that |w1(t, u, v)| � |w1(t, u, v) − w1(t, 0, 0)

+w1(t, 0, 0)|≤ υ1‖u‖ + υ2‖v‖ + Nw1
≤ (υ1 + υ2)ε + Nw1

.
For any (u, v) ∈ Qε, t ∈ [1, e], we have

ƛ1(u, v)(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � |z1(t, u(t), v(t)) ×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
w1(r, u(r), v(r))

dr

r
􏼠

+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2
w1(r, u(r), v(r))

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

w1(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡|

≤ λz1
sup
1≤t≤e

− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
w1(r, u(r), v(r))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dr

r
􏼨

+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2
w1(r, u(r), v(r))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

w1(r, u(r), v(r))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
dr

r
􏼢 􏼣

≤ λz1
υ1 + υ2( 􏼁ε + Nw1

􏽨 􏽩 sup
1≤t≤e

− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1dr

r
􏼠􏼨

+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2dr

r
􏼢 􏼣􏼡􏼩≤ λz1

υ1 + υ2( 􏼁ε + Nw1
􏽨 􏽩Λ1.

(22)

Similar to what was done above, we get

ƛ2(u, v)
����

����≤ λz2
τ1 + τ2( 􏼁ε + Nw2

􏽨 􏽩Λ2. (23)

From (22) and (23), we deduce that ‖ƛ(u, v)‖≤ ε.
Next, for any (u1, v1), (u2, v2) ∈ H × H,∀t ∈ [1, e], we

have

ƛ1 u1, v1( 􏼁(t) − ƛ1 u2, v2( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ λz1
sup
1≤t≤e

− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
w1 r, u1(r), v1(r)( 􏼁 − w1 r, u2(r), v2(r)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dr

r
􏼨 +

+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2
w1 r, u1(r), v1(r)( 􏼁 − w1 r, u2(r), v2(r)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dr

r
􏼢

− λ1 􏽚
η1

1
log

η1
r

􏼒 􏼓
p− 2

w1 r, u1(r), v1(r)( 􏼁 − w1 r, u2(r), v2(r)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
dr

r
􏼣
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≤ λz1
υ1 u1 − u2

����
���� + υ2 v1 − v2

����
����􏼐 􏼑 sup

1≤t≤e

− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1dr

r
􏼨

+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2dr

r
􏼢 􏼣}≤ λz1

Λ1 υ1 u1 − u2
����

���� + υ2 v1 − v2
����

����􏼐 􏼑

≤ λz1
Λ1 υ1 + υ2( 􏼁 u1 − u2

����
���� + v1 − v2

����
����􏼐 􏼑. (24)

Similarly, we can find

ƛ2 u1, v1( 􏼁 − ƛ2 u2, v2( 􏼁
����

����≤ λz2
Λ2 τ1 + τ2( 􏼁 u1 − u2

����
���� + v1 − v2

����
����􏼐 􏼑.

(25)

Combining (24) and (25) yields

ƛ u1, v1( 􏼁 − ƛ u2, v2( 􏼁
����

����≤ λz1
Λ1 υ1 + υ2( 􏼁 + λz2

Λ2 τ1 + τ2( 􏼁􏽨 􏽩

× u1 − u2
����

���� + v1 − v2
����

����􏼐 􏼑.

(26)

Since [λz1
Λ1(υ1 + υ2) + λz2

Λ2(τ1 + τ2)]< 1, then
‖ƛ(u1, v1) − ƛ(u2, v2)‖≤ (‖u1 − u2‖ + ‖v1 − v2‖), that is, the
defined operator ƛ is a contraction; consequently, Banach

fixed point theorem applies; thus, problem (3) has a unique
solution on [1, e]. □

Theorem 6. If (Ξ1), (Ξ3), and (Ξ4) are satisfied and if
(λz1
Λ1ω1 + λz2

Λ2θ1)< 1 and (λz1
Λ1ω2 + λz2

Λ2θ2)< 1, then
the boundary value problem (3) has at least one solution.

Proof. First, we show that the operator ƛ: H × H⟶ H ×

H is completely continuous; obviously, the operator is
continuous as a result that z1, z2, w1, and w2 are all assumed
to be continuous.

By the aid of (Ξ4), ∀(u, v) ∈ R, we have

ƛ1(u, v)(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � |z1(t, u(t), v(t)) ×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
w1(r, u(r), v(r))

dr

r
􏼠

+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2
w1(r, u(r), v(r))

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

w1(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡|

≤ λz1
sup
1≤t≤e

− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
w1(r, u(r), v(r))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dr

r
􏼨

+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2
w1(r, u(r), v(r))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

w1(r, u(r), v(r))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
dr

r
􏼢 􏼣

≤ λz1
κ1 sup

1≤t≤e

− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1dr

r
+

log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2dr

r
􏼢 􏼣􏼠 􏼡􏼨 􏼩

≤ λz1
Λ1κ1.

(27)

Similarly,

ƛ2(u, v)
����

����≤ λz2
Λ2κ2. (28)

Combining inequalities (27) and (28) yields
‖ƛ(u, v)‖≤ λz1

Λ1κ1 + λz2
Λ2κ2, that is, the operator ƛ is

uniformly bounded.
Next, to verify the equicontinuity for the operator ƛ, we

let t1, t2 ∈ [1, e], (t1 < t2) and then

ƛ1(u, v) t2( 􏼁 − ƛ1(u, v) t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ λz1
κ1 sup

1≤t≤e

− 1
Γ(p)

􏽚
t1

1
log

t2
r

􏼒 􏼓
p− 1

− log
t1
r

􏼒 􏼓
p− 1

􏼠 􏼡
dr

r
􏼨 +

− 1
Γ(p)

􏽚
t2

t1

log
t2
r

􏼒 􏼓
p− 1

􏼠 􏼡
dr

r

+
log t2 − log t1

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2dr

r
􏼢 􏼣􏼩.

(29)
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ƛ2(u, v) t2( 􏼁 − ƛ2(u, v) t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ λz2
κ2 sup

1≤t≤e

− 1
Γ(q)

􏽚
t1

1
log

t2

r
􏼒 􏼓

q− 1
− log

t1

r
􏼒 􏼓

q− 1
􏼠 􏼡

dr

r
􏼨 +

− 1
Γ(q)

􏽚
t2

t1

log
t2

r
􏼒 􏼓

q− 1
􏼠 􏼡

dr

r

+
log t2 − log t1

1 − λ2( 􏼁Γ(q − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

q− 2dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2dr

r
􏼢 􏼣􏼩.

(30)

(e R.H.S for both (29) and (30) tends to zero as
t1⟶ t2, and they are both independent on (u, v). (is
implies that the operator ƛ(u, v) is equicontinuous and
yields that the operator ƛ(u, v) is completely continuous.

Finally, we establish the bounded set given by
S � (u, v) ∈ H × H|(u, v) � βƛ(u, v), β ∈ [0, 1]􏼈 􏼉, then
∀t ∈ [1, e]; the equation (u, v) � βƛ(u, v) gives

u(t) � βƛ1(u, v)(t),

v(t) � βƛ2(u, v)(t).
(31)

Using the hypothesis (Ξ3), we get

‖u‖≤ λz1
Λ1 ω0 + ω1‖u‖ + ω2‖v‖( 􏼁,

‖v‖≤ λz2
Λ2 θ0 + θ1‖u‖ + θ2‖v‖( 􏼁.

(32)

Consequently, we have

‖u‖ +‖v‖≤ λz1
Λ1ω0 + λz2

Λ2θ0􏼐 􏼑 + λz1
Λ1ω1 + λz2

Λ2θ1􏼐 􏼑‖u‖

+ λz1
Λ1ω2 + λz2

Λ2θ2􏼐 􏼑‖v‖.

(33)

Inequality (33) can be written as follows:

‖(u, v)‖≤
λz1
Λ1ω0 + λz2

Λ2θ0􏼐 􏼑

Λ0
. (34)

where Λ0 � min 1 − (λz1
Λ1􏽮 ω1 + λz2

Λ2θ1), 1 − (λz1
Λ1ω2+

λz2
Λ2θ2)}.
Inequality (34) shows that S is bounded. Hence, Ler-

ay–Schauder alternative applies, which implies that problem
(3) has at least one solution. □

4. Stability

In the current section, we are interested in studying the U–H
of the proposed system of the coupled sequential fractional
differential BVPs (1).

Definition 4. (e system of the coupled sequential fractional
differential BVPs (1) is stable with in U–H sense if a real
number c � max(c1, c2)> 0 exists so that for any
ε � max(ε1, ε2)> 0 and for any (u, v) ∈ H × H satisfying

CH
D

p u(t)

z1(t, u(t), v(t))
􏼠 􏼡 − w1(t, u(t), v(t))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< ε1, t ∈ [1, e],

CH
D

q u(t)

z2(t, u(t), v(t))
􏼠 􏼡 − w2(t, u(t), v(t))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< ε2.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(35)

(ere exists a unique solution (u, v) ∈ H × H of (3) with

‖(u, v) − (u, v)‖< cε. (36)

It is clear that (u, v) ∈ H × H satisfies inequality (35) if
there exists a function (f1, f2) ∈ H × H (which depends on
(u, v)), such that

(i) |f1(t)|< ε1 and |f2(t)|< ε2, t ∈ [1, e]

(ii) for t ∈ [1, e]

And

CH
D

p u(t)

z1(t, u(t), v(t))
􏼠 􏼡 � w1(t, u(t), v(t)) + f1(t),

CH
D

q u(t)

z2(t, u(t), v(t))
􏼠 􏼡 � w2(t, u(t), v(t)) + f2(t).􏼨 (37)

Theorem 7. Suppose that (Ξ2) is fulfilled. Moreover,

λz1
Λ1 υ1 + υ2( 􏼁< 1,

λz2
Λ2 τ1 + τ2( 􏼁< 1,

Δ � 1 − λz1
Λ1 υ1 + υ2( 􏼁􏼐 􏼑 1 − λz2

Λ2 τ1 + τ2( 􏼁􏼐 􏼑

− λz1
Λ1 υ1 + υ2( 􏼁λz2

Λ2 τ1 + τ2( 􏼁> 0.

(38)

(en, the system of coupled sequential fractional dif-
ferential BVPs (1) is U–H stable.

Proof. Assume that for ε1, ε2 > 0 a couple (u, v) ∈ H × H

satisfies the inequalities (35). Introduce the following
operators.

(en,
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u(t) � z1(t, u(t), v(t)) ×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
w1(r, u(r), v(r))

dr

r
􏼠

+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2
w1(r, u(r), v(r))

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

w1(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡,

+ z1(t, u(t), v(t)) ×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
f1(r)

dr

r
􏼠

+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2
f1(r)

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

f1(r)
dr

r
􏼢 􏼣􏼡,

(39)

v(t) � z2(t, u(t), v(t)) ×
− 1
Γ(q)

􏽚
t

1
log

t

r
􏼒 􏼓

q− 1
w2(r, u(r), v(r))

dr

r
􏼠

+
log t

1 − λ2( 􏼁Γ(q − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

q− 2
w2(r, u(r), v(r))

dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2

w2(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡,

+ z2(t, u(t), v(t)) ×
− 1
Γ(q)

􏽚
t

1
log

t

r
􏼒 􏼓

q− 1
f2(r)

dr

r
􏼠

+
log t

1 − λ2( 􏼁Γ(q − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

q− 2
f2(r)

dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2

f2(r)
dr

r
􏼢 􏼣􏼡.

(40)

From (39) and (40), we obtain

u(t) − z1(t, u(t), v(t)) ×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
w1(r, u(r), v(r))

dr

r
+

log t

1 − λ1( 􏼁Γ(p − 1)
􏼠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏽚
e

1
log

e

r
􏼒 􏼓

p− 2
w1(r, u(r), v(r))

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

w1(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ z1(t, u(t), v(t)) ×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
f1(r)

dr

r
+

log t

1 − λ1( 􏼁Γ(p − 1)
􏼠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏽚
e

1
log

e

r
􏼒 􏼓

p− 2
f1(r)

dr

r
− λ1 􏽚

η1

1

log
η1
r

􏼒 􏼓
p− 2

f1(r)
dr

r

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦⎞⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(41)

v(t) − z2(t, u(t), v(t)) ×
− 1
Γ(q)

􏽚
t

1
log

t

r
􏼒 􏼓

q− 1
w2(r, u(r), v(r))

dr

r
􏼠 +

log t

1 − λ2( 􏼁Γ(q − 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏽚
e

1
log

e

r
􏼒 􏼓

q− 2
w2(r, u(r), v(r))

dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2

w2(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ z2(t, u(t), v(t)) ×
− 1
Γ(q)

􏽚
t

1
log

t

r
􏼒 􏼓

q− 1
f2(r)

dr

r
􏼠 +

log t

1 − λ2( 􏼁Γ(q − 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏽚
e

1
log

e

r
􏼒 􏼓

q− 2
f2(r)

dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2

f2(r)
dr

r
􏼢 􏼣􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(42)

From (41) and (42), we obtain
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u(t) − z1(t, u(t), v(t)) ×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
w1(r, u(r), v(r))

dr

r
+

log t

1 − λ1( 􏼁Γ(p − 1)
􏼠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏽚
e

1
log

e

r
􏼒 􏼓

p− 2
w1(r, u(r), v(r))

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

w1(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ λz1
Λ1 f1

����
����≤ λz1
Λ1ε1.

(43)

v(t) − z2(t, u(t), v(t)) ×
− 1
Γ(q)

􏽚
t

1
log

t

r
􏼒 􏼓

q− 1
w2(r, u(r), v(r))

dr

r
􏼠 +

log t

1 − λ2( 􏼁Γ(q − 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏽚
e

1
log

e

r
􏼒 􏼓

q− 2
w2(r, u(r), v(r))

dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2

w2(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ λz2
Λ2 f2

����
����≤ λz2
Λ2ε2.

(44)

Let (u, v) ∈ H × H be a solution of (3). (anks to lemma
2, it is equivalent to the following integral equations:

u(t) � z1(t, u(t), v(t)) ×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
w1(r, u(r), v(r))

dr

r
􏼠

+
log t

1 − λ1( 􏼁Γ(p − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

p− 2
w1(r, u(r), v(r))

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

w1(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡,

v(t) � z2(t, u(t), v(t)) ×
− 1
Γ(q)

􏽚
t

1
log

t

r
􏼒 􏼓

q− 1
w2(r, u(r), v(r))

dr

r
􏼠

+
log t

1 − λ2( 􏼁Γ(q − 1)
􏽚

e

1
log

e

r
􏼒 􏼓

q− 2
w2(r, u(r), v(r))

dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2

w2(r, u(r), v(r))
dr

r
􏼢 􏼣􏼡.

(45)

By the same arguments in theorem 2, we get

|u(t) − u(t) � ƛ1(u, v)(t) − ƛ1(u, v)(t) − z1(t, u(t), v(t)) ×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
f1(r)

dr

r
􏼠 +

log t

1 − λ1( 􏼁Γ(p − 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

· 􏽚
e

1
log

e

r
􏼒 􏼓

p− 2
f1(r)

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

f1(r)
dr

r
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ƛ1(u, v)(t) − ƛ1(u, v)(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + z1(t, u(t), v(t)) ×
− 1
Γ(p)

􏽚
t

1
log

t

r
􏼒 􏼓

p− 1
f1(r)

dr

r
􏼠 +

log t

1 − λ1( 􏼁Γ(p − 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

· 􏽚
e

1
log

e

r
􏼒 􏼓

p− 2
f1(r)

dr

r
− λ1 􏽚

η1

1
log

η1
r

􏼒 􏼓
p− 2

f1(r)
dr

r
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ λz1
Λ1 υ1 + υ2( 􏼁(‖u − u‖ +‖v − v‖) + λz1

Λ1ε1.
(46)
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|v(t) − v(t) � ƛ2(u, v)(t) − ƛ2(u, v)(t) − z2(t, u(t), v(t)) ×
− 1
Γ(q)

􏽚
t

1
log

t

r
􏼒 􏼓

q− 1
f2(r)

dr

r
􏼠 +

log t

1 − λ2( 􏼁Γ(q − 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

· 􏽚
e

1
log

e

r
􏼒 􏼓

q− 2
f2(r)

dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2

f2(r)
dr

r
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ƛ2(u, v)(t) − ƛ2(u, v)(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + z2(t, u(t), v(t)) ×
− 1
Γ(q)

􏽚
t

1
log

t

r
􏼒 􏼓

q− 1
f2(r)

dr

r
􏼠 +

log t

1 − λ2( 􏼁Γ(q − 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

· 􏽚
e

1
log

e

r
􏼒 􏼓

q− 2
f2(r)

dr

r
− λ2 􏽚

η2

1
log

η2
r

􏼒 􏼓
q− 2

f2(r)
dr

r
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ λz2
Λ2 τ1 + τ2( 􏼁(‖u − u‖ +‖v − v‖) + λz2

Λ2ε2.

(47)

It follows that

‖u − u‖ − λz1
Λ1 υ1 + υ2( 􏼁(‖u − u‖ +‖v − v‖)≤ λz1

Λ1ε1,

‖v − v‖ − λz2
Λ2 τ1 + τ2( 􏼁(‖u − u‖ +‖v − v‖)≤ λz2

Λ2ε2.
(48)

Representing these inequalities as matrices, we get

1 − λz1
Λ1 υ1 + υ2( 􏼁 − λz1

Λ1 υ1 + υ2( 􏼁

1 − λz2
Λ2 τ1 + τ2( 􏼁 − λz2

Λ2 τ1 + τ2( 􏼁
⎛⎝ ⎞⎠

‖u − u‖

‖v − v‖
􏼠 􏼡≤

λz1
Λ1ε1

λz2
Λ2ε2

⎛⎝ ⎞⎠.

(49)

Solving the above inequality, we get

‖u − u‖≤
1 − λz1
Λ1 υ1 + υ2( 􏼁

Δ
λz1
Λ1ε1 +

λz1
Λ1 υ1 + υ2( 􏼁

Δ
λz2
Λ2ε2,

‖v − v‖≤
λz2
Λ2 τ1 + τ2( 􏼁

Δ
λz1
Λ1ε1 +

1 − λz2
Λ2 τ1 + τ2( 􏼁

Δ
λz2
Λ2ε2,

(50)

where Δ � (1 − λz1
Λ1(υ1 + υ2))(1 − λz2

Λ2 (τ1 + τ2))−
λz1
Λ1(υ1 + υ2)λz2

Λ2(τ1 + τ2)≠ 0.
(us,

‖u − u‖ +‖v − v‖≤
1 − λz1
Λ1 υ1 + υ2( 􏼁

Δ
+
λz2
Λ2 τ1 + τ2( 􏼁

Δ
􏼠 􏼡λz1

Λ1ε1

+
1 − λz2
Λ2 τ1 + τ2( 􏼁

Δ
+
λz1
Λ1 υ1 + υ2( 􏼁

Δ
􏼠 􏼡λz2

Λ2ε2.

(51)

For ε � max(ε1, ε2) and

c �
1 − λz1
Λ1 υ1 + υ2( 􏼁 + λz2

Λ2 τ1 + τ2( 􏼁􏼐 􏼑λz1
Λ1 + 1 − λz2

Λ2 τ1 + τ2( 􏼁 + λz1
Λ1 υ1 + υ2( 􏼁􏼐 􏼑λz2

Λ2
Δ

, (52)

we get

‖(u, u) − (v, v)‖≤ ‖u − u‖ +‖v − v‖≤ cε. (53)

(erefore, by means of Definition 4, the solution to
problem (3) is U–H stable. □

5. Example

In this part, we present an applied example to support the
theoretical results we reached in the previous part; consider
the following system:

CH
D

4
3 u(t)

5/6|sin u(t)| + 7/6
􏼠 􏼡 � 7e

5t
+

1

9
������
t
3

+ 24
􏽰

|v|

1 +|v|
+

1
45
tan− 1

u, t ∈ [1, e],

CH
D

5
4 v(t)

1/6|cos v(t)|
􏼠 􏼡 � 2e

− 3t
�
t

√
+

1
20

tan− 1
u + tan− 1

v􏼐 􏼑,

u(t)

1/2|sin u(t)| + 7/5
􏼠 􏼡

t�1
� 0,

CH
D

u(t)

1/2|sin u(t)| + 7/5
􏼠 􏼡

t�e

�
3
4

CH
D

u(t)

1/2|sin u(t)| + 7/5
􏼠 􏼡

t�2
,

v(t)

1/3|cos v(t)|
􏼠 􏼡

t�1
� 0,

CH
D

v(t)

1/3|cos v(t)|
􏼠 􏼡

t�e

�
3
4

CH
D

v(t)

1/3|cos v(t)|
􏼠 􏼡

t�
5
2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)
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Here, 3/4 � λ1 � λ2,
p � 4/3, q � 5/4, η1 � 2, η2 � 5/2, z1(t, u(t),

v(t)) � 5/6|sin u(t)| + 7/6, z2(t, u(t), v(t)) � 1/6|cos v(t)|.

w1(t, u(t), v(t)) � 7e
5t

+
1

9
������
t
3

+ 24
􏽰

|v|

1 +|v|
+

1
45
tan− 1

u,

w2(t, u(t), v(t)) � 2e
− 3t

�
t

√
+

1
17

tan− 1
u + tan− 1

v􏼐 􏼑.

(55)

Observe that

w1 t, u1, v1( 􏼁 − w1 t, u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
45

u2 − u1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
45

v2 − v1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

w2 t, u1, v1( 􏼁 − w2 t, u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
17

u2 − u1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
17

v2 − v1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

λz1
Λ1 υ1 + υ2( 􏼁 + λz2

Λ2 τ1 + τ2( 􏼁􏽨 􏽩≤ 2 ×(8.294) ×
1
45

+
1
6

×(8.534) ×
1
17

� 0.452288< 1.

(56)

(us, the boundary value problem (54) satisfies all the
conditions of (eorem 5; accordingly, we conclude that the
BVP has a unique solution on [1, e].

6. Conclusion

In previous works, researchers investigated the existence and
uniqueness of linear fractional differential equations in-
volving Caputo–Hadamard. (e legacy of this work lies in
verifying the existence and uniqueness of solutions to a
coupled system of Caputo–Hadamard hybrid fractional
differential equations with Hybrid boundary conditions.
Our major findings are demonstrated using the Banach fixed
point theorem and the alternative of Leray–Schauder. (e
stability of the solutions involved in the Hyers–Ulam type
was investigated. We provide an example to demonstrate the
study results. Caputo–Hadamard calculus has its own
prominence. For example, some researchers showed that by
considering different different fractional derivative's order, a
particular natural phenomenon can be remodeled with more
accuracy when fractional derivative is replaced by the or-
dinary one.

In future studies, researchers can verify the existence,
uniqueness, and stability of the solutions for the system of
equations given by (3) using the ψ-Hilfer fractional deriv-
ative or any other derivatives such as the fractional Katu-
gambula derivative. In addition, this system can be used in
practical applications of the subject by taking our results as
proven facts [39, 40].
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