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At present, the degree of industrialization in China is deepening, and various types of production equipment appear. However,
during the startup and operation of mechanical equipment, fracture and wear will occur due to various factors. Therefore, once the
mechanical equipment fails, it must be diagnosed as soon as possible to avoid serious economic losses and casualties. Rotating
machinery is an important power device, so it is necessary to regularly detect and monitor equipment signals to avoid the
consequences of wrong control methods. In this study, the fault diagnosis of rotating machine based on adaptive vibration signal
processing is studied under the safe environmental conditions. The fault diagnosis process of rotating machinery is to first collect
vibration signals, then process signal noise reduction, and then extract fault characteristic signals to further identify and classify
fault status and diagnose fault degree. This study briefly introduces several rotating machinery vibration signal processing
methods and identifies the fault state of the rotating machine based on the high-order cumulant. By building a DDS fault diagnosis
test bench, the chaotic particle swarm parameter optimization algorithm is used to calculate the accurate stochastic resonance
parameters. After noise processing, the high-frequency part is significantly reduced. The results show that, after stochastic
resonance wavelet decomposition and denoising processing, the number of intrinsic functions can be significantly reduced, the
fault frequency can be increased, the high-frequency noise can be reduced, and the fault analysis accuracy can be improved. We
identify the fault state of rotating machinery based on the high-order cumulant, train the four states of the bearing, and compare
the four types of faults, no fault, inner ring fault, rolling element fault, and outer ring fault through the comparison of the actual
test set and the predicted test set. It is concluded that the rotating machinery fault belongs to the rolling element fault and the
identification accuracy rate is 95%. Finally, based on the LMD morphological filtering, the rotating machinery fault diagnosis is
carried out, and the feature extraction is carried out based on the LMD algorithm to decompose the bearing fault signal. Finally,
the result after the morphological filtering and LMD decomposition and extraction can avoid noise interference.

1. Introduction

In recent years, modern industry and modern technology
have shown a rapid development trend. In the future, ro-
tating machinery will develop towards high-speed, inte-
grated, and automated trends, and the level of intelligence is
increasing, the structure is more complex, and the com-
ponents are closely connected [1, 2]. In case of failure, it will
form a chain reaction, seriously damage the normal oper-
ation of the equipment, cause incalculable economic losses,
and even cause casualties [3]. There have been many ca-
sualties caused by this factor at home and abroad.
Rotating machinery is a common power plant, mainly
used in ships, power generation, aerospace, and other fields,

and has a certain role in promoting the national economy in
China [4, 5]. Mechanical fault diagnosis is based on a
comprehensive grasp of the actual operating status of
equipment, to determine whether equipment is partially or
overall faulty and to find the fault and the causes of the fault
in advance [6]. The main measure of fault diagnosis is to
extract fault features. Since the mechanical equipment
system is complex and requires a large number of com-
ponents, the signal obtained by the signal measurement and
acquisition system is the effect of the interaction of all
components, and the transmission state of the signal in the
channel makes each component [7, 8]. The degree of mixing
of signal components is increased. Therefore, when diag-
nosing faults, it is necessary to first process the mixed signals
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formed in the system to obtain signal information charac-
teristics and then further diagnose the faults of large or
complex mechanical equipment [9-11].

The economic benefits formed by fault diagnosis tech-
nology after years of development are huge. Countries
around the world have recognized the advantages of rotating
machinery fault diagnosis and invested a lot of manpower
and funds to study this field [12, 13]. By using the advanced
level of diagnostic technology, the United States is at the
forefront of the world. The monitoring products developed
by some companies in the United States, as the current
frontier of diagnostic technology, have multiple monitoring
functions and powerful diagnostic functions, which can be
used in chemical, military, and other fields [14, 15]. Chinese
experts use local mean decomposition (LMD) algorithm
combined with LabVIEW software to analyze bearing ex-
perimental signals, and some other experts use LMD and
order tracking analysis method to diagnose rotating bearing
faults under variable speed conditions [16, 17].

This study analyzes the fault diagnosis process of rotating
machinery, uses sensors to collect vibration signals, per-
forms noise reduction processing based on stochastic res-
onance theoretical model, identifies rotating machinery fault
status based on high-order cumulants, and uses LMD
morphological filtering to diagnose rotating machinery
faults. The research shows that the most important part in
the fault diagnosis of rotating machinery is to extract the
fault features. Effectively dealing with the faults of the
mechanical equipment is convenient for the reliable and safe
operation of the equipment.

2. Materials and Methods

2.1. Rotating Machinery Fault Diagnosis Process. More than
70% of the faults in rotating machinery and equipment are
shaft and bearing faults. Bearing faults include inner ring
faults, rotor faults, and outer ring faults. The main factors
leading to the failure are unreasonable assembly, long-term
overload operation, fatigue operation, and shortage of lu-
bricant, which causes various faults in the shaft parts and the
bearings of the rotating parts, such as friction, cracks, and
eccentricity [18, 19]. Therefore, it is necessary to denoise and
process the vibration signal collected by the sensor. To di-
agnose the fault of the rolling shaft of a rotating machine, it is
necessary to first collect vibration signal, process signal noise
reduction, extract fault characteristic signals, identify and
classify fault states, and diagnose fault degrees [20, 21]. Figure 1
shows the diagnostic flow of rotating machinery equipment.

2.2. Rotating Machinery Vibration Signal Processing Method.
In the early stage of failure during engineering application, the
weak rotating machinery vibration signal collected will be
submerged by the background noisesignal, so the core of feature
extraction is to eliminate the background noise accurately.

2.2.1. Stochastic Resonance Theoretical Model. A bistable
system of stochastic resonance is represented by the fol-
lowing equation:
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Figure 1: Flowchart of fault diagnosis of rotating machinery
equipment.
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The above formula A cosQt represents the external
periodic driving force, a and b are both constants, x is the
signal, A and O represent the amplitude and angular fre-
quency of the external periodic driving force, I' (¢) represent
white noise, D represents noise intensity, E represents mean
function, and & (¢ — t1) represents shock function. If there is
no external noise and driving force, that is, A and D are equal
and zero, the potential well equation of the above equation is
expressed as

a, b,
Vi(e) = —x" 4 o (2)
where V () is the potential well. The periodic signal passes
through the system, and its signal is very weak, which makes
it difficult to push the particles from one potential well to
other potential wells. If a driving noise synchronized with
the periodic force is actively added from the outside, the
particles can pass over the potential well, and random
resonance can be generated.

2.2.2. Chaos Particle Swarm Optimization Algorithm. We
initialize the particle position and velocity based on chaos
theory, let the standard particle swarm algorithm form a
chaotic state after initialization, and make the initialization
show the characteristics of regularity, diversity, and ergo-
dicity. Logistic map is one of the most representative chaotic
systems:

Zp =pZ,(1-Z,)n=0,1,2,..., (3)
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where y represents the control variable. Assuming that the
value of y is 4 and the value range of Z is (0, 1). Logistic is in
a chaotic state. Based on the convenience, randomness,
regularity, and other characteristics of chaotic variables, we
initialize the random resonance position and initial speed
and make them traverse differently, so as to improve the
individual quality of particles and improve the search effect.

2.2.3. Variational Mode Decomposition (VMD) Algorithm.
In this study, the variational mode decomposition (VMD)
algorithm is used to solve the problem of rotating machinery
vibration signal processing and the empirical mode de-
composition (EMD) end effect problem. The VMD algo-
rithm is used when decomposing and reconstructing the
rotating machinery vibration signal, and the characteristic
signal is reconstructed. We run the modal formation of the
envelope spectrum analysis and then further extract the fault
signal features. The VMD algorithm decomposes the f(t)
input signal into a series of intrinsic modal function u
models of band-limited blocks; each uj model surrounds wy;
the following is the calculation formula:
2
]’, (4)
2

. ] — jwk!
min at[<8(t)+—>*u (t)]e J
() (wk){ZH mt)
where {uy} = {u1,u,,....ui} represents the entire model set and
{we} = {wy,w,, ..., w,} represents the center frequency of
the model set.

2.3. Fault State Identification of Rotating Machinery Based on
High-Order Cumulants. Based on modern signal processing
theory, high-order moments and high-order cumulants are
obtained by derivation of characteristic functions, and the
high-order cumulants are regarded as a kind of high-order
statistics. Assuming that x represents a continuous random
variable and f (x) represents the probability density func-
tion, the calculation formula in the moment generating
function @ (w) is as follows:

(o)
O (w) = J £ (0 dx, 5)
—00

The moment generating function needs to calculate the
k-order derivative of the moment generating function @ (w).
Assuming that the value of w is 0, the calculation formula of
the k-order moment my of the random variable x is as
follows:

d D (@) .
my = (=) ——— |0 = (=) @™ (0). (6)
dw
The natural logarithm @ (w) in the moment generating
function is the cumulant generating function, and the cal-
culation formula is as follows:

Y (w) = In® (w). (7)

We calculate the k-order derivative of the cumulant
generating function; assuming that the value of w is 0, the

k-order cumulant Cy, of the random variable x can be
obtained based on the following formula:

WA (w)

= weo = (=P (0). (8)
w

Cre = (_J )
Generally, cumulants exceeding the 3rd order is regar-
ded as high-order cumulants.

2.4. Fault Diagnosis of Rotating Machinery Based on LMD
Morphological Filtering. The local mean decomposition
method belongs to the adaptive signal analysis method. It
forms pure FM signal and envelope signal by separating any
nonstationary signal x(r). The following is the detailed de-
composition process:

(1) Calculate the local extreme point envelope value g;
and average value m; based on x(t):

m; = n;+ 1
2

>

9)
o |”i - ”i+1|
1 2 N
(2) Connect a; and m; with a broken line to obtain the
mean function m11(#) and the local envelope esti-
mation function all(t). Subtract m,(t) within x(t):

hyy (8) = x () —my; (8). (10)
(3) After dividing hy(t) by a;1(t), we can get S;;(t) FM
signal:
_hyy ()
S () = a, @) (11)

(4) The value of a;,(t) is 1. S;;(#) represents the standard
FM signal; assuming al2(t)#1, S;;(#) represents the
original data repetition process. When S;,(¢) is the
standard FM signal, al(, ) (£)=1.

(5) The envelope signal can be obtained by multiplying
the local envelope estimation function:

ay (t) = ayy (Day, (1)...ay, (t) = I a,, (t). (12)

(6) The product of the first PF component is obtained by
decomposition and the envelope signal a;(¢) and
Sin(f). The first PF component obtained by de-
composition is equal to the envelope signal.

(7) Decompose x(t) into the sum of kth PF components
and Uy as follows:

k
x(t) = ) PF,(t) = u(t). (13)
p=1

3. Results

3.1. Build an Experimental Platform. One of the most used
parts in various rotating machinery is rolling bearings. In
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TaBLE 1: Basic parameters of bearings selected for DDS experimental platform.

Bearing type Number of balls

Ball diameter Pitch diameter

6205-2RSJEMSKF 9

0.3206 1.524

TaBLE 2: Fault characteristic frequency.

Fault type Inner ring failure (Hz)

Outer ring failure (Hz)

Rolling element failure (Hz)

Eigenfrequency 23.16

36.54 55.2

0.06
0.04
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FIGURE 2: Time-frequency diagram of the acquired signal under the background of strong noise.

this study, a DDS power transmission fault diagnosis test
bench is built, and the model is 6205-2RSJEMSKEF bearing, 9
balls, and pitting damage is formed at the position of the
bearing balls by electric sparks. Once the bearing has defects,
the uniformly rotating rolling elements are affected by the
defect to form a periodic shock signal, which is usually lower
in frequency than the shock signal [22-24].

Rolling bearing is one of the most commonly used
general components in all kinds of rotating machinery. This
experimental platform is a comprehensive experimental
platform for DDS power transmission fault diagnosis. The
experimental bearing model is 200 Hz, and this frequency is
the characteristic frequency of bearing faults. The data ac-
quisition selects 16 channels, the bandwidth is 40 kHZ, the
sampling frequency of the data collector is 100 kHz, and the
collector is connected to the computer host by the USB
interface [25, 26]. Table 1 is the basic parameters of the
bearing. The motor speed is set to 600r/min, and the
sampling frequency is 1000 Hz. Forty percent of each group
of data is collected, and 10 groups of data in four different
modes are collected as training sample data, and then, 10
groups of data are collected, respectively. The group signal is
regarded as the sample signal to be collected. Based on the
fault characteristic frequency formula, three kinds of fault
characteristic frequencies are obtained, and the specific
results are listed in Table 2.

We substitute this parameter into the formula, and
COSa=1. The rotation frequency is 600r/min; the fault
frequency can be obtained after calculation, which is listed in
Table 2.

3.2. Noise Reduction Processing Results of Rotating Machinery
Vibration Signals. In this study, accurate stochastic reso-
nance parameters are obtained based on the chaotic particle
swarm parameter optimization algorithm, and the fault
sample signal is selected arbitrarily. Figure 2 is the spectrum

diagram of the bearing rolling fault signal obtained through
acquisition. It is difficult to distinguish accurately because
the characteristic signal with strong noise is completely
submerged.

Based on the chaotic particle swarm algorithm,
Apest = 0.563, bpest = 0.915, and hye = 0.194 are obtained. At
this time, the stochastic resonance effect of the bistable
stochastic resonance system is the most ideal, so the signal at
the fault frequency position has a significant increase. Then,
the VMD parameters are optimized based on the mixed
particle swarm algorithm, and the value of a is 1801, the
value of k is 4, and the VMD is used to decompose the signal.
After the adaptive chaotic particle swarm optimization
stochastic resonance denoising process, the vibration signal
VMD of the bearing can be decomposed to obtain the mode
component of this certificate, of which the high-frequency
part is significantly reduced.

Figure 3 is the result of the reconstruction of the
measured signal, and the fault characteristic signal between
the frequencies of 23 Hz and 24 Hz can be clearly viewed.
Therefore, after denoising by stochastic resonance wavelet
decomposition, the number of proof functions can be re-
duced so that the fault frequency increases and the high-
frequency noise part decreases, thereby improving the
analysis accuracy. Table 3 shows the vibration signals ac-
tually measured in a strong noise environment, so it is
concluded that the processing effect of the noise reduction
method used in this study is more ideal than the traditional
VMD method.

3.3. Rotating Machinery Fault State Identification Results
Based on High-Order Cumulants. Based on the high-level
accumulation algorithm, this study selects 56 data points as
one segment and selects the first ten segments of the four
bearing state data as the training data and the last ten
segments as the test data. In Figure 4, we draw four different
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FIGURE 3: Measured signal reconstruction results.
TaBLE 3: Comparison of the measured signal noise reduction effects 45
of the two algorithms. 4
/ SA-VMD VMD _
3
SNR before processing -23.71 -23.71 i )5
SNR after processing -8.69 7.91 g
5o 2
0.7 ! $
0.6 02
= 7' * 0
<
E, 05 P * L 4 0 10 20 ?o 40 50
5 o4 PP < Test set samples
_03 + Actual test set classification
503 ¢ Prediction test set classification
K 0.2 *
g FiGgure 5: The high-order cumulative training and bearing iden-
3 0.1 tification results.
0
0 2 4 6 8 10 12

Training set samples

+ Normal condition
Rolling element fault

Inner ring fault
+ Outer ring fault

FIGURE 4: Second-order cumulant graph of bearing training
samples.

states of the bearing and use different marks to indicate the
second-order cumulative amount of the bearing state, as
shown in Figure 4 [27-29].

According to the data in the figure, the normal state and
the rolling fault state of the rear adjustment are similar, and
the exact difference cannot be seen. We combine the second-
order cumulants and fourth-order cumulants of the first ten
training sample data to the feature vectors, accumulate them
in high order, and then select the second-order and fourth-
order cumulants in the ten test sample data as feature vectors
to identify the vector state. Figure 5 displays the recognition
results [30].

In Figure 5, 1 is the fault-free state, 2 is the inner ring
fault, 3 is the rolling element fault, and 4 is the outer ring
fault. According to the figure, only the eighth test sample
among the forty test samples belongs to normal data, and its
identification result is shown as a rolling element failure, and
the state identification accuracy rate reaches 95%. Table 4
shows the classification and identification results of the
predicted test set.

TaBLE 4: Classification and recognition results of the prediction set.

Number of Correct .
. . Recognition
Bearing status samples in number of rate (%)
the prediction set judgments °
Normal situation 10 8 80
Inner ring failure 10 10 100
Rglhng element 10 10 100
failure
Outer ring failure 10 10 100
Total 40 38 95

There are certain differences in the vibration signals
generated after the failure of the bearing roller, outer ring,
and inner ring. Therefore, a number of indicators should be
selected to calculate various fault vibration signals, and the
number of indicators has dispersion. If the selected index is
suitable, the obtained value has an ideal degree of dis-
crimination for various fault signals. Since the accumulators
have a good degree of discrimination for the fault signals of
each bearing, various faults on the bearings can be accurately
identified, and the fault identification effect is ideal.

3.4. Fault Diagnosis Results of Rotating Machinery Based on
LMD Morphological Filtering. Most of the faults of rolling
bearings are caused by local defects, and there are potential
damages, which are difficult to detect in the early stage.
Usually, the working environment of rolling bearings is



harsh, and the external environment is noisy. The vibration
signal mainly includes other vibration responses of
the machine system and the signal characteristics of
the excitation mapping relationship, resulting in a low
signal-to-noise ratio of the field vibration signal. The ex-
ternal environment will directly interfere with the bearing
fault signal.

Local mean decomposition (LMD) is an adaptive time-
frequency analysis method. It has strong mathematical
morphological impact feature extraction ability and strong
noise reduction ability. It can use morphological filtering in
processing bearing vibration signals, which can fully reflect
its own value. The original signal is processed by noise
reduction to obtain a higher signal-to-noise ratio, and it can
also extract the shock features in the fault. The following
simulation signals are used to test the effect of extracting the
signal-to-noise signal impulse characteristics by this
method:

y(8) = x, (£) + x, (t) +nt, (14)

where x;(t) represents a periodic exponential decay signal
with a frequency of 16 Hz and n(t) represents a Gaussian
white noise with a signal-to-noise ratio of —10 dB.

The bearing fault signal is decomposed based on LMD,
and there is very little high-frequency fault data in the fourth
PF component obtained through decomposition. Here, the
first three IMF components are required and reconstructed.
Then, the morphological filter is used to extract the char-
acteristic frequency of the shock, and the adaptive mor-
phological scale is optimized. The Hilbert envelope spectrum
of the reconstructed signal is obtained after adaptive mor-
phological filtering, which can accurately extract the 88 Hz
shock signal and the frequency doubled component. The
obtained result is similar to the fault frequency of the bearing
inner ring, which means that there is a local peeling fault in
the inner ring, which is in line with the actual situation and
suppresses the noise spectral line, improving the signal-to-
noise ratio. Through experiments, this extraction method
can suppress white noise and various harmonic signals. The
results after morphological filtering and LMD decomposi-
tion and extraction can avoid noise interference, and the
analysis results after the harmonic order is higher than the
third level have little interference to the spectrum with a
higher signal-to-noise ratio.

4. Conclusion

(1) When studying the fault diagnosis of rotating ma-
chine based on adaptive vibration signal processing
of safe environmental conditions, this study briefly
introduces the basic process of fault diagnosis of
rotating machine and points out that most of the
faults of rotating machine come from bearing faults.
By building the DDS dynamic rotation fault diag-
nosis test bench, the bearing model 6205-
2RSJEMSKE is selected, and the common fault types
are listed, namely, inner ring fault, outer ring fault,
and rolling element fault. Based on the formula of
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fault characteristic frequency, different fault char-
acteristic frequencies of three kinds of faults are
calculated.

(2) This study describes in detail several methods
commonly used in rotating machinery vibration
signal processing, namely, random vibration theo-
retical model, chaotic particle swarm optimization
algorithm, and variational mode decomposition
(VMD) algorithm. Based on the chaotic particle
swarm parameter optimization algorithm, the ac-
curate stochastic resonance parameters are calcu-
lated. The results show that, after the stochastic
resonance wavelet decomposition and noise reduc-
tion, the number of intrinsic functions can be re-
duced, the fault frequency can be increased, and the
high-frequency noise can be reduced so that the
characteristic signals can be accurately identified.

(3) This study identifies the fault state of rotating ma-
chinery based on high-order cumulants, trains the
four states of the bearing, and compares the actual
test set and the predicted test set with no faults, inner
ring faults, rolling element faults, and outer ring
faults. Results show that the rotating machinery fault
is a rolling element fault and the averge recognition
accuracy rate is as high as 95%. LMD morphological
filtering is used to diagnose rotating machinery
faults, and the bearing fault signal is decomposed
based on the LMD algorithm.

Data Availability

The figures and tables used to support the findings of this
study are included within the article.
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