
Research Article
Fault Diagnosis Using Data Fusion with Ensemble Deep Learning
Technique in IIoT

S. Venkatasubramanian,1 S. Raja,2 V. Sumanth,3 Jaiprakash Narain Dwivedi ,4

J. Sathiaparkavi,5 Santanu Modak,6 and Mandefro Legesse Kejela 7

1Department of Computer Science Engineering, Saranathan College of Engineering, Trichy 620012, Tamilnadu, India
2School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632004, Tamilnadu, India
3Department of Computer Science Engineering, Presidency University, Bengalur 560064, Karnataka, India
4Department of Electronics & Communication Engineering, Lingayas Vidyapeeth, Faridbad 121002, India
5Department of Computer Science Engineering, Saranathan College of Engineering, Trichy 620012, Tamilnadu, India
6Department of Computer Science, Asutosh College, West Bengal 700026, India
7Department of Computer Science Engineering, Ambo University, Ambo, Ethiopia

Correspondence should be addressed to Mandefro Legesse Kejela; mandefro.legesse@ambou.edu.et

Received 18 April 2022; Accepted 28 May 2022; Published 14 June 2022

Academic Editor: Punit Gupta

Copyright © 2022 S. Venkatasubramanian et al. is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Detecting the breakdown of industrial IoT devices is a major challenge. Despite these challenges, real-time sensor data from the
industrial internet of things (IIoT) present several advantages, such as the ability to monitor and respond to events in real time.
Sensor statistics from the IIoTcan be processed, fused with other data sources, and used for rapid decision-making.e study also
discusses how to manage denoising, missing data imputation, and outlier discovery using preprocessing. After that, data fusion
techniques like the direct fusion technique are used to combine the cleaned sensor data. Fault detection in the IIoT can be
accomplished by using a variety of deep learning models such as PropensityNet, deep neural network (DNN), and convolution
neural networks-long short term memory network (CNS-LSTM). According to various outcomes, the suggested model is tested
with CaseWestern Reserve University (CWRU) data.e results suggest that the method is viable and has a good level of accuracy
and e�ciency.

1. Introduction

Connected gadgets are commonplace in the IoT, a com-
puting paradigm that relies on ubiquitous Internet con-
nectivity. ese smart things can sense their surroundings,
transmit, and analyze the data they collect from the envi-
ronment and then return relevant details to their sur-
roundings in a form that can be understood by humans.
M2M technologies with applications in the automation
industry make up a subset of the IIoT, which is a subset of
the IoT. Improved production e�ciency and long-term
viability are two key bene�ts of the IIoT’s [1, 2] introduction
to the industry. For Industry 4.0, which is enabled by the
integration of cloud technologies and cyber systems, a wide

range of sensors are being installed around the industrial
operational situation and tackled. Proactive maintenance
and a reduction in unplanned downtime can be achieved by
the use of [3–7] data analysis technologies.

If some measures are missing owing to network or
hardware subjects in the IIoT, then we must have a working
mechanism in place. e problem of value imputation be-
comes crucial when sensor data contain many missing
values. High-frequency data collection results in large gaps
between data points, and all measurements taken during that
period are lost if the network goes down. When data are
missing [8], it could be because of a sensor failure or a
network failure, or because hackers have removed data with
malicious intent while it is being collected, processed, stored,

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 1682874, 8 pages
https://doi.org/10.1155/2022/1682874

mailto:mandefro.legesse@ambou.edu.et
https://orcid.org/0000-0002-5853-2216
https://orcid.org/0000-0001-6831-5402
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1682874

or sent. Filling in the missing values is a related research
challenge that must be addressed to ensure that the imputed
values are as close as feasible to the genuine values to analyze
the data. +e data collected are so diverse that to deal with
missing data in IoTsystems, the methodologies created must
be able to provide a high level of confidence for various
applications and endure the expanding deployments in the
IoT (and IIoT) space. Additionally, real-time IoTapplication
requirements require light-weight solutions [9].

Only data imputation, anomaly detection, and fault
classification have been documented in the literature so far.
Because each strategy may be maximized individually in this
study, we can increase the monitoring system’s overall
performance by integrating all three techniques. +ere are
three primary objectives for sensor networks in the IIoT, one
being extracting relevant information for decision making
[10, 11].

In the raw sensor data provided by IIoTsensors, there are
a lot of unnecessary and uncleaned data. Consequently, to
get any meaningful information from the cleaned IoTsensor
data, the raw sensor data must be cleaned [12, 13]. A
constrained IoT sensor network can also lead to high
computational expenses and overuse of resources because of
the vast amount of unwanted and worthless data [14–16].

2. Related Works

For chiller malfunction detection systems, Srinivasan
et al. [15] showed the rank of understandable AI (XAI).
One-dimensional convolutional neural networks (CNNs)
were created by Li et al. [16] for defect identification in
HVAC systems. Other M&E service systems have data-
driven FDD approaches proposed in addition to the
interpretability research for HVAC systems. Defect de-
tection in sewerage systems was pioneered by Kumar
et al. [17]. For picture object detection, the deep learning
assembly trusts the CNN. In comparison to other ma-
chine learning (ML) techniques, the image processing
skill employing the CNN is more understandable by
experts. Gonzalez-Jimenez et al. [18] evaluated the
existing fault diagnosis methods for electrical energies
and re-examined the general process utilizing ML
practices for electric drive fault detection. +e lack of
specific events in each electric drive is a major short-
coming of the data-driven FDD technique [18].

A microgrid’s energy management system was studied
by Marquez et al. [19], who used a fault detection and
reconfiguration process. A reconfiguration block received
fault information through acquiring residuals. Microgrid
fault detection is all discussed in Morato et al. [20]. For early
wind turbine breakdown detection, Ruiming et al. [21]
proposed combining SCADA data and a dynamic network
marker. Radial basis functions with two input parameters
were used by Hussain et al. [22] to detect faults in solar
systems [22]. Most solar energy applications are concerned
with fault discovery in solar systems rather than fault di-
agnosis in solar power facilities. To better anticipate solar hot
water system performance under various weather circum-
stances [23, 24], multiple deep learning models have been

constructed to look for deviations between predictions and
observations.

A significant advantage over prior approaches is the
ability to isolate problems with the collectors’ optical effi-
ciency, flow rate, and thermal losses. In contrast to optical
efficiency problems, which are caused by dirty or externally
imposed collectors, deteriorating, breaking down, corrod-
ing, or otherwise degrading, problems with flow rate are
caused by a loop that is out of balance, relative to the rest of
the plant [25]. Assuming, as is the case in most real plants,
that the only flow meter for the whole system is situated at
the pump, and that thermal losses are caused by dirt, wear,
insulation failures, and pipe breakage. However, the tem-
perature reduction could be caused by an incorrect reading
of the loop flow rate or by a broken pipe. Since the treatment
for each case is different, it is important to know where the
problem is to fix it quickly. Since a flowmeter replacement is
costly, it should only be done when there is confidence that
this is the faulty component.

3. Proposed System

Consistently or in response to an external incident, IIoT
sensors generate data. +e other phase involves the collec-
tion, aggregation, analysis, and visualization of data gen-
erated by sensor nodes. +is information is subsequently
translated into a form that can be communicated as a re-
sponse to an external stimulus. Data from IIoT sensors have
the following notable properties:

Technical constraints: the sensor’s small size imposes
limitations on the sensor’s computer power, storage
capacity, and memory. Consequently, sensor data may
be lost or incorrect information may be obtained if
these devices are attacked or fail to operate.
Real-time processing: in future, the sensor network will
be able to execute increasingly complicated networking
activities and perform real-time data transformations
from raw sensor data.
Scalability: the sensor network in the real world is made
up of a variety of sensors and actuators. As the number
of sensors and actuators continues to expand, the need
for scalable sensor networks that can handle the in-
creasing volume of data expands too.
Data representation: sensor data are often stored in the
form of a tiny tuple containing structured information.
Sensor data can be represented in a variety of ways,
including Boolean, binary, featured, continuous, and
numeric.
Heterogeneity: there is a wide range of data from IIoT
sensors from rigorously formatted datasets to real-time
information systems.

3.1. Denoising. IIoT networks create a lot of sensor data,
which need to be analyzed and used for real-time decision-
making. Sensor data have a wide range of features, including
high velocities, large volumes, and a wide range of dynamic

2 Mathematical Problems in Engineering

values and type values. +ey pollute and complicate deci-
sion-making in real time, as the sensor data are being
collected and analyzed. Unwanted changes and modifica-
tions to the signal’s original vectors are caused by noise, an
uncorrelated signal component. To process and utilize the
unusable data, resources are wasted because of the noise
characteristic. It is possible to accurately characterize the
signal using wavelet transform methods and to solve the
problem of signal estimation using these methods. By re-
ducing the signal’s noise, the wavelet transformation keeps
the original signal coefficients intact. +is is accomplished
through the use of a thresholding approach that is optimized
for low-coefficient noise signals. To analyze and synthesize
continuous-time signal energy, wavelet transformation is
widely used.

To express the signal energy, we can use e(t), t − R.

|e|
2

�
∞

−∞
|e(t)|

2dt<∞. (1)

In (1), it must be within the squared search space L2 for
the signal energy e(t) to satisfy the requirement (R).
Analysis of discrete-time signal energy can also be done
using the wavelet transformation.

3.2. Missing Data Imputation. When dealing with missing
data, imputation is a necessary preprocessing step [26].
Various sectors and fields such as smart cities, healthcare,
GPS, and smart transportation rely heavily on data gener-
ated by the internet of things (IoT). Algorithms for analyzing
IIoT data typically presume that the data are completed
before beginning their analysis. IoT data that are partial or
missing can give unreliable results because of the data an-
alytics conducted on that data. For the IIoT, an estimation of
the missing value is required. As a first step, three things
must be done. Identifying the cause of missing data is a
critical first step.+is is a result of poor network connectivity
and defective sensor systems as well as environmental
conditions and synchronization challenges. Data that are
entirely missing at random (MCAR) are the most common
sort of missing data, which is also the most difficult to find
(NMAR). +e next step is to look at the patterns of data that
are missing. A random missing pattern is RMP and a
monotonous missing pattern is AMP. As the last step, they
create an IIoT for the missing datasets.

3.3. Data Outlier Detection. Sensor nodes in the IIoT sensor
network are extensively dispersed and diverse. Note that, in a
real-world physical context, such a design leads to significant
sensor node failure and danger owing to a variety of outside
influences. As a result, the IIoT sensor network’s original
data are vulnerable to manipulation, leading to data outliers
[27]. Data outliers must be identified before data analysis or
decision-making may take place.

Voting mechanism: an aberrant sensor node can be
recognized in this manner through the comparison of its
readings with those of neighboring sensors. According to
Shahraki et al. [28], using a Poisson distribution to generate
data in sensor network applications is the norm. Outliers for

short-term, nonperiodic, and inconsequential variations in
data patterns are generated in the IoT sensor network’s data
sets. Outliers in the IoT sensor network data with a Poisson
distribution can be easily identified using the standard
deviation and boxplot. +e data generated by the failing
sensor node and its nearby neighbors are also assessed using
Euclidean distances in a distributed context. +e data from
this node is considered an outlier if the estimated variation
exceeds a predetermined threshold. +is approach, with its
simplicity and convenience of use, relies heavily on the
proximity of the sensor nodes to each other. +e sparse
network also has low precision.

3.4.DataFusion. It is required to integrate or fuse data from
several sensors to increase the accuracy of various appli-
cations. Sifting data from multiple sensors into an accurate,
reliable, and trustworthy representation of the dynamic
system’s state is known as sensor fusion.+is approximation
is more accurate than using the sensors one at a time. Sensor
fusion aims to lower the system’s cost, complexity, and the
number of parts while also improving the system’s sensing
precision and confidence. It is a multifaceted approach.

System states can include acceleration and distance from
sensors or mathematical models. In addition to increasing
the quality of data, the fusion of sensors can also boost the
dependability, measure unmeasured states, and expand the
coverage area.

Using this method, all sensors are connected and used to
classify each other. A data-level fusion occurs at this point.
When all of the sensors’ data is combined, data features can
be retrieved. Objects with sensors can be identified using
these data properties. When numerous sensors’ association
identities are jointly proclaimed, this technique of direct
fusion is also known as joint identity declaration. Equations
(2)–(5) show the formal design of the direct fusion process.

O: Si⟶ Sj∀≠ ji ∈ 1, 2, 3, . . . , n{ }, (2)

P: ffe
fdf

fA(O)(, (3)

IDdataextraction Si(� g(p), (4)

Q: JIDdeclaration Si(. (5)

+e feature extraction result is subjected to the identity
declaration function (g) in order to identify the specific
sensor data (P). Finally, the function JID declaration (.) and
the result Q are the outcomes of joint identification in the
direct fusion strategy.

3.5. Fault Classification Using ProposedModel. An ensemble
deep learning model for fault diagnosis uses these fused
datasets as input.

3.5.1. Deep Neural Network (DNN). Artificial neural net-
works (ANNs) are a class of techniques that use stacks of
layers to build a DNN model. Supervised learning can be

Mathematical Problems in Engineering 3

used as unsupervised learning [29] as well. Weights in DNN
models are stored in hidden layers.+ey are constantly being
recalibrated during the training as they process new in-
formation. Finding more accurate patterns is why the
weights are adjusted. +e researcher does not need to in-
dicate any patterns in advance for a DNN to learn. A subfield
of machine learning known as “representation learning”
(sometimes known as “feature learning”) underpins deep
learning techniques [30]. In contrast to machine learning
algorithms, which need the researcher to manually select
features before they can be employed, these approaches
automatically select features.

+ere are four completely connected layers in the DNN
architecture depicted in Table 1. According to [31], deep
learning models are constructed by combining layers that
are compatible and allow for effective data manipulations.
Deep learning models can only take and produce outputs of
a specific shape, which means that each layer of a model is
limited to receiving and producing input tensors of one
specific shape. According to [31], there is no need to be
concerned about the connecting layers’ suitability because
they are created to match the geometry of the incoming
layer. Tensor dimensions that are returned by a layer are
known as its output shape. Table 1 demonstrates that the first
hidden layer of DNNwill return a tensor with dimensions of
n� 1 (None, 64). +e output form of this first hidden layer is
(None, 64), and it has 64 neurons/units. +e output shape
from the first layer is automatically inferred as the input
shape for the second layer. For a variable batch size, a dy-
namic dimension of a batch called a “mini-batch” (None) is
utilized, allowing the user to specify any batch size for the
deep neural network. Except for the most extreme cir-
cumstances, it is unnecessary to fix the first dimension of
None at this time. During the fit or prediction phase, the
batch size is determined.

To avoid models from overfitting, the dropout layers
after the dense layers are utilized [32]. To stabilize the
learning process and dramatically minimize training epochs,
the design leverages batch normalization.+e DNN learning
process includes two important steps. +e first stage is that
the input layer delivers the raw data for the training data’s
forward propagation phase. As a second stage, the erroneous
signal must be retransmitted. Neurons in the hidden layers
process the data provided to the output layers to generate
output data. Nonlinear functions are used to transfer the
output data to the next layer. Activation functions refer to
these nonlinear functions. +e logistic function, the hy-
perbolic tangent, and the rectified linear unit ReLU are all
examples of activation functions. An input signal from a
DNN node is transformed into an output signal by these
devices. +is study employs the ReLU activation function,
which significantly decreases training time and provides
faster computation and convergence [33]. In deep learning,
ReLU outperforms the sigmoid and tanh activation func-
tions in terms of performance and generalization. DNN’s
final layer for multiclass models is a softmax layer, which
keeps track of the probabilities associated with each class.
+e definition of the softmax layer used for K-class classi-
fication is as follows [34]:

f xi(�
exp xi(

j

exp xj ∀j ∈ 1, . . . , K{ }. (6)

+e f(xi) softmax function generates an output ranging
from 0 to 1, with a probability total of 1. For binary clas-
sification, we will use a sigmoid function as the final layer to
generate probabilities ranging from zero to one. Each new/
test unit’s propensity score is calculated using these
probabilities.

3.5.2. PropensityNet. According to [35], the PropensityNet
(PN) is a deep neural network capable of predicting pro-
pensity scores. Table 2 shows that PN has five dense layers,
which means they are all connected. To tackle a binary
classification problem, PropensityNet uses Adadelta [36] as
an optimizer and binary cross-entropy as an error measure.
As the final layer, a sigmoid function is employed to provide
probabilities ranging from 0 to 1. For each new/test unit,
these probabilities serve as a measure of its propensity score.
PropensityNet was built using Keras with a Tensorflow
backend in R [37].

3.5.3. CNN-LSTM. To learn long-term dependencies, long
short-term memory networks (LSTMs) [38] have typically
been used (subnets). Recurrent neural networks are an
example of this type of network (RNNs). For nontemporal/
sequential data, we employ a hybrid model that blends CNN
and LSTM models. As a result, we check to see if the hybrid
model can be tweaked to predict the probability of class
membership (propensity scores). If we want to get proba-
bilities (propensity scores) between zero and one, we will
have to utilize a sigmoid function as the last layer. Li et al.
[39] provide a thorough explanation of CNN-LSTM. Table 3
shows the hybrid CNN-LSTM model’s design.

4. Results and Discussion

4.1. Simulation Environment. Ubuntu 18.04, 32GB of RAM,
and an Intel i7-8700K CPU type powered our test PC.
Ensemble deep learning models were developed mostly on
the Python programming language.

4.2. CWRU Dataset Introduction. Multiple accelerometers
were placed around the bearing motor to collect vibration
data in various operating conditions, resulting in the CWRU
dataset from Case Western Reserve University Laboratory.

Table 1: +e architecture of DNN.

Type of layer Number of parameters Output shape
Dropout 0 (None, 32)
Dense 528 (None, 16)
Dense 768 (None, 64)
Dropout 0 (None, 64)
Dense 2080 (None, 32)
Batch normalization 64 (None, 16)
Dense 17 (None, 1)

4 Mathematical Problems in Engineering

In the CWRU dataset, the electric spark destroyed the
bearing motor, replicating actual bearing failures. +e inner
raceway, the rolling element, and the outside raceway of the
bearing driving end or fan end all had different fault lo-
cations. Various forms of fault could be represented by the
bearing rolling element’s four available diameters. Each of
the four load types and four speeds of the bearing motor
represented a different issue in the bearing motor. For the
bearing motor depicted in Figure 1, see [39].

Experimental data were drawn from a subset of the
CWRU dataset. Conditions for gathering normal state data
included themotor load value of 1 horsepower and 1772 rpm
speed value. It was determined that the frequency was 12000
samples per second and the diameter was 0.007 inches. +e
drive end had faults in three places: the rolling raceway, the
outer raceway, and the inner raceway.

4.3. EvaluationMetrics. +ere are many ways to evaluate the
performance of a suggested approach for fault diagnostics.
+e Confusion Matrix, which is a two-dimensional matrix
that provides information about the actual and predicted
classes, serves as the basis for all evaluation criteria.

+e right predictions are signified by the confusion
matrix’s diagonal members, while the incorrect guesses are
represented by the confusion matrix’s nondiagonal mem-
bers. Confusion matrix attributes are depicted in Table 4.

Aside from that, recent research has employed a variety
of evaluation metrics.

Precision: all samples projected as faults divided by the
correct number of faults is represented by this ratio.

Precision �
TP

TP + FP
. (7)

Recall: all samples accurately categorized as Faults are
divided by the total number of samples that are in fact faults
to get this ratio. Detection rate is another name for it.

Recall � detection rate �
TP

TP + FN
. (8)

False alarm rate: also known as the false positive rate, it is
the proportion of fault samples that are found to be normal.

False alarm rate �
FP

FP + TN
. (9)

True negative rate: as a percentage of all samples that are
categorized as normal, it is known as a normality index.

True negative rate �
TN

TN + FP
. (10)

Accuracy: it is a measure of how many cases were
correctly categorized out of all the ones that were found.
When a dataset is balanced, the etection accuracy metric can
be used as a helpful performance measure.

Accuracy �
TP + TN

TP + TN + FP + FN
. (11)

F-measure: to put it another way, it is the arithmetic
mean of precision and recall combined. Accuracy may be
evaluated by looking at both the system’s precision and
recall, which is what this technique is all about.

F − measure � 2
precision × recall
precision + recall

 . (12)

4.4. Performance Evaluation of the ProposedModel. Here, the
performance of the proposed ensemble model is tested with
two different training sets and testing sets. Initially, 50% of
training data and 50% of testing data are considered for
validation, which is shown in Table 5 and Figure 2 presents
the comparative analysis of the proposedmodel with different
techniques in terms of accuracy for different data ratios.

In the analysis of accuracy, CNN, DNN, and CNN-
LSTM achieved 92%, LSTM and RNN achieved nearly 85%,
PropensityNet achieved 93%, and the proposed model
achieved 94.32%. +e single classifiers achieved less per-
formance, but when it is in ensemble state, they achieved
better performance. +e reason is that training data are
accurate and the prediction of faults on each technique is
accurate and it is finalized effectively. However, the accuracy
of performance and recall is low even for the proposed
ensemble model (i.e., 93.24% of recall) and this is because
only 50% of data is trained and tested with the remaining
50% of data. In addition, some data are missed while training
the model. But, in the analysis of precision, all techniques
achieved nearly 88% to 90% and achieved nearly 92% to 96%
of F-score. +e next set of experiments is carried out by
considering 75% of training data and 25% of testing data,
which is shown in Table 6.

Table 2: +e architecture of PN.

Type of layer Number of parameters Output shape
Dropout 0 (None, 32)
Dense 1056 (None, 32)
Dropout 0 (None, 32)
Dense 1056 (None, 32)
Dropout 0 (None, 32)
Dense 512 (None, 32)
Dropout 0 (None, 32)
Dense 1056 (None, 32)
Dense 33 (None, 1)

Table 3: +e architecture of CNN-LSTM.

Type of layer Number of parameters Output shape
Conv1D 2080 (None, 15, 32)
Conv1D 4160 (None, 15, 64)
Maxpooling1D 0 (None, 15, 64)
Flatten 0 (None, 480)
Maxpooling1D 0 (None, 15, 32)
Dropout 0 (None, 15, 32)
LSTM 8320 (None, 15, 32)
Conv1D 128 (None, 15, 64)
Maxpooling1D 0 (None, 15, 64)
Dense 61568 (None, 128)
Dropout 0 (None, 128)
Dense 129 (None, 1)

Mathematical Problems in Engineering 5

When the training data is increased, the performance of
the models is increased; for instance, the proposed ensemble
model achieved 95.62% of accuracy, 98.32% of precision,

94.62% of recall, and 94.53% of F-score. When compared
with all techniques, RNN achieved low performance, i.e.,
85.71% of accuracy, 84.32% of precision, 85.93% of recall,
and 83.45% of F-score. +e reason for poor performance is
that RNN takes a long time to train the network and it is
inefficient to handle the missing data. Moreover, the raw
data are fused by direct fusion techniques, and then it is used
for identifying the faults in machines. All proposed single
classifiers such as DNN, CNN-LSTM, and PropensityNet
achieved nearly 94% of accuracy, 96% of precision, 92% of
recall, and an F-score. LSTM and CNNmodels achieved 92%
of accuracy, 93% of precision, 92% of recall, and 91% of
F-score. +e training set is increased to 80% and testing data
is set at 20%, which is shown in Table 7.

Most of the techniques’ recall and F-score are nearly the
same; for instance, RNN achieved 81%, LSTM achieved 88%,
CNN achieved 92%, DNN achieved 92%, CNN-LSTM
achieved 91%, PropensityNet achieved 92%, and the pro-
posed ensemble model achieved 93%. +e accuracy of all
techniques is increased, when compared with the first set of
experiments.+at is, the proposedmodel achieved 98.84% of
accuracy, CNN-LSTM and PropensityNet achieved 96%,
and LSTM and CNN achieved 94% of accuracy. +e DNN
has 93.45% of precision, CNN-LSTM achieved 97.85% of
precision, PropensityNet achieved 98.23% of precision, and
the ensemble model achieved 99.23% of precision.

Fan end
bearing

Electric
motor Drive end

bearing
Torque

transducer
& encoder

Dynamometer

Figure 1: Bearing motor setup to generate CWRU dataset.

Table 4: Confusion matrix.

Predicted class
Fault Normal

Actual class Normal False positive True negative
Fault True positive False negative

Table 5: Comparative analysis of 50%–50% on the proposed model
with various existing algorithms.

Algorithm Accuracy Precision Recall F-score
RNN 81.10 89.41 75.91 86.72
LSTM 87.70 89.41 85.21 91.82
CNN 92.50 89.82 90.98 95.27
DNN 92.50 87.63 91.38 95.18
CNN-LSTM 92.70 88.90 91.93 95.32
PropensityNet 93.27 87.91 92.47 95.63
Proposed ensemble 94.32 90.95 93.24 96.02

100

80

60

40

20

0

Ac
cu

ra
cy

 (%
)

RNN LSTM CNN DNN CNN-
LSTM

Propensity
Net

Proposed
Ensemble

50%-50%
75%-25%
80%-20%

Figure 2: Graphical representation of the proposed model in terms
of accuracy for different training and testing data ratios.

Table 6: Comparative analysis of 75%–25% on the proposed model
with various existing algorithms.

Algorithm Accuracy Precision Recall F-score
RNN 85.71 84.32 85.93 83.45
LSTM 92.10 92.43 92.15 91.68
CNN 92.46 93.48 92.44 91.81
DNN 89.52 90.21 89.54 89.03
CNN-LSTM 94.53 96.61 92.52 92.24
PropensityNet 94.16 96.17 92.32 92.10
Proposed ensemble 95.62 98.32 94.62 94.53

6 Mathematical Problems in Engineering

5. Conclusion

As artificial intelligence technology continues to advance, it
is now possible to foresee mechanical failures based on the
IIoT. Sensor data fusion knowledge relies on big data
processing and analysis. Models and methods for sensing
data fusion in defect detection and prediction were exam-
ined in this research. +e direct fusion model is provided
here in terms of fusion models. To train and retrieve the
original data, the relevant ensemble methods based on deep
learning can be immediately implemented. Data pre-
processing is not usually necessary, but the learning curve
was steep and the machine performance needs were high.
Because of this, the preprocessing stage includes missing
data, outlier detection, and data imputation. Results from
the trials demonstrate that the suggested ensemble model
achieved 94% accuracy on 50%–50% of data, 95.6% accuracy
on 75% to 25% of data, and 98% accuracy on 80%–20% of
data, where the single DL models achieved approximately
96% accuracy on 80%–20% data.

6. Limitation and Future Scope

+e following are the obstacles and difficulties encountered
in the context of fusing sensory data, based on the current
development state of fusion models:

(1) Fusion models are not all the same: there is no one-
size-fits-all model for mechanical defect diagnosis
and prediction in the field. A large number of current
fusion models are based on a certain type of device.
Developing a common framework for identifying
mechanical equipment failures in the future would
be advantageous.

(2) Uncertainty in the original data: during the data
gathering process, a lot of noise is present in the
actual data obtained since environmental elements
cannot be controlled. Data fusion and feature ex-
traction are often incorrect if the unique data are
used directly. It is therefore vital to select a suitable
data preprocessing approach instead of techniques
utilized in this study when raw data are given. A set
of preprocessing methods for diverse sensors used in
fault analysis and prediction for mechanical gear will
be beneficial in the future development process.

(3) Long running time: finding appropriate hyper pa-
rameters requires a lot of running time when using

fusion methods based on deep learning. Overfitting
can also occur. Fusion techniques typically neces-
sitate feature extraction by hand, which adds time to
the computation time. Research into the feature and
decision-level fused algorithms are the focus of the
majority of fusion algorithms. +ere are very few
data fusion algorithms. As a result, it will be nec-
essary to continue working on data fusion algorithms
in the future.

Data Availability

+e data that support the findings of this study are available
on request from the corresponding author. +e data are not
publicly available due to privacy concerns.

Conflicts of Interest

+e authors declare that they have no conflicts of interests.

References

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund,
“Industrial Internet of things: challenges, opportunities, and
directions,” IEEE Internet of :ings Journal, vol. 14, 2018.

[2] Ericsson, “Cellular networks for massive IoT,” 2020, https://
www.ericsson.com/assets/local/publications/whitepapers/wp
%20iot.pdf.

[3] Y. Liu, T. Dillon, W. Yu,W. Rahayu, and F. Mostafa, “Missing
value imputation for industrial iot sensor data with large
gaps,” IEEE Internet of :ings Journal, vol. 7, no. 8,
pp. 6855–6867, 2020.

[4] F. Civerchia, S. Bocchino, C. Salvadori, E. Rossi, L. Maggiani,
and M. Petracca, “Industrial internet of things monitoring
solution for advanced predictive maintenance applications,”
Journal of Industrial Information Integration, vol. 7, pp. 4–12,
2017.

[5] J. Wan, S. Tang, D. Li et al., “A manufacturing big data so-
lution for active preventive maintenance,” IEEE Transactions
on Industrial Informatics, vol. 13, no. 4, pp. 2039–2047, 2017.

[6] B. Cheng, J. Zhang, G. P. Hancke, S. Karnouskos, and
A. W. Colombo, “Industrial cyberphysical systems: realizing
cloud-based big data infrastructures,” IEEE Industrial Elec-
tronics Magazine, vol. 12, no. 1, pp. 25–35, 2018.

[7] W. Yu, T. Dillon, F. Mostafa,W. Rahayu, and Y. Liu, “A global
manufacturing big data ecosystem for fault detection in
predictive maintenance,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 1, pp. 183–192, 2020.

[8] P. Nardelli, C. Papadias, C. Kalalas et al., “Framework for the
identification of rare events via machine learning and iot
networks,” in Proceedings of the 2019 16th International
Symposium on Wireless Communication Systems (ISWCS),
pp. 656–660, IEEE, Oulu, Finland, August, 2019.

[9] A. Gonzalez-Vidal, P. Rathore, A. Rao, J. Mendoza-Bernal,
M. Palaniswami, and A. Skarmeta-Gomez, “Missing data
imputation ´ with bayesian maximum entropy for internet of
things applications,” IEEE Internet of :ings Journal, vol. 8,
2020.

[10] X. Deng, P. Jiang, X. Peng, and C. Mi, “An intelligent outlier
detection method with one class support tucker machine and
genetic algorithm toward big sensor data in internet of
things,” IEEE Transactions on Industrial Electronics, vol. 66,
no. 6, pp. 4672–4683, 2019.

Table 7: Comparative analysis of 80%–20% on the proposed model
with various existing algorithms.

Algorithm Accuracy Precision Recall F-score
RNN 87.35 78.21 81.10 81.11
LSTM 94.82 89.33 87.70 88.64
CNN 94.62 88.82 92.50 89.02
DNN 90.76 93.45 92.50 87.39
CNN-LSTM 96.63 97.85 92.70 90.33
PropensityNet 96.12 98.23 93.27 91.02
Proposed ensemble 98.84 99.23 94.32 92.91

Mathematical Problems in Engineering 7

https://www.ericsson.com/assets/local/publications/whitepapers/wp%20iot.pdf
https://www.ericsson.com/assets/local/publications/whitepapers/wp%20iot.pdf
https://www.ericsson.com/assets/local/publications/whitepapers/wp%20iot.pdf

[11] S. Sanyal and P. Zhang, “Improving quality of data: IoT data
aggregation using device to device communications,” IEEE
Access, vol. 6, Article ID 67830, 2018.

[12] D. B. Rubin, “Inference andmissing data,” Biometrika, vol. 63,
no. 3, pp. 581–592, 1976.

[13] Y. Dong and C.-Y. J. Peng, “Principled missing data methods
for researchers,” SpringerPlus, vol. 2, no. 1, p. 222, 2013.

[14] C. Cunqing Hua and T.-S. P. Yum, “Optimal routing and data
aggregation for maximizing lifetime of wireless sensor net-
works,” IEEE/ACM Transactions on Networking, vol. 16, no. 4,
pp. 892–903, 2008.

[15] S. Srinivasan, P. Arjunan, B. Jin, A. L. Sangiovanni-Vincen-
telli, Z. Sultan, and K. Poolla, “Explainable AI for chiller fault-
detection systems: gaining human trust,” Computer, vol. 54,
no. 10, pp. 60–68, 2021.

[16] G. Li, Q. Yao, and C. Fan, “An explainable one-dimensional
convolutional neural networks based fault diagnosis method
for building heating, ventilation and air conditioning sys-
tems,” Building and Environment, vol. 203, Article ID 108057,
2021.

[17] S. S. Kumar, D. Abraham, and M. Rosenthal, “Leveraging
visualization techniques to develop improved deep neural
network architecture for sewer defect identification,” in
Construction Research Congress 2020: Infrastructure Systems
and Sustainability, pp. 827–835, American Society of Civil
Engineers, Reston, VA, USA, 2020.

[18] D. Gonzalez-Jimenez, J. del-Olmo, J. Poza, F. Garramiola, and
P. Madina, “Data-driven fault diagnosis for electric drives: a
review,” Sensors, vol. 21, no. 12, p. 4024, 2021.

[19] J. J. Marquez, A. Zafra-Cabeza, C. Bordons, and M. A. Ridao,
“A fault detection and reconfiguration approach for mpc-
based energy management in an experimental microgrid,”
Control Engineering Practice, vol. 107, Article ID 104695, 2021.

[20] M. M. Morato, P. R. C. Mendes, and J. E. Normey-Rico,
“Dealing with energy- generation faults to improve the
resilience of microgrids: a survey,” in Proceedings of the 2019
IEEE PES Innovative Smart Grid Technologies Conference -
Latin America, p. 1e6, September, 2019.

[21] F. Ruiming, W. Minling, G. xinhua, S. Rongyan, and
S. Pengfei, “Identifying early defects of wind turbine based on
scada data and dynamical network marker,” Renewable En-
ergy, vol. 154, pp. 625–635, 2020.

[22] M. Hussain, M. Dhimish, S. Titarenko, and P. Mather, “Ar-
tificial neural network based photovoltaic fault detection al-
gorithm integrating two bi-directional input parameters,”
Renewable Energy, vol. 155, pp. 1272–1292, 2020.

[23] C. Correa-Jullian, J. M. Cardemil, E. L. Droguett, and
M. Behzad, “Assessment of deep learning algorithms for fault
diagnosis in solar thermal systems,” in ISES Solar World
Congress, 2019.

[24] C. Correa-Jullian, J. M. Cardemil, E. López Droguett, and
M. Behzad, “Assessment of deep learning techniques for
prognosis of solar thermal systems,” Renewable Energy,
vol. 145, pp. 2178–2191, 2020.

[25] A. J. Gallego, M. Maćıas, F. d. de Castilla, and E. F. Camacho,
“Mathematical modeling of theMojave solar plants,” Energies,
vol. 12, no. 21, p. 4197, 2019.

[26] X. Yan, W. Xiong, L. Hu, F. Wang, and K. Zhao, “Missing
value imputation based on Gaussian mixture model for the
internet of things,” Mathematical Problems in Engineering,
vol. 2015, pp. 1–8, 2015.

[27] A. A. Al-khatib, B. Mohammed, and K. Abdelmajid, “A survey
on outlier detection in internet of things big data,” in Big

Data-Enabled Internet of :ings, pp. 265–272, IET, London,
UK, 2020.

[28] A. Shahraki, Ø. Haugen, andØ. Haugen, “An outlier detection
method to improve gathered datasets for network behavior
analysis in IoT,” Journal of Communications, vol. 14,
pp. 455–462, 2019.

[29] A. Sivaram, L. Das, and V. Venkatasubramanian, “Hidden
representations in deep neural networks: Part 1. Classification
problems,” Computers & Chemical Engineering, vol. 134,
Article ID 106669, 2020.

[30] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: a review and new perspectives,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1798–1828, 2013.

[31] F. Chollet, Deep Learning with Python, Simon & Schuster,
New York, NY, USA, 2021.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “‘Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 1, 2014.

[33] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall,
“Activation Functions: Comparison of Trends in Practice and
Research for Deep Learning,” 2018, https://arxiv.org/abs/
1811.03378.

[34] V. Ramachandra, “Deep Learning for Causal Inference,” 2018,
https://arxiv.org./abs/1803.00149.

[35] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate
Method,” 2012, https://arxiv.org/abs/1212.5701.

[36] F. Chollet and J. Allaire, “R interface to Keras,” 2017, https://
github.com/rstudio/keras.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[38] A. Whata and C. Chimedza, “Deep learning for SARS COV-2
genome sequences,” IEEE Access, vol. 9, Article ID 59597,
2021.

[39] S. Li, G. Liu, X. Tang, J. Lu, and J. Hu, “An ensemble deep
convolutional neural network model with improved D-S
evidence fusion for bearing fault diagnosis,” Sensors, vol. 17,
no. 8, p. 1729, 2017.

8 Mathematical Problems in Engineering

https://arxiv.org/abs/1811.03378
https://arxiv.org/abs/1811.03378
https://arxiv.org./abs/1803.00149
https://arxiv.org/abs/1212.5701
https://github.com/rstudio/keras
https://github.com/rstudio/keras

