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�e thermally developed �ow of nanoparticles due to bidirectional moving space has been presented numerically. �e additional
impact of heat source and sink are also incorporated for enhancing the heat transfer rate.�e copper and aluminum nanoparticles
are selected for enhancing the thermal di�usion system. �e thermal stability of nanoparticles is carefully addressed. �e moving
surface allows the shrinking and stretching phenomenon. �e system of resulting equations with nonlinear nature is numerically
swapped via shooting technique with help of MATLAB software. �e dual numerical simulations for the thermally radiative
problem with external heating phenomenon are being performed. It is noted from results that thermal stability of nanoparticles is
more stable in the upper branch of shrinking/stretching surface.�e presence of heat source provides extra heat and improves the
thermal transportation phenomenon which is more progressive in upper branch. �e enhancement in temperature pro�le due to
copper nanoparticles is more stable as compared to aluminum nanoparticles. Moreover, the increasing change in the velocity is
resulted upon increasing the rotation constant. �e obtained results re�ect applications in thermal sciences, heating systems,
energy production, solar applications, nuclear reactions, biomedical applications, etc.

1. Introduction

Recently, motivations of researchers are noticed towards the
nano�uid which reports leading contributions in the ther-
mal engineering and industrial processes. �e growing in-
terest in nanomaterials is justi�ed due to highly attractive
applications in solar energy, thermal transportation systems,
engineering devices, cooling systems, heating objectives,
nuclear reactions, medical sciences, emission processes, etc.
With nanostructured (1–100 nm), the nano�uids report
excellent thermal activities. �e interaction between nano-
particles and some base �uids reports results enhanced
thermal mechanism of base �uids. Choi [1] focused �rst time

on the thermal aspect of nano�uids via experimental ap-
proach. Later on, diverse research is being performed by
investigators to highlight the thermal mechanism and ap-
plications of nanomaterials. Turkyilmazoglu [2] developed a
slip nano�uid model for the annuli �ow by utilizing the dual
nano�uid and single relations of the nano�uid model. Nayak
et al. [3] exploited the viscous dissipation consequences for
illustrating the nano�uids �ow with Oldroyd-B base ma-
terial via bidirectional space. Basir et al. [4] performed the
novel aspect of slip �ow of nano�uid with sensitivity in-
surance and bioconvection phenomenon. �e Maxwell
nano�uid thermal determinations subject to the interaction
of multiple types of slip consequences have been identi�ed
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by Ahmad et al. [5]. )e Buongiorno nanofluid model
implementation for inspecting the viscoelastic fluid thermal
capacity was reported in the work of Nadeem et al. [6]. )e
analytical simulation for the nanofluid Riga surface problem
was investigated by Vaidya et al. [7]. Wang et al. [8] focused
on the migration of nanofluid material minichannels having
parallel plates. Abdelaziz et al. [9] discussed the character-
istics of nanofluid pattern via horizontal tubes. )e con-
tinuation of Sabu et al. [10] determined the heat transfer
improvement for the alumina nanoparticles with slip con-
straints due to heated rotatory disk. Ojjela et al. [11]
addressed the viscoelastic behavior and thermal capability
for the nanoparticles with non-Newtonian base fluid. )e
stability determination of nanofluids with experimental
approach was determined by Dong et al. [12]. Sivasankaran
and Bhuvaneswari [13]investigated the heat transfer
mechanism with constraints of pressure loss and porous
space. Acharya [14] numerically focused on the natural
convective flow of nanofluid due to heated wall surface in
square enclosure. Mondal et al. [15] addressed the optimized
thermal mechanism due to the couple stress nanofluid with
radiative phenomenon. Acharya [16] discussed the finite
element numerical simulations for the spinning flow of
nanoparticles with active and passive control approach.
Shafiq et al. [17] addressed the bioconvection aspect of
nanofluid with zero mass constraints. Haya et al. [18]
addressed the Joule heating effects while inspecting the
enhanced aspect of heat transfer in third grade nanofluid.
Some more recent work on nanofluid flow is presented in
[19–24].

)e hybrid nanofluid is the modified form of nanofluids
with more improved thermal activities. In fact, the hybrid
nanofluid model is based on the interaction of more than
one different types of nanoparticles along with base material.
)e preferences of the hybrid nanofluid model over simple
nanomaterials are due to extra high activities and more
thermal stability. Recently, different investigations are
performed on hybrid nanofluid with different nanoparticles.
Sowmya et al. [25] reported the inclusion of iron nano-
particles with existence of Lorentz force in cavity with two
heated fins. Sundar et al. [26] claimed the hybrid nanofluid
thermal properties with collector applications. Akhtar et al.
[27] modeled a hybrid nanofluid problem in elliptic duct
following the peristaltic mechanism. Eid and Mabood [28]
noticed the ethylene glycol base fluid thermal inspection
with hybrid nanofluid numerically. Eid and Mabood [28]
presented the thermal research on the carbon nanotubes
flow with heat generation features. Shahid et al. [29]
implemented the Darcy porous law for studying the hybrid
nanofluid prospective in parabolic surface. Madhukesh et al.
[30] explored the thermal efficiencies of AA7072-AA7075
nanoparticles with Newtonian heating enrollment. Acharya
[31] discussed the shape characteristics for the hybrid
nanofluid in heated obstacles. Devi and Devi [32] visualized
the copper and aluminum oxide nanoparticles thermal
prospective accounted via stretching surface. Devi and Devi
[33] observed the 3D thermal flow problem with Newtonian
heating. Lund et al. [34] intended the rotating flow of hybrid
nanofluid. Teh and Ashgar [35] determined the Joule heating

for the rotating flow of hybrid nanofluid. Zaimi et al. [36]
discussed the multiple solution of rotating viscoelastic fluid
with hybrid nanofluid.

)is analysis deals with the impact of heat source and
thermal radiation effects in flow of hybrid nanofluid due to
rotating space. )e main motivation for performing this
investigation is to highlight the enhanced thermal aspect of
heat transfer phenomenon subject to the magnetized copper
and aluminum nanoparticles. )e moving surface attained
the stretching and shrinking phenomenon. )e thermal
stability of hybrid nanoparticles is focused. )e shooting
numerical algorithm is followed for the simulations process.
)e dual simulations are performed in each branch of
moving space.

2. Problem Formulation

)e stretching and shrinking phenomenon of 3D hybrid
nanofluid is taken into account. )e heat transfer analysis is
considered in presence of external heating source and
thermal radiation. )e magnetic force impact is directed
along the z-axis for 3D flow. )e three-dimensional moving
space attained the velocity uw(x) � λcxn. )e stretching and
shrinking results are attained for λ> 0 and λ< 0, respectively.
)e surface temperature of nanoparticles is notified with Tw

while T∞ is for free stream temperature case as shown in
Figure 1. )e nanoparticles and surface present rotatory
behavior with angular velocity Ω � Ω0x(1− n) along z-direc-
tion. Let u, v, and wbe representation of velocities along , y,

and z directions, respectively. )e assumptions of low
magnetic Reynolds number reduce the role of induced
magnetic force. )e governing relations in view of such
considerations are as follows [26–28]:

ux + vy + wz � 0, (1)

uux + vuy + wuz − 2Ωv � −
Px

ρhnf

+
μhnf

ρhnf

uxx + uyy + uzz 

−
σhnf

ρhnf

B
2
u.

(2)

uvx + vvy + wvz + 2 Ωu � −
Py

ρhnf

+
μhnf

ρhnf

vxx + vyy + vzz v

−
σhnf

ρhnf

B
2
v,

(3)

uwx + vwy + wwz � −
Pz

ρhnf

+
μhnf

ρhnf

wxx + wyy + wzz , (4)

ρcp 
hnf

uTx + vTy + wTz  � khnf Txx + Tyy + Tzz T

− qr z + Q0 T − T∞( .

(5)

)e related boundary conditions are as follows:
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w � ww(x), v � 0 , u � uw(x), T � Tw at z � 0

u⟶ 0, v⟶ 0, T⟶ T∞ as z⟶ ∞
{ (6)

�e relation for radiative �ux qr is given by
qr � − (4σ∗/3k∗)(zT4/zz). Table 1 and Table 2 provide the
thermophysical properties.

�e following similarity variables (7) are used to obtain
similarity solutions for equations (1)–(5):

u � cxnf ′(η), v � cxng(η), η � z
�������
c(n + 1)
2ϑf

√
x(n− 1)/2

w � −

���������
cϑf(n + 1)

2

√

x(n− 1)/2 f(η) +
n − 1
n + 1

ηf ′(η)[ ]

θ(η) � T − T∞( )/ Tw − T∞( )

.




(7)

�e dimensionless set of equation is

f′′′ + ξ1ξ2 ff′′ −
2n

(n + 1)
f′

2 +
4Ω

(n + 1)
g[ ]

−
2

(n + 1)
σhnf
σf

ξ2Mf′ � 0,

(8)

g′′ + ξ1ξ2 fg′ −
2n

(n + 1)
f′g −

4Ω
(n + 1)

f′[ ]

−
2

(n + 1)
σhnf
σf

ξ2Mg � 0,
(9)

ξ3
Pr

khnf
kf

+
4
3
R d( )θ′′ + θ′f + ξ3Qθ � 0, (10)

subject to BCs,

f(0) � − b
�����
2

n + 1

√
, f′(0) � λ, g(0) � 0, θ(0) � 1

f′(η)⟶ 0, g(η)⟶ 0 θ(η)⟶ 0, as η⟶∞

,




ξ1 � 1 − ϕCu( ) 1 − ϕAl2O3
+ ϕAl2O3

ρAl2O3

ρf
( )[ ] + ϕCu

ρCu
ρf

( ){ }

ξ2 � 1 − ϕCu( )2.5 1 − ϕAl2O3
( )

2.5

ξ3 �
1

1 − ϕCu( ) 1 − ϕAl2O3
+ ϕAl2O3

ρcp( )
Al2O3

/ ρcp( )
f

[ ] + ϕCu ρcp( )
Cu
/ ρcp( )

f
{ }

,




(11)

where prime “ ′ ” denotes the di�erentiation by η,
M � (σfB20/cρf) is the magnetic number, Pr � (ϑf/αf) is
Prandtl, Ω � (Ω0/c) is rotation parameter, Q shows the heat
source/sink parameter, and R d � (4σ∗T3

∞/k
∗kf) denotes

the thermal radiation constant and b suction (b> 0)/injec-
tion (b> 0) constant.

�e dynamic of local Nusselt number and skin friction
coe¤cient is

Cfx �
μhnf
ρfu

2
w

zu

zz
( )|z � 0, Cfy �

μhnf
ρfu

2
w

zv

zz
( )|z � 0,

Nux �
− khnf(zT/zz)z�0 + qr( )z�0

kf Tw − T∞( )
.

(12)

Substituting (7) into (12) yields

Ω Cu CuAl2O3Al2O3

O
B B

z y

x

z y

x

Stretching Surface

Ω

O

Shrinking Surface

Figure 1: Flow illustration of problem.
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���
Re

√
Cfx �

1
ξ2

f′′(0);
���
Re

√
Cfy �

1
ξ2

g′(0)

���
Re

2



Nux

� −
khnf

kf

+
4
3

R d θ′(0),

(13)

where Rex is the local Reynolds number.

3. Stability Analysis

Two branches of solution against the involved parameters
are observed. In order to inspect the branch of solution with
more physical relevance, the stability analysis has been
performed for both branches. )e governing equations (2)-
(5) with unsteady form are

ut + uux + vuy + wuz − 2 Ωv � −
Px

ρhnf

+
μhnf

ρhnf

uxx + uyy + uzz  −
σhnf

ρhnf

B
2
u, (14)

vt + uvx + vvy + wvz + 2Ωu � −
Py

ρhnf

+
μhnf

ρhnf

vxx + vyy + vzz v −
σhnf

ρhnf

B
2
v, (15)

wt + uwx + vwy + wwz � −
Pz

ρhnf

+
μhnf

ρhnf

wxx + wyy + wzz , (16)

ρcp 
hnf

Tt + uTx + vTy + wTz  � khnf Txx + Tyy + Tzz T − qr z + Q0 T − T∞( . (17)

)e unsteady similarity solution can be considered as
follows [33–35]:

u � cx
n
fη(η,τ), v � cx

n
g(η,τ),

w � −

���������
cϑf(n +1)

2



x
(n− 1)/2

f(η,τ) +
n − 1
n +1

ηfη(η,τ) −
2τ

n +1
ηf(η,τ) 

θ(η,τ) � T − T∞( / Tw − T∞( ( .

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where the η is the same as in equation (7) and the di-
mensionless time is the τ � ctxn− 1, where the subscription
represents the derivative of the variable subscripted. Re-
member that continuity (1) is also satisfied by the values u, v,

and w given above. Equation (18) is substituted into
equations (14)-(17), and one can get

fηηη + ξ1ξ2 ffηη −
2n

(n + 1)
fη 

2
+

4Ω
(n + 1)

g

+
2(n − 1)

(n + 1)
τ fτfηη − fηfτη  −

2
(n + 1)

fτη

(19)

gηη + ξ1ξ2 fgη −
2n

(n + 1)
fηg −

4Ω
(n + 1)

fη

+
2(n − 1)

(n + 1)
τ fτgη − gτfη  −

2
(n + 1)

gτ

−
2

(n + 1)

σhnf

σf

ξ2Mg � 0,

(20)

Table 1: )ermophysical features of hybrid nanofluid [32–34].

Properties Hybrid nanofluid
Dynamic viscosity μhnf � μf/(1 − ϕCu)2.5(1 − ϕAl2O3

)2.5

Density ρhnf � (1 − ϕCu)[(1 − ϕAl2O3
)ρf + ϕAl2O3

ρAl2O3
] + ϕCuρCu

)ermal conductivity khnf � kCu + 2knf − 2ϕCu(knf − kCu)/kCu + 2knf + ϕCu(knf − kCu) × (knf)

where knf � kAl2O3
+ 2kf − 2ϕAl2O3

(kf − kAl2O3
)/kAl2O3

+ 2kf + ϕAl2O3
(kf − kAl2O3

) × (kf)

Heat capacity (ρcp)hnf � (1 − ϕCu)[(1 − ϕAl2O3
)(ρcp)f + ϕAl2O3

(ρcp)Al2O3
] + ϕCu(ρcp)Cu

Electrical conductivity σhnf � σCu + 2σnf − 2ϕCu(σnf − σCu)/σCu + 2σnf + ϕCu(σnf − σCu) × (σnf)

where σnf � σAl2O3
+ 2σf − 2ϕAl2O3

(σf − σAl2O3
)/σAl2O3

+ 2σf + ϕAl2O3
(σf − σAl2O3

) × (σf)

Table 2: )e thermophysical properties [32–34].

Properties Water (H2O) Copper (Cu) Alumina (Al2O3)

ρ (kg/m3) 997.1 8933 3970
cp(J/kg K) 4179 385 765
k (W/m K) 0.613 400 40
σ(S/m) 0.05 5.96 × 107 3.69 × 107
Pr 6.2
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ξ3
Pr

khnf
kf

+
4
3
R d( )θηη + θηf + ξ3Qθ

+ 2τ fτθη − θτfη( ) − θτ � 0,
(21)

subject to BCs,

f(0,τ) � − b
����
2

n+1

√
, f′(0,τ) � λ, g(0,τ) � 0,θ(0,τ) � 1

f′(η,τ)⟶ 0,g(η,τ)⟶ 0 θ(η,τ)⟶ 0, asη⟶∞

.




(22)

It is assumed that [28]

f(η,τ) �f0(η)+e
− ετF(η,τ), g(η,τ).

�g0(η)+e
− ετG(η,τ), θ(η,τ) �θ0(η)+e

− ετH(η,τ).
(23)

�e solution associated to the formulated equations
(8)–(10) with boundary conditions (11) is denoted with
f0(η), g0(η), and θ0(η).�e decay and growth disturbance
rate is de�ned with ε. It is assumed that (η, τ), G(η, τ), and
H(η, τ) and derivatives of these expressions are smaller in
contrast to the steady state situation. Such assumptions are
followed due to the linear stability of �ow pattern. Upon
replacing equation (26) into set of expressions (19)–(21) with
taking � 0,F(η, τ), G(η, τ), and H(η, τ) are associated to
F0(η), G0(η), andH0(η). On this end, the linear eigenvalue
problem is formulated as

F″
′
0 + ξ1ξ2 f0F0″+F0f0″+

2
n+1

ε − 2nf0′( )F0′+
4Ω

(n+1)
G0{ }

−
2

(n+1)
σhnf
σf

ξ2MF0′� 0,

(24)

G0″+ ξ1ξ2 g0′F0 +G0′f0 −
2n

(n+1)
f0′G0 +F0′g0( )[

−
4Ω

(n+1)
F0′+

2
(n+1)

εG0] −
2

(n+1)
M

σhnf
σf

ξ2G0 � 0,
(25)

ξ3
Pr

khnf
kf

+
4
3
R d( )H0″+θ0′F0 +H0′f0 + ξ3QH0 + εH0 � 0,

(26)

with

F0(0) � 0, F0′(0) � 0, G0(0) � 0,H0(0) � 0
F0′(η)⟶ 0,G0(η)⟶ 0H0(η)⟶ 0, asη⟶∞

.



(27)

We can solve equations (24)–(26) along with BCs (27) by
using the numerical values of f0(η), g0(η), and θ0(η) which
were obtained from the solutions of equations (8)–(10) with

BCs (11). It is worth noting that the homogeneous linear
equations (24)–(26) subject to constants (27) construct an
eigenvalue system with eigenvalue ε. By solving equations
(24)–(27), a set of eigenvalues ε1 < ε2 < ε3 < ... is obtained.

4. Results and Discussion

Following to the investigation of Devi and Devi [33, 34] and
Lund et al. [35], here water is considered as basematerial with
copper (Cu) and aluminum nanoparticles (Al2O3). More-
over, volume fraction of aluminum is kept constant against
the variation of copper volume oxide (0.01≤ϕCu ≤ 0.1). �e
comparison validation for ensuring the validity task has been
done in Table 3 with work of Zaimi et al. [37] with excellent
comparison results.

Figures 2–4 are sketched to observe the physical aspect of
ϕCu on f′′(0), g′(0), and − θ′(0). Results are visualized for
suction case. �e dual branches of solution are results for
various values of suction case.�ecritical points forϕCu � 0.01
are bc1 � − 2.4009 while bc2 � − 2.3145 and bc3 � − 2.25401 are
the critical points against ϕCu � 0.05 and ϕCu � 0.01, re-
spectively. Two di�erent categories of branches such as dual
branch (b≤ bci) and no branch (b> bci) for suction parameter
b exist. Moreover, larger change in ϕCu results increment in bci
whichpreservea separation.�edominant valuesof suctiondo
not allow tension in moving particles, and vorticity is not
smothered. In upper branch, with larger suction, the decre-
ment inwall shear force andheat transfer rate is noted. In lower
branch, the heat transfer rate is lower but wall shear force

Table 3: Values of
���
Re

√
Cfx and

���
Re

√
Cfy for several values of Ω

when λ � 1,ϕAl2O3
� ϕCu � 0, b � 0, n � 1.
���
Re

√
Cfx

���
Re

√
Cfy

Ω [35] Present results [28] Present results

0 –1.0000 − 1.0000625 0.0000 0.0000000
0.5 –1.1384 − 1.1383806 –0.5128 − 0.5127602
1 –1.3250 − 1.3250287 –0.8371 − 0.8370983
2 –1.6523 − 1.6523520 –1.2873 − 1.2872588
3 –1.9289 − 1.9289315 –1.6248 − 1.6247357
4 –2.1716 − 2.1715931 –1.9054 − 1.9053929
5 –2.3901 − 2.3901398 –2.1506 − 2.1505265
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Pr = 6.2
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f″
 (0

)

b
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Figure 2: Impact of b on f″(0) for �xed values of ϕCu.
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enhanced. In upper branch, no signi�cant change ing ′(0) due
to suction parameter is inspected while in lower branch, g′(0)
declined.

Figures 5–7 show the variation of ′′(0), g ′(0) and
− θ′(0) magnetic parameter M against copper solid volume
fraction ϕCu. As ϕCu grows, the critical point ofMc shifts to
the left, assisting in the separation of the boundary layer.
Mc1 � 0.4877, Mc2 � 0.34892, andMc3 � 0.2225 referred to
critical points ofM for ϕCu � 0.01, 0.05, and 0.1. As a result,
the dual-branch representation is possible for M≥Mci
where i � 1, 2, 3; however, no branch exists for M<Mci.
�e variation in f′′(0) and − θ′(0) get dominant change

against ϕCu in the upper branch for a �xed value ofM, while
the reversal phenomenon can be seen in the bottom branch.
Furthermore, as the magnetic �eld is increased, the skin
friction coe¤cient g ′(0) decreases by maintaining constant
values of ϕCu in the upper branch while slower trend is
predicted in the lower branch.

�e in�uences of positive constant n on f′′(0), g′(0),
and − θ ′(0) is reported in Figures 8 and 9�e obtained results
are prepared in view of stretching/shrinking parameter (λ). A
lower observation off′′(0)for stretching constant is noted. In

0
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Figure 3: Impact of b on g′(0) for �xed values of ϕCu.
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Figure 5: Impact of M on f′′(0) for �xed values of ϕCu.
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Figure 6: Impact of M on g′(0) for �xed values of ϕCu.
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upper zone, upon increasing λ, the change in g ′(0) is declining
whileg ′(0) increases.�e thermal boundary layer separation is
greater for linear stretching as compared to nonlinear case.
Moreover, the heat transfer rate for stretching case is more
progressive as compared to shrinking case. From Figure 10, a
declining change in f ′′(0) is observed for greater λ.

Figures 11–13 show the e�ect of copper solid volume
fraction ϕCu on velocity pro�les f ′(η) and g(η) in the x-
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and y-directions, as well as a temperature pro�le θ(η).
Di�erent pro�les in both branches ful�ll the far-�eld BCs
η⟶∞ for various values of ϕCu and hence validate the
obtained numerical results. In Figure 11, the �eld of velocity
decreases as parameter ϕCu increases in the upper surface
while contradictory results are noted in the lower branch.
�is is because the volume fraction slows the velocity of the
�uid, which reduces the thickness of the momentum layer

and, as a result, the velocities in the x-direction. On the other
hand, when ϕCu rises, velocity rate increases in the y-di-
rection for both branches (refer to Figure 12). Furthermore,
as expected, heat transfer rate gets arisen for copper solid
volume percentage ϕCu rises in both branches.

�egraphical outcomes for rotation constantΩparameter
on velocity alongy-directions (g(η)) have beenworked out in
Figure 14. �e solution has a symmetrical nature. When the
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value of Ω is positive, velocity increases in both branches.
When the value of Ω is negative, the velocity of the hybrid
nano�uid decreases. It is also discovered that when
− 0.06≤Ω≤ 0.06, two branches are possible. Figure 15 shows
the e�ect of heat sink/source parameter on temperature
pro�les. It has been observed that temperature of hybrid
nano�uid increases in both solutions when the parameter Q
increases. �is enhancement is due to external heat source.
�is aids in the formation of the thermal boundary layer
thickness.

It is well justi�ed fact that upon existing of di�erent
solution branches, the importance of stability analysis
cannot be denied identifying the more realistically branch.
Usually, the upper branch is referred to the physical branch
as it meets with the boundary assumptions. However, the
stability of lower branch is also importance and can be
observed via stability procedure. After carefully noticing, it is
claimed that upper branch is more stable in view of ε1.�e
positive sign of ε1 ensures that stability of branch and re�ects
the decay and growth results. �e negative values of ε1 show
that the branch is unstable. Both positive and negative values
of ε1 upper and lower branches are presented via Table 4.
Figure 16 shows the lower numerical values of eigenvalue for
upper and lower surface branches.

5. Conclusions

In a rotating hybrid nano�uid, the laminar steady boundary
�ow on a stretching/shrinking sheet was investigated. �e
governing PDEs were numerically solved in bvp4c using the

well-known collocation approach known as the 3-stage-
Lobatto-3a method. Numerical results for various values of
physical application parameters have been graphically
presented and thoroughly analyzed. �e values of

���
Re

√
Cfx

and
���
Re

√
Cfy are compared to published publications in

order to validate the obtained numerical results, which show
a positive agreement. In the precise range of the magnetic,
suction, and shrinking/stretching parameters, dual branches
have been discovered. �e following are a few key points
from the current study:

(i) For suction case, the heat transfer rate is larger as
compared to injection phenomenon in the upper
branch.

(ii) In upper branch, no signi�cance change in y-di-
rectional velocity is observed while declining change
in velocity is noticed for lower branch.

(iii) �e presence of external heat source enhanced the
heat transfer rate in both branches. However, the
increment in heat transfer is relatively larger in the
upper branch.

(iv) No dual branches exist outside the magnetic pa-
rameter and stretching/shrinking constant.

(v) Upon increasing the copper nanoparticle volume
fraction, the enhancement in temperature rate is
measured.

(vi) �e �uctuation in thermal boundary layer is more
progressive for linear stretching instead of nonlinear
case.
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Figure 16: �e values of ε1 for various values of M.

Table 4: �e values of ε1 for various values of ϕCu and b when λ � − 1, M � 0.5, n � 2.5, Pr � 6.2, R d � Q � 0.5.

ϕCu b
ε1

Upper branch Lower branch

0.01 − 3 2.2281 − 2.2827
− 2.5 1.9924 − 1.9001

0.03 − 3 2.6295 − 2.8547
− 2.5 2.1824 − 2.4373

0.05 − 3 2.8626 − 3.0626
− 2.5 2.25463 − 2.4515
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Nomenclature

Al2O3: Alumina
T∞: Ambient temperature
Cu: Copper
f′, g: Dimensionless velocity
M: Hartmann number
b: Injunction/suction parameter
Nux: Local Nusselt number
Rex: Local Reynolds number
B: Magnetic field
ww(x) (m/s): Mass flux of velocity
Pr: Prandtl number
Cfx, Cfy: Skin friction coefficient
T :(K): Temperature
Q: Sink/source parameter
T w: Variable temperature at the sheet
u, v, w: (m/s) Velocity components
uw(x) (m/s): Velocity of surface
H2O: Water
Ω: Angular velocity
ρhnf: Density
θ: Dimensionless temperature
μhnf: Dynamic viscosity
σhnf: Electrical conductivity
(cp)hnf: Heat capacity
ε1: Smallest eigenvalue
τ: Stability transformed variable
λ: Stretching/shrinking parameter
khnf: )ermal conductivity,
η: Transformed variable
ε: Unknown eigenvalue.
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