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Polygroups are an extended form of groups and a subclass of hypergroups that follow group-type axioms. In this paper, we de�ne a
triplet single-valued neutrosophic set, which is a generalization of fuzzy sets, intuitionistic fuzzy sets, and neutrosophic sets, and
we combine this novel concept with hypergroups and polygroups. Firstly, the main goal of this paper is to introduce hypergroups,
polygroups, and anti-polygroups under a triplet single-valued neutrosophic structure and then present various profound results.
We also examine the interaction and properties of level sets of triplet single-valued neutrosophic polygroups and (normal)
subpolygroups. Secondly, we rank the alternatives and select the best ones in a single-valued neutrosophic environment using the
weighted cosine similarity measure between each alternative and the ideal alternative. Finally, we provide an example that clearly
shows how the proposed decision-making method is applied.

1. Introduction

­e classical methods of mathematical analysis are unable to
make sense of the ambiguities that exist in the universe. As a
consequence of this, these structures need to be rethought in
order to take into account the possibility of uncertainty. In
1965, Zadeh [1] proposed a fuzzy set. A fuzzy set is a
mathematical model of ambiguity in which things belong to
a speci�c set to some degree. ­is degree is generally a
number that falls within the unit range of [0, 1].

In later years, as an extension of the fuzzy set, Sambuc [2]
presented the notion of an interval-valued fuzzy set in 1975,
Atanassov [3] provided the idea of an intuitionistic fuzzy set

in 1984, Yager [4] initiated the concept of fuzzy multiset in
1986, Smarandache [5] presented the premise of a neu-
trosophic set (NS) in 1998, Molodstov [6] introduced the
idea of soft sets in 1999, and Torra [7] developed a hesitant
fuzzy set in 2010. Feng et al. [8] broadened soft sets by
integrating them with fuzzy and rough sets, Aktas and
Cagman [9] investigated soft groups, and Acar et al. [10]
developed soft rings.

Marty [11] was the �rst to propose algebraic hyper-
structures, which are an overarching concept of classical
algebraic structures. He broadened the de�nition of a group
to include the concept of a hypergroup. ­e resultant of two
elements in a classical algebraic structure is an element.
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However, the resultant of two elements in an algebraic
hyperstructure is a set. Algebraic hyperstructures have been
used in a wide range of subjects over the years, including
hypergraphs, binary relations, cryptography, codes, median
algebras, relation algebras, artificial intelligence, geometry,
convexity, automata, combinatorial coloring problems,
lattice theory, Boolean algebras, and logic probabilities.
Hypergroups have mostly been used in the context of special
subclasses.

Polygroups, which are spectacular subclasses of hyper-
groups, are developed by Ioulidis in [12] and employed to
examine color algebras by Comer in [13, 14]. Comer showed
the effectiveness of polygroups by exploring their connec-
tions to graphs, relations, Boolean, and cylindric algebras.
-e theory of algebraic hyperstructures has since been in-
vestigated and expanded by a number of scholars. Many
scholars working in these domains have been drawn to the
combination of fuzzy sets and algebraic hyperstructures, as
well as neutrosophic sets and algebraic hyperstructures,
resulting in the creation of new branches of research, namely
fuzzy algebraic hyperstructures and neutrosophic algebraic
hyperstructures.

Comer developed quasi-canonical hypergroups in [15] as
an extension of canonical hypergroups, which were pre-
sented in [16]. In [17], Comer introduced a number of al-
gebraic and combinatorial properties. In [18], Davvaz and
Poursalavati introduced matrix representations of poly-
groups over hyperrings and the idea of a polygroup
hyperring, which expanded the concept of a group ring.
Davvaz devised permutation polygroups and topics con-
nected to them, employing the notion of generalized per-
mutation [19]. We refer to some important and recent
innovative work relative to the fuzzy structures and poly-
groups in [20–42] for further information.

Neutrosophy is a new subfield of philosophy that in-
vestigates the origin, nature, and multitude of neutralities, as
well as their interactions with other ideological spectrums,
which was first proposed by Smarandache in 1995. In the
neutrosophic set, indeterminacy is quantified explicitly and
truth-membership, indeterminacy membership, and falsity-
membership are independent. In a neutrosophic set, truth
(T), indeterminacy (I), and falsity (F) are the three types of
membership functions. In this work, we develop set theo-
retic operators on a special kind of the neutrosophic set
known as the single-valued neutrosophic set. A single-val-
ued neutrosophic set (SVNS) is a type of NS that may be
employed to address intellectual and technical problems in
the real world. As a result, the study of SVNSs and their
attributes is essential in terms of applications as well as
comprehending the principles of uncertainty.

In this article, first we define the generalized concept
(η, ξ,φ)-SVNS and then apply this concept to hypergroups and
polygroups. For decision-making problems, a weighted cosine
similarity measure (WCSM) is applied to each alternative, and
the ideal alternative is used to rank the alternatives and choose
the best option. In addition, we compared our strategy to
current approaches and demonstrated its superiority. In con-
clusion, an example scenario illustrates how the suggested D-M
technique may be implemented. In comparison, existing fuzzy

multicriteria decision-making (M-CDM) strategies are inca-
pable of tackling the decision-making difficulty stated in this
paper. -e suggested single-valued neutrosophic (SVN) deci-
sion-making technique has the benefit of being able to copewith
ambiguous and inconsistent information, both of which are
typical in real-world circumstances.

-e motivation of the proposed concept is explained as
follows: to present a more generalized concept, i.e., (1) (η,

ξ,φ)-single-valued neutrosophic hypergroups. (2) (η, ξ,

φ)-single-valued neutrosophic polygroups. (3) (η, ξ,φ)-anti-
single-valued neutrosophic polygroups. (4) Single-valued
neutrosophic multicriteria decision-making method. Note
that, clearly Υ􏽥Ω � 􏽥Ω,Υ

􏽥∅ � 􏽥∅ , which shows that our pro-
posed definition can be converted into a single-valued neu-
trosophic set.-e purpose of this paper is to present the study
of single-valued neutrosophic hypergroups and single-valued
neutrosophic polygroups, and anti-single-valued neu-
trosophic polygroups under the triplet structure as a gener-
alization of hypergroups, polygroups, and anti-polygroups as
a powerful extension of single-valued neutrosophic sets.

-is article is organized as follows: we offer some fun-
damental structure regarding single-valued neutrosophic
sets, (η, ξ,φ)-single-valued neutrosophic hypergroup, and
(weak) polygroups in Sections 2, 3, and 4, respectively. We
present and analyze the idea of a (η, ξ,φ)-single-valued
neutrosophic (weak) polygroup in Section 5. In Section 6, we
explore the correlation between level sets of (η, ξ,φ)-single-
valued neutrosophic polygroups ((η, ξ,φ)-SVNPs) and
(normal) subpolygroups). Finally, in Section 7 we present
the decision-making (D-M) procedure and for evaluation,
we also offer an illustration example in Section 8.

2. Preliminaries

-is section covers basic definitions related to SVNSs. In this
section, we also present fundamental properties and rela-
tionships between SVNSs.

Definition 1 (see [44]). On the universe set Ω a SVNS Υ is
stated as

Ω � 〈u, τΥ(u), ιΥ(u), 5Υ(u)〉, u ∈ Ω􏼈 􏼉, (1)

where τ, ι, 5: Ω⟶ [0, 1], and 0≤ τΥ(u) + ιΥ(u)+ 5Υ(u)≤ 3,
∀u ∈ Ω, τΥ(u), ιΥ(u), 5Υ(u) ∈ [0, 1]. τΥ, ιΥ, 5Υ indicates truth,
indeterminacy, and falsity-membership function, in that order.

Definition 2 (see [44]). Let Ω be a set of objects, with u

denoting a generic entity belong to Ω. A SVNS Υ on Ω is
symbolized by truth τΥ, indeterminacy ιΥ, and falsity-mem-
bership function 5Υ, in that order. ∀u ∈ Ω,
τΥ(u), ιΥ(u), 5Υ(u) ∈ [0, 1]. A SVNS Υ can be written ac-
cordingly as

Υ � 􏽘

n

i

〈τ ui( 􏼁, ι ui( 􏼁, 5 ui( 􏼁〉
ui

, ui ∈ Ω. (2)

Definition 3 (see [44]). -e complement of a SVNS Υ is
indicated by c(Υ) and is characterized by
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τc(Υ)(u) � 5Υ(u),

ιc(Υ)(u) � 1 − ιΥ(u),

5c(Υ)(u) � τΥ(u), ∀u ∈ Ω.

(3)

Definition 4 (see [44]). Let Υ and Θ be two SVNSs on Ω.
-en

(1)
Υ⊆Θ,⇔Υ(u)≤Θ(u). (4)

-at is
τΥ(u)≤ τΘ(u),

ιΥ(u)≥ ιΘ(u),

5Υ(u)≥ 5Θ(u).

(5)

Also
Υ � Θ⇔Υ⊆Θ

Θ⊆Υ.
(6)

(2) Δ � Υ∪Θ such that

Δ(u) � Υ(u)∨Θ(u), (7)

such that
Υ(u)∨Θ(u) � τΥ(u)∨τΘ(u), ιΥ(u)∧ιΘ(u),5Υ(u)∧5Θ(u)( 􏼁,

∀u ∈Ω.

(8)

It means
τΔ(u) � max τΥ(u), τΘ(u)􏼈 􏼉,

ιΔ(u) � min ιΥ(u), ιΘ(u)􏼈 􏼉,

5Δ(u) � min 5Υ(u), 5Θ(u)􏼈 􏼉.

(9)

(3) Δ � Υ∩Θ such that

Δ(u) � Υ(u)∧Θ(u), (10)

such that

Υ(u)∧Θ(u) � τΥ(u)∧τΘ(u), ιΥ(u)∨ιΘ(u), 5Υ(u)∨5Θ(u)( 􏼁,

∀u ∈ Ω.

(11)

It means

τΔ(u) � min τΥ(u), τΘ(u)􏼈 􏼉,

ιΔ(u) � max ιΥ(u), ιΘ(u)􏼈 􏼉,

5Δ(u) � max 5Υ(u), 5Θ(u)􏼈 􏼉.

(12)

Proposition 1 (see [44]). Let the SVNSs on the common
universe Ω be Υ, Θ, and Δ. *en the following conditions
must hold the following:

(1) Υ ∪Θ � Θ∪Υ ,Υ ∩Θ � Θ∩Υ.
(2) Υ ∪(Θ∪Δ) � (Υ ∪Θ)∪Δ,Υ ∩(Θ∩Δ) � (Υ ∩Θ)∩Δ.
(3) Υ ∪(Θ∩Δ) � (Υ ∪Θ)∩(Υ ∪Δ),Υ ∩(Θ∪Δ) � (Υ ∩
Θ)∪(Υ ∩Δ).

(4) Υ ∩ 􏽥∅ � 􏽥∅ ,Υ ∪ 􏽥∅ � Υ ,Υ ∪ 􏽥Ω � 􏽥Ω,Υ ∩ 􏽥Ω � Υ,
where

τ 􏽥∅
� 0, ι􏽥∅ � 5􏽥∅

� 1, τ􏽥Ω
� 1, ι􏽥Ω � 5􏽥Ω

� 0. (13)

(5) c(Υ ∪Θ) � c(Υ)∩ c(Θ), c(Υ ∩Θ) � c(Υ)∪ c(Θ).

3. (η, ξ,φ)- Single-Valued
Neutrosophic Hypergroup

We define and investigate the basic properties and
characterizations of a single-valued neutrosophic set,
single-valued neutrosophic hypergroup, and single-
valued neutrosophic subhypergroup over hypergroup
H under the triplet structure in this section. We
basically start with some introductory (η, ξ,φ)-SVNS,
then define (η, ξ,φ)-SVN hypergroup, the t-level set on
(η, ξ,φ)-SVNS, important operations and properties of
(η, ξ,φ)-SVN hypergroups, and then study crucial results,
propositions, theorems and remarks related to SVN
hypergroup and SVN subhypergroup under the triplet
structure. In this section, we present a very important
result, that is intersection of two (η, ξ,φ)-SVN hyper-
groups over H is again (η, ξ,φ)-SVN hypergroup in 3.18,
which shows that (η, ξ,φ)-SVN hypergroups are closed
under intersection, and union of two (η, ξ,φ)-SVN
hypergroups over H need not be (η, ξ,φ)-SVN hypergroup
over H.

Definition 5. If Υ be a single-valued neutrosophic (SVN)
subset ofΩ, then (η, ξ,φ)-SVN subset Υ ofΩ is categorize as

Υ(η,ξ,φ)
� 〈e, τηΥ(u), ιξΥ(u), 5

φ
Υ(u)〉|u ∈ Ω􏽮 􏽯, (14)

where

τηΥ(u) � ∧ τΥ(u), η􏼈 􏼉,

ιξΥ(u) � ∨ ιΥ(u), ξ􏼈 􏼉,

5
φ
Υ(u) � ∨ 5Υ(u),φ􏼈 􏼉,

(15)

such that

0≤ τηΥ(u) + ιξΥ(u) + 5
φ
Υ(u)≤ 3, (16)

where η, ξ,φ ∈ [0, 1], also τ, ι, 5: A⟶ [0, 1], such that τηΥ,
ιξΥ, 5

φ
Υ represents the functions of truth, indeterminacy, and

falsity-membership, respectively.

Definition 6. Let Ω be a space of objects, with u denoting a
generic entity belong to Ω. A (η, ξ,φ)-SVNS Υ on Ω is
symbolized by truth τηΥ, indeterminacy ιξΥ, and falsity-
membership function 5

φ
Υ, respectively. For every u in Ω,

τηΥ(u), ιξΥ(u), 5
φ
Υ(u) ∈ [0, 1], a (η, ξ,φ)-SVNS Υ can be

written accordingly as
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Υ(η,ξ,φ)
� 􏽘

n

i

〈τη ui( 􏼁, ιξ ui( 􏼁, 5
φ

ui( 􏼁〉
ui

, ui ∈ Ω. (17)

Definition 7. Let Υ and Θ be two (η, ξ,φ)-SVNSs on Ω. -e
followings must hold the following:

(1) Υ(η,ξ,φ)⊆Θ(η,ξ,φ)⇔Υ(η,ξ,φ)(u)≤Θ(η,ξ,φ)(u).
-at is,

τηΥ(u)≤ τηΘ(u),

ιξΥ(u)≥ ιξΘ(u),

5
φ
Υ(u)≥ 5

φ
Θ(u),

(18)

Υ(η,ξ,φ)
� Θ(η,ξ,φ)⇔Υ(η,ξ,φ)⊆Θ(η,ξ,φ) andΘ(η,ξ,φ)⊆Υ(η,ξ,φ)

.

(19)

(2) -e union of Υ(η,ξ,φ) and Θ(η,ξ,φ) is indicated by

Δ(η,ξ,φ)
� Υ(η,ξ,φ) ∪Θ(η,ξ,φ)

, (20)

and defined as

Δ(η,ξ,φ)
(u) � Υ(η,ξ,φ)

(u)∨Θ(η,ξ,φ)
(u), (21)

where

Υ(η,ξ,φ)
(u)∨Θ(η,ξ,φ)

(u)

� τηΥ(u)∨τηΘ(u), ιξΥ(u)∧ιξΘ(u),5
φ
Υ(u)∧5φΘ(u)􏼐 􏼑, ∀u ∈Ω.

(22)

-at is,

τηΔ(u) � max τηΥ(u), τηΘ(u)􏼈 􏼉,

ιξΔ(u) � min ιξΥ(u), ιξΘ(u)􏽮 􏽯,

5
φ
Δ(u) � min 5

φ
Υ(u), 5

φ
Θ(u)􏼈 􏼉.

(23)

(3) -e intersection of Υ(η,ξ,φ) and Θ(η,ξ,φ) is indicated
by

Δ(η,ξ,φ)
� Υ(η,ξ,φ) ∩Θ(η,ξ,φ)

, (24)

and defined as

Δ(η,ξ,φ)
(u) � Υ(η,ξ,φ)

(u)∧Θ(η,ξ,φ)
(u), (25)

where

Υ(η,ξ,φ)
(u)∧Θ(η,ξ,φ)

(u)

� τηΥ(u)∧τηΘ(u), ιξΥ(u)∨ιξΘ(u), 5
φ
Υ(u)∨5φΘ(u)􏼐 􏼑, ∀u ∈ Ω.

(26)

-at is,

τηΔ(u) � min τηΥ(u), τηΘ(u)􏼈 􏼉,

ιξΔ(u) � max ιξΥ(u), ιξΘ(u)􏽮 􏽯,

5
φ
Δ(u) � max 5

φ
Υ(u), 5

φ
Θ(u)􏼈 􏼉.

(27)

Proposition 2. Let Υ, Θ, and Δ be (η, ξ,φ)-SVNSs on the
common universe Ω*en the following properties must hold
the following:

(1) Υ(η,ξ,φ) ∪Θ(η,ξ,φ) � Θ(η,ξ,φ) ∪Υ(η,ξ,φ).
Υ(η,ξ,φ) ∩Θ(η,ξ,φ) � Θ(η,ξ,φ) ∩Υ(η,ξ,φ).

(2) Υ(η,ξ,φ) ∪ (Θ(η,ξ,φ) ∪Δ(η,ξ,φ)) � (Υ(η,ξ,φ) ∪Θ(η,ξ,φ))∪
Δ(η,ξ,φ). Υ(η,ξ,φ) ∩ (Θ(η,ξ,φ) ∩Δ(η,ξ,φ)) � (Υ(η,ξ,φ) ∩
Θ(η,ξ,φ))∩Δ(η,ξ,φ).

(3) Υ(η,ξ,φ) ∪ (Θ(η,ξ,φ) ∩Δ(η,ξ,φ)) � (Υ(η,ξ,φ) ∪Θ(η,ξ,φ))∩
(Υ(η,ξ,φ) ∪Δ(η,ξ,φ)). Υ(η,ξ,φ) ∩ (Θ(η,ξ,φ) ∪Δ(η,ξ,φ)) �

(Υ(η,ξ,φ) ∩Θ(η,ξ,φ))∪ (Υ(η,ξ,φ) ∩Δ(η,ξ,φ)).
(4) Υ(η,ξ,φ) ∩ 􏽥∅ � 􏽥∅ ,Υ(η,ξ,φ) ∪ 􏽥∅ � Υ(η,ξ,φ).

Υ(η,ξ,φ) ∪ 􏽥Ω � 􏽥Ω,Υ(η,ξ,φ) ∩ 􏽥Ω � Υ(η,ξ,φ),
where

τ 􏽥∅
η
�0, ι

􏽥∅
ξ
� 5􏽥∅

φ
�1, τη

􏽥Ω
� 1, ιξ􏽥Ω � 5

φ
􏽥Ω

� 0.
(28)

(5) c(Υ(η,ξ,φ) ∪Θ(η,ξ,φ)) � c(Υ(η,ξ,φ))∩ c(Θ(η,ξ,φ)) ·

c(Υ(η,ξ,φ) ∩Θ(η,ξ,φ)) � c(Υ(η,ξ,φ))∪ c(Θ(η,ξ,φ)) ? ?

Definition 8. -e complement of a (η, ξ,φ)-SVNS Υ is
denoted by c(Υ(η,ξ,φ)) and is defined by

c Υ(η,ξ,φ)
􏼐 􏼑 �〈u, τηc(Υ)(u), ιξc(Υ)(u), 5

φ
c(Υ)(u)〉, (29)

where

τηc(Υ)(u) � 5
φ
Υ(u),

ιξc(Υ)(u) � 1 − ιξΥ(u),

5
φ
c(Υ)(u) � τηΥ(u),∀u ∈ Ω.

(30)

Definition 9. -e falsity-favorite of a (η, ξ,φ)-SVNS Θ(η,ξ,φ)

(i.e., Θ(η,ξ,φ) � ▽Υ(η,ξ,φ)) whose truth and falsity-member-
ship functions are defined by
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τηΘ(x) � τηΥ(u),

ιξΘ(u) � 0,

5
φ
Θ(u) � min 5

φ
Υ(u) + ιξΥ(u), 1􏽮 􏽯.

(31)

-roughout this sectionH denotes the hypergroup 〈H,°〉.

Definition 10 (see [45]). A set H is called hypergroup 〈H,°〉
with an associative hyperoperation (°): H∗H⟶ P(H),
which satisfies x° ± H � H°x � H, ∀x ∈ H (reproduction
axiom).

Definition 11 (see [46]). If the following properties satisfy, a
hyperstructure 〈H,°〉 is called a Hv-group.

(1) x°(y°z)∩(x°y°)z≠∅, ∀x,y,z ∈H, (Hv-semigroup).
(2) x°H � H°x � H, ∀x ∈ H.

Definition 12 (see [45]). A subset K of H is called as sub-
hypergroup if 〈K,°〉 is a hypergroup.

Definition 13. Let Υ be a (η, ξ,φ)-SVNS over H. -en Υ is
called a (η, ξ,φ)-SVN hypergroup over H, if the following
conditions are satisfied:

(i) ∀u, v ∈ H,

min τηΥ(u), τηΥ(v)􏼈 􏼉≤ inf τηΥ(w): w ∈ u°v􏼈 􏼉,

max ιξΥ(u), ιξΥ(v)􏽮 􏽯≥ sup ιξΥ(w): w ∈ u°v􏽮 􏽯,

max 5
φ
Υ(u), 5

φ
Υ(v)􏼈 􏼉≥ sup 5

φ
Υ(w): w ∈ u°v􏼈 􏼉.

(32)

(ii) ∀l, u ∈ H, ∃v ∈ H such that u ∈ l°v and

min τηΥ(l), τηΥ(u)􏼈 􏼉≤ τηΥ(v),

max ιξΥ(l), ιξΥ(u)􏽮 􏽯≥ ιξΥ(v),

max 5
φ
Υ(l), 5

φ
Υ(u)􏼈 􏼉≥ 5

φ
Υ(v).

(33)

(iii) ∀l, u ∈ H, ∃w ∈ H such that u ∈ w°l and

min τηΥ(l), τηΥ(u)􏼈 􏼉≤ τηΥ(w),

max ιξΥ(l), ιξΥ(u)􏽮 􏽯≥ ιξΥ(w),

max 5
φ
Υ(l), 5

φ
Υ(u)􏼈 􏼉≥ 5

φ
Υ(w).

(34)

If Υ(η,ξ,φ) satisfies condition (i) then Υ is a (η, ξ,φ)-SVN
semihypergroup over H. Condition (ii) and (iii) represent
the left and right reproduction axioms, respectively. -en Υ
is a (η, ξ,φ)-SVN subhypergroup of H.

Example 1. If the family of t-level sets of (η, ξ,φ)-SVNS Υ
over H.

Υ(η,ξ,φ)
t � u ∈ H|τηΥ(u)≥ t, ιξΥ(u)≤ tand5

φ
Υ(u)≤ t􏽮 􏽯, (35)

is a subhypergroup of H. -en Υ is a (η, ξ,φ)-SVN
hypergroup over H.

Theorem 1. Let Υ be a (η, ξ,φ)-SVNS over H. *en Υ is a
(η, ξ,φ)-SVN hypergroup over H if and only if Υ is a
(η, ξ,φ)-SVN semihypergroup over H and also Υ(η,ξ,φ) sat-
isfies the left and right reproduction axioms.

Proof 1. -e proof is obvious from Definition 13. □

Theorem 2. Let Υ be a (η, ξ,φ)-SVNS over H. If Υ(η,ξ,φ) is a
SVN hypergroup over H, then ∀t ∈ [0, 1]Υ(η,ξ,φ)

t ≠∅ is a
subhypergroup of H.

Proof 2. Let Υ be a (η, ξ,φ)-SVN hypergroup over H and let
u, v ∈ Υ(η,ξ,φ)

t , then

τηΥ(u), τηΥ(v)≥ t, ιξΥ(u), ιξΥ(v)≤ t and 5
φ
Υ(u), 5

φ
Υ(v)≤ t. (36)

-en we have

inf τηΥ(w): w ∈ u°v􏼈 􏼉≥min τηΥ(u), τηΥ(v)􏼈 􏼉≥min t, t{ } � t,

sup ιξΥ(w): w ∈ u°v􏽮 􏽯≤max τηΥ(u), τηΥ(v)􏼈 􏼉≤max t, t{ } � t,

sup 5
φ
Υ(w): w ∈ u°v􏼈 􏼉≤max τηΥ(u), τηΥ(v)􏼈 􏼉≤max t, t{ } � t.

(37)

-is implies w ∈ Υ(η,ξ,φ)
t . -en ∀w ∈ u°v, u°v⊆Υ(η,ξ,φ)

t .
-us ∀w ∈ Υ(η,ξ,φ)

t , we obtain. w°Υ(η,ξ,φ)
t ⊆Υ

(η,ξ,φ)
t

Now, Let l, u ∈ Υ(η,ξ,φ)
t , then there exist v ∈ H such that

u ∈ l°v and

τηΥ(v)􏼈 􏼉≥min τηΥ(l), τηΥ(u)􏼈 􏼉≥min t, t{ } � t,

ιξΥ(v)􏽮 􏽯≤max τηΥ(l), τηΥ(u)􏼈 􏼉≤max t, t{ } � t,

5
φ
Υ(v)􏼈 􏼉≤max τηΥ(l), τηΥ(u)􏼈 􏼉≤max t, t{ } � t.

(38)

-is implies that v ∈ Υ(η,ξ,φ)
t . -is proves that Υ(η,ξ,φ)

t ⊆
w°Υ(η,ξ,φ)

t . As such. Υ(η,ξ,φ)
t � w°Υ(η,ξ,φ)

t

which proves that Υ(η,ξ,φ)
t is a subhypergroup of H. □

Theorem 3. Let Υ be a (η, ξ,φ)-SVNS over H*en the
following are equivalent:

(i) Υ is a (η, ξ,φ)-SVN hypergroup over H.
(ii) ∀t ∈ [0, 1]Υ(η,ξ,φ)

t ≠∅ is a subhypergroup of H.

Proof 3. (i) ⇒ (ii) -e proof is obvious from -eorem 2.
(ii)⇒ (i) Now assume that Υ(η,ξ,φ)

t is a subhypergroup of H.
Let u, v ∈ Υ(η,ξ,φ)

to
and let. min τηΥ(u), τηΥ(v)􏼈 􏼉 � max ιξΥ(u),􏽮

ιξΥ(v)} � max 5
φ
Υ(u), 5

φ
Υ(v)􏼈 􏼉 � toSince u°v⊆Υ(η,ξ,φ)

to
, then for

every w ∈ u°v, τηΥ(w)≥ to, ιξΥ(w)≤ to, 5
φ
Υ(w)≤ to.
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min τηΥ(u), τηΥ(u)􏼈 􏼉≤ inf τηΥ(w): w ∈ u°v􏼈 􏼉,

max ιξΥ(u), ιξΥ(v)􏽮 􏽯≥ sup ιξΥ(w): w ∈ u°v􏽮 􏽯,

max 5
φ
Υ(u), 5

φ
Υ(v)􏼈 􏼉≥ sup 5

φ
Υ(w): w ∈ u°v􏼈 􏼉.

(39)

Condition (i) is verified.
Next, let l, u ∈ Υ(η,ξ,φ)

t1
, for every t1 ∈ [0, 1] and

let min τηΥ(l), τηΥ(v)􏼈 􏼉 � max ιξΥ􏽮 (l), ιξΥ(v)} � max 5
φ
Υ(l),􏼈

5
φ
Υ(v)} � t1.

-en there exist v ∈ Υ(η,ξ,φ)
t1

such that u ∈ l°v⊆Υ(η,ξ,φ)
t1

.
Since v ∈ Υ(η,ξ,φ)

t1
, then

τηΥ(v)≥ t1 � min τηΥ(l), τηΥ(u)􏼈 􏼉,

ιξΥ(v)≤ t1 � max ιξΥ(l), ιξΥ(u)􏽮 􏽯,

5
φ
Υ(v)≤ t1 � max 5

φ
Υ(l), 5

φ
Υ(u)􏼈 􏼉.

(40)

Condition (ii) is verified.
Next, let l, u ∈ Υ(η,ξ,φ)

t1
, for every t1 ∈ [0, 1] and

let min τηΥ(l), τηΥ(l)􏼈 􏼉 � max ιξΥ(l),􏽮 ιξΥ(v)} � max 5
φ
Υ(l),􏼈

5
φ
Υ(v)} � t1.

-en there exist w ∈ Υ(η,ξ,φ)
t1

such that u ∈ w°l⊆Υ(η,ξ,φ)
t1

.
Since w ∈ Υ(η,ξ,φ)

t1
, then

τηΥ(w)≥ t1 � min τηΥ(l), τηΥ(u)􏼈 􏼉,

ιξΥ(w)≤ t1 � max ιξΥ(l), ιξΥ(u)􏽮 􏽯,

5
φ
Υ(w)≤ t1 � max 5

φ
Υ(l), 5

φ
Υ(u)􏼈 􏼉.

(41)

Condition (iii) is verified. □

Theorem 4. Let Υ be a (η, ξ,φ)-SVNS over H. *en Υ be a
(η, ξ,φ)-SVN hypergroup over H if and only if
∀α, β, c ∈ [0, 1],Υ(η,ξ,φ)

(α,β,c) is a subhypergroup of H.

Proof 4. -e proof is simple for readers. □

Theorem 5. Let Υ be a (η, ξ,φ)-SVN hypergroup over H and
∀t1, t2 ∈ [0, 1],Υ(η,ξ,φ)

t1
and Υ(η,ξ,φ)

t2
be the t-level sets of Υ(η,ξ,φ)

with Υ(η,ξ,φ)
t2

, then Υ(η,ξ,φ)
t1

is a subhypergroup of Υ(η,ξ,φ)
t2

.

Proof 5. ∀t1, t2 ∈ [0, 1],Υ(η,ξ,φ)
t1

and Υ(η,ξ,φ)
t2

be the t-level sets
of Υ(η,ξ,φ) with t1 ≥ t2.-is implies that Υ(η,ξ,φ)

t1
⊆Υ(η,ξ,φ)

t2
. By

-eorem 2, Υ(η,ξ,φ)
t1

is a subhypergroup of Υ(η,ξ,φ)
t2

. □

Proposition 3. If Υ and Θ be two (η, ξ,φ)-SVN subset of
hypergroup H, then

(Υ∩Θ)
(η,ξ,φ)

� Υ(η,ξ,φ) ∩Θ(η,ξ,φ)
. (42)

Proof 6. Assume that Υ and Θ are two (η, ξ,φ)-SVN subset
of hypergroup H.

(Υ∩Θ)
(η,ξ,φ)

(u) � min min τΥ(u), τΘ(u)􏼈 􏼉, η􏼈 􏼉,max max ιΥ(u), ιΘ(u)􏼈 􏼉, ξ􏼈 􏼉,max max 5Υ(u), 5Θ(u)􏼈 􏼉,φ􏼈 􏼉􏼈 􏼉

� ∧ ∧ τΥ(u), η􏼈 􏼉,∧ τΘ(u), η􏼈 􏼉􏼈 􏼉,∨ ∨ ιΥ(u), ξ􏼈 􏼉,∨ ιΘ(u), ξ􏼈 􏼉􏼈 􏼉,∨ ∨ 5Υ(u), φ􏼈 􏼉,∨ 5Θ(u), φ􏼈 􏼉􏼈􏼈 􏼉

� min τηΥ(u)􏼈 􏼉, τηΘ(u)􏼈 􏼉( 􏼁,max ιξΥ(u)􏽮 􏽯, ιξΘ(u)􏽮 􏽯􏼐 􏼑,max 5
φ
Υ(u)􏼈 􏼉, 5

φ
Θ(u)􏼈 􏼉( 􏼁􏽮 􏽯

� Υ(η,ξ,φ)
(u)∩Θ(η,ξ,φ)

(u),∀u ∈ H.

(43)

□
Theorem 6. Let Υ and Θ be (η, ξ,φ)-SVN hypergroups over
H. *en Υ ∩Θ is a (η, ξ,φ)-SVN hypergroup over H if it is
non-null.

Proof 7. Let Υ andΘ be two (η, ξ,φ)-SVN hypergroups over
H. Let u ∈ H be any element,

(Υ∩Θ)
(η,ξ,φ)

(u)

� τΥ∧τΘ( 􏼁
η
(u), ιΥ∨ιΘ( 􏼁

ξ
(u) 5Υ∨5Θ( 􏼁

φ
(u)􏼚 􏼛.

(44)

By using result of Proposition 3.,

(Υ∩Θ)
(η,ξ,φ)

(u) � Υ(η,ξ,φ) ∩Θ(η,ξ,φ)
􏼐 􏼑(u), (45)

Y
(η,ξ,φ) ∩Θ(η,ξ,φ)

􏼐 􏼑(u)

� min τηΥ(u)(u), τηΘ(u)􏼈 􏼉,max ιξΥ(u), ιξΘ(u)􏽮 􏽯,􏽮

max 5
φ
Υ(u), 5

φ
Θ(u)􏼈 􏼉􏼁􏼉, .

(46)

By using (44), (45), and (46), we get

(Y∩Θ)
(η,ξ,φ)

(u) � τΥ∧τΘ( 􏼁
η
(u), ιΥ∨ιΘ( 􏼁

ξ
(u) 5Υ∨5Θ( 􏼁

φ
(u)􏼚 􏼛

� min τηΥ(u), τηΘ(u)􏼈 􏼉,max ιξΥ(u), ιξΘ(u)􏽮 􏽯,max 5
φ
Υ(u), 5

φ
Θ(u)􏼈 􏼉􏼁􏽮 􏽯.

� τηΥ∧τ
η
Θ( 􏼁(u), ιξΥ∨ι

ξ
Θ􏼐 􏼑(u)5

φ
Υ(u)∨5φΘ(u)􏽮 􏽯

(47)
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Since, (Υ∩Θ)(η,ξ,φ)(u) � 〈u, τηΥ∩Θ(u),􏼈 ιξΥ∩Θ(u),

5
φ
Υ∩Θ(u)〉: u ∈ H}.

So by using (47), we get

τηΥ∩Θ(u) � τηΥ(u)∧τηΘ(u),

ιξΥ∩Θ(u) � ιξΥ(u)∨ιξΘ(u),
(48)

5
φ
Υ∩Θ(u) � 5

φ
Υ(u)∨5φΘ(u). (49)

(i) For all u, v ∈ H,

min τηΥ∩Θ(u), τηΥ∩Θ(v)􏼈 􏼉

� min τηΥ(u)∧τηΘ(u), τηΥ(v)∧τηΘ(v)􏼈 􏼉

� min τηΥ(u)∧τηΘ(u), τηΥ(v)∧τηΘ(v)􏼈 􏼉

≤min τηΥ(u), τηΥ(v)􏼈 􏼉∧min τηΘ(u), τηΘ(v)􏼈 􏼉

≤ inf τηΥ(w): w ∈ u°v􏼈 􏼉∧inf τηΘ(w): w ∈ u°v􏼈 􏼉

≤ inf τηΥ(w)∧τηΘ(w): w ∈ u°v􏼈 􏼉

� inf τηΥ∩Θ(w): w ∈ u°v􏼈 􏼉.

(50)

-is implies min τηΥ∩Θ(u), τηΥ∩Θ(v)􏼈 􏼉≤ inf τηΥ∩Θ􏼈

(w): w ∈ u°v}.
Similarly for all u, v ∈ H, we get

max ιξΥ∩Θ(u), ιξΥ∩Θ(v)􏽮 􏽯

� max ιξΥ(u)∨ιξΘ(u), ιξΥ(v)∨ιξΘ(v)􏽮 􏽯

≥max ιξΥ(u), ιξΥ(v)􏽮 􏽯∨max ιξΘ(u), ιξΘ(v)􏽮 􏽯

≥ sup ιξΥ(w): w ∈ u°v􏽮 􏽯∨sup ιξΘ(w): w ∈ u°v􏽮 􏽯

≥ sup ιξΥ(w)∨ιξΘ(w): w ∈ u°v􏽮 􏽯

� sup ιξΥ∩Θ(w): w ∈ u°v􏽮 􏽯.

(51)

-is implies max ιξΥ∩Θ(u), ιξΥ∩Θ(v)􏽮 􏽯≥
sup ιξΥ∩Θ(w): w ∈ u°v􏽮 􏽯,
Similarly we can show that

max 5
φ
Υ∩Θ(u), 5

φ
Υ∩Θ(v)􏼈 􏼉≥ sup 5

φ
Υ∩Θ(w): w ∈ u°v􏼈 􏼉.

(52)

(ii) ∀l, u ∈ H, ∃ v ∈ H such that u ∈ l°v,

min τηΥ∩Θ(l), τηΥ∩Θ(u)􏼈 􏼉

� min τηΥ(l)∧τηΘ(l), τηΥ(u)∧τηΘ(u)􏼈 􏼉

� min τηΥ(l), τηΥ(u)􏼈 􏼉∧min τηΘ(l), τηΘ(u)􏼈 􏼉

≤ τηΥ(v)∧τηΘ(v)􏼈 􏼉

� τηΥ∩Θ(v).

(53)

-is implies min τηΥ∩Θ(l), τηΥ∩Θ(u)􏼈 􏼉≤ τηΥ∩Θ(v).
Next, we get

max ιξΥ∩Θ(l), ιξΥ∩Θ(u)􏽮 􏽯

� max ιξΥ(l)∨ιξΘ(l), ιξΥ(u)∨ιξΘ(u)􏽮 􏽯

� max ιξΥ(l), ιξΥ(u)􏽮 􏽯∨max ιξΘ(l), ιξΘ(u)􏽮 􏽯

≥ ιξΥ(v)∨ιξΘ(v)􏽮 􏽯

� ιξΥ∩Θ(v).

(54)

-is implies max ιξΥ∩Θ(l), ιξΥ∩Θ(u)􏽮 􏽯≥ ιξΥ∩Θ(v).
Similarly, we can show that max 5

φ
Υ∩Θ(l),􏼈

5
φ
Υ∩Θ(u)}≥ 5

φ
Υ∩Θ(v).

(iii) ∀l, u ∈ H, ∃w ∈ H such that u ∈ w°u,

min τηΥ∩Θ(l), τηΥ∩Θ(u)􏼈 􏼉

� min τηΥ(l), τηΥ(u)􏼈 􏼉∧min τηΘ(l), τηΘ(u)􏼈 􏼉

≤ τηΥ(w)∧τηΘ(w)􏼈 􏼉

� τηΥ∩Θ(w).

(55)

-is implies min τηΥ∩Θ(l), τηΥ∩Θ(u)􏼈 􏼉≤ τηΥ∩Θ(w).
Next, we get

max ιξΥ∩Θ(l), ιξΥ∩Θ(u)􏽮 􏽯

� max ιξΥ(l), ιξΥ(u)􏽮 􏽯∨max ιξΘ(l), ιξΘ(u)􏽮 􏽯

≥ ιξΥ(w)∨ιξΘ(w)􏽮 􏽯

� ιξΥ∩Θ(w).

(56)

-is implies max ιξΥ∩Θ(l), ιξΥ∩Θ(u)􏽮 􏽯≥ ιξΥ∩Θ(w).
Similarly, we can show that max 5

φ
Υ∩Θ(l), 5

φ
Υ∩Θ(u)􏼈 􏼉≥

5
φ
Υ∩Θ(w).

-erefore, Υ∩Θ is a (η, ξ,φ)-SVN hypergroup
over H. □

Remark 1. Union of two (η, ξ,φ)-SVN hypergroups over H

need not be (η, ξ,φ)-SVN hypergroup over H.

Theorem 7. Let Υ be a (η, ξ,φ)-SVN hypergroup over H.
*en the falsity-favorite of Υ(η,ξ,φ) (i.e., Θ � ▽Υ(η,ξ,φ)) is a
SVN hypergroup over H.

Proof 8. By definition,Θ � ▽Υ(η,ξ,φ), where the membership
values are τηΘ(u) � τηΥ(u), ιξΘ(u) � 0, and 5

φ
Θ(u) �

min 5
φ
Υ(u) + ιξΥ(u), 1􏽮 􏽯,

(i) -en we have to prove for τηΥ, 5
φ
Θ,∀u, v ∈ H.

min τηΘ(u), τηΘ(v)􏼈 􏼉 � min τηΥ(u), τηΥ(v)􏼈 􏼉(by Definition)

≤ inf τηΥ(w): w ∈ u°v􏼈 􏼉.

(57)

And we get
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max 5
φ
Θ(u), 5

φ
Θ(v)􏼈 􏼉

� max 5
φ
Υ(u) + ιξΥ(u)∧1, 5

φ
Υ(v) + ιξΥ(v)∧1􏽮 􏽯

� max 5
φ
Υ(u) + ιξΥ(u), 5

φ
Υ(v) + ιξΥ(v)􏽮 􏽯∧1

≥ max 5
φ
Υ(u), 5

φ
Υ(v)􏼈 􏼉 + max ιξΥ(u), ιξΥ(v)􏽮 􏽯􏼐 􏼑∧1

≥ sup 5
φ
Υ(w): w ∈ u°v􏼈 􏼉 + sup ιξΥ(w): w ∈ u°v􏽮 􏽯􏼐 􏼑∧1

� sup 5
φ
Υ(w) + ιξΥ(w)∧1: w ∈ u°v􏽮 􏽯

� sup 5Θ(w): w ∈ u°v􏼈 􏼉,

⇒max 5
φ
Θ(u), 5

φ
Θ(v)􏼈 􏼉≥ sup 5Θ(w): w ∈ u°v􏼈 􏼉.

(58)

Similarly we can show that max ιξΘ(u), ιξΘ(v)􏽮 􏽯≥
sup ιΘ(w): w ∈ u°v􏼈 􏼉.

(ii) ∀l, u ∈ H, ∃ v ∈ H such that u ∈ l°v,

min τηΘ(l), τηΘ(u)􏼈 􏼉 � min τηΥ(l), τηΥ(u)􏼈 􏼉(by Definition)

≤ τηΥ(v)􏼈 􏼉.

(59)

And we get

max 5
φ
Θ(l), 5

φ
Θ(u)􏼈 􏼉

� max 5
φ
Υ(l) + ιξΥ(l)∧1, 5

φ
Υ(u) + ιξΥ(u)∧1􏽮 􏽯

� max 5
φ
Υ(l) + ιξΥ(l), 5

φ
Υ(u) + ιξΥ(u)􏽮 􏽯∧1

≥ 5
φ
Υ(l), 5

φ
Υ(u)􏼈 􏼉 + ιξΥ(l), ιξΥ(u)􏽮 􏽯􏼐 􏼑∧1

≥ 5
φ
Υ(v)􏼈 􏼉 + ιξΥ(v)􏽮 􏽯􏼐 􏼑∧1

� 5
φ
Υ(v) + ιξΥ(v)∧1􏽮 􏽯

� 5Θ(v)􏼈 􏼉.

⇒max 5
φ
Θ(l), 5

φ
Θ(u)􏼈 􏼉≥ 5Θ(v)􏼈 􏼉.

(60)

Similarly we can show that max ιξΘ(l), ιξΘ(u)􏽮 􏽯≥
ιΘ(v)􏼈 􏼉.

(iii) ∀l, u ∈ H, ∃w ∈ H such that u ∈ w°l,

min τηΘ(l), τηΘ(u)􏼈 􏼉 � min τηΥ(l), τηΥ(u)􏼈 􏼉(by Definition)

≤ τηΥ(w)􏼈 􏼉.

(61)

And we get

max 5
φ
Θ(l), 5

φ
Θ(u)􏼈 􏼉

� max 5
φ
Υ(l) + ιξΥ(l)∧1, 5

φ
Υ(u) + ιξΥ(u)∧1􏽮 􏽯

� max 5
φ
Υ(l) + ιξΥ(l), 5

φ
Υ(u) + ιξΥ(u)􏽮 􏽯∧1

≥ 5
φ
Υ(l), 5

φ
Υ(u)􏼈 􏼉 + ιξΥ(l), ιξΥ(u)􏽮 􏽯􏼐 􏼑∧1

≥ 5
φ
Υ(w)􏼈 􏼉 + ιξΥ(w)􏽮 􏽯􏼐 􏼑∧1

� 5
φ
Υ(w) + ιξΥ(w)∧1􏽮 􏽯

� 5Θ(w)􏼈 􏼉.

⇒max 5
φ
Θ(l), 5

φ
Θ(u)􏼈 􏼉≥ 5Θ(w)􏼈 􏼉.

(62)

Similarly we can show that max ιξΘ(l), ιξΘ(u)􏽮 􏽯≥ ιΘ(w)􏼈 􏼉.
⇒Θ � ▽Υ(η,ξ,φ) is a SVN hypergroup over H. □

4. (Weak) Polygroups

-is section contains basic definitions, remarks, propo-
sitions, and examples of (weak) polygroups (i.e., poly-
group, commutative polygroup, and noncommutative
polygroup).

Let H be a nonempty set, and P∗(H) be the collection of
all nonempty subsets of H. “∗” should be formulated as
follows:
∗: H × H⟶ P∗(H)(u, v)u∗ v

-en (H, ∗) becomes a hypergroupoid and “∗” is a
hyperoperation.

Definition 14 (see [13]). Let (P, ∗) be a hypergroupoid.
-en (P, ∗) is a polygroup if the aforementioned conditions
are fulfilled ∀u, v, w ∈ P.

(1) u∗ (v∗w) � (u∗ v)∗w,
(2) ∃ e in P with e∗ u � u∗ e � u, ∀u ∈ P,
(3) u ∈ v∗w implies v ∈ u∗w− 1 and w ∈ v− 1 ∗ u.

Weak polygroups are generalization of polygroups
and they are defined in the same way as polygroups but
instead of (44) in Definition 14, we have
u∗ (v∗w)∩ (u∗ v)∗w≠∅.

In a (weak) polygroup P, (u− 1)− 1 � u, ∀u ∈ P.

Remark 2. Every group is a (weak) polygroup.
We present examples on polygroups that are not groups.

Example 2. Let P1 � e, ϑ1, ϑ2􏼈 􏼉. -en (P1, .) defined in Ta-
ble 1 is a polygroup with e serving as an identity.
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Example 3 (see [47]). let P2 � e, ϑ1, ϑ2, ϑ3􏼈 􏼉. -en (P2, .)

defined in Table 2 is a commutative polygroup with e serving
as an identity.

Example 4 (see [47]). Let P3 � e, ϑ1, ϑ2, ϑ3􏼈 􏼉. -en P3, .􏼈 􏼉

defined in Table 3 is a noncommutative polygroup with e

serving as an identity.

Definition 15 (see [47]). A subset Q of a polygroup (P, ∗) is
a subpolygroup of P⇔(Q, ∗ ) is a polygroup.

Proposition 4 (see [47]).A subsetQ of P is a subpolygroup of
polygroup (P, ∗)⇔u∗ v⊆Q and u− 1 ∈ Q, ∀u, v⊆Q.

Definition 16 (see [47]). A subset subpolygroup Q of a
polygroup (P, ∗) is a normal subpolygroup of P if
u−1 ∗Q∗ u⊆P, ∀u ∈ P.

5. (η, ξ,φ)- Single-Valued Neutrosophic
(Weak) Polygroups

In this section, we present some fundamental definitions,
characteristics, theorems, propositions, and examples in
relation to the SVNPs, (η, ξ,φ)-SVNPs, (η, ξ,φ)-SVNWPs,
and (η, ξ,φ)-ASVNPs. In addition to this, we provide an
example of a (η, ξ,φ)-SVN subpolygroup that is not normal.

Definition 17 (see [48]). Let (P, ∗) be a polygroup and Υ be
a fuzzy set with a degree of membership m over P. -en, Υ is
considered a fuzzy polygroup over P if the followings
conditions are satisfied ∀u, v ∈ P.

(1) m(w)≥min m(u), m(v){ }, ∀w ∈ u∗ v,
(2) m(u−1)≥m(u).

Remark 3 (see [44]). Intersection of fuzzy polygroups over P

is a fuzzy polygroup.

Definition 18. If Υ be a single-valued neutrosophic (SVN)
subset of Ω, then a (η, ξ,φ)-SVN subset Υ of Ω is categorize
as

Υ(η,ξ,φ)
� 〈e, τηΥ(u), ιξΥ(u), 5

φ
Υ(u)〉|u ∈ Ω􏽮 􏽯, (63)

where

τηΥ(u) � ∧ τΥ(u), η􏼈 􏼉,

ιξΥ(u) � ∧ ιΥ(u), ξ􏼈 􏼉,

5
φ
Υ(u) � ∨ 5Υ(u),φ􏼈 􏼉,

(64)

such that

0≤ τηΥ(u) + ιξΥ(u) + 5
φ
Υ(u)≤ 3. (65)

Here, η, ξ,φ ∈ [0, 1], also τ, ι, 5: A⟶ [0, 1], such that τηΥ,
ιξΥ, 5

φ
Υ represents the functions of truth, indeterminacy, and

falsity-membership, respectively.

Definition 19. LetΥ andΘ be two (η, ξ,φ)-SVNSs onΩ. -e
followings must hold the following:

(1) Υ(η,ξ,φ)⊆Θ(η,ξ,φ)⇔Υ(η,ξ,φ)(u)≤Θ(η,ξ,φ)(u).
-at is,

τηΥ(u)≤ τηΘ(u),

ιξΥ(u)≤ ιξΘ(u),

5
φ
Υ(u)≥ 5

φ
Θ(u),

(66)

and

Υ(η,ξ,φ)
� Θ(η,ξ,φ)⇔Υ(η,ξ,φ)⊆Θ(η,ξ,φ)

an dΘ(η,ξ,φ)⊆Υ(η,ξ,φ)
.

(67)

(2) -e union of Υ(η,ξ,φ) and Θ(η,ξ,φ) is indicated by

Δ(η,ξ,φ)
� Υ(η,ξ,φ) ∪Θ(η,ξ,φ)

, (68)

and defined as

Δ(η,ξ,φ)
(u) � Υ(η,ξ,φ)

(u)∨Θ(η,ξ,φ)
(u), (69)

where

Υ(η,ξ,φ)
(u)∨Θ(η,ξ,φ)

(u)

� τηΥ(u)∨τηΘ(u), ιξΥ(u)∨ιξΘ(u), 5
φ
Υ(u)∧5φΘ(u)􏼐 􏼑,∀u ∈ Ω.

(70)

-at is,

τηΔ(u) � max τηΥ(u), τηΘ(u)􏼈 􏼉,

ιξΔ(u) � max ιξΥ(u), ιξΘ(u)􏽮 􏽯,

5
φ
Δ(u) � min 5

φ
Υ(u), 5

φ
Θ(u)􏼈 􏼉.

(71)

Table 1: -e polygroup(P1, .).

e ϑ1 ϑ2
e e ϑ1 ϑ2
ϑ1 ϑ1 e, ϑ2􏼈 􏼉 ϑ1, ϑ2􏼈 􏼉

ϑ2 ϑ2 ϑ1, ϑ2􏼈 􏼉 e, ϑ1􏼈 􏼉

Table 2: -e polygroup(P2, .).

. e ϑ1 ϑ2 ϑ3
e e ϑ1 ϑ2 ϑ3
ϑ1 ϑ1 P2 ϑ1, ϑ2, ϑ3􏼈 􏼉 ϑ1, ϑ2, ϑ3􏼈 􏼉

ϑ2 ϑ2 ϑ1, ϑ2, ϑ3􏼈 􏼉 P2 ϑ1, ϑ2, ϑ3􏼈 􏼉

ϑ3 ϑ3 ϑ1, ϑ2, ϑ3􏼈 􏼉 ϑ1, ϑ2, ϑ3􏼈 􏼉 P2

Table 3: -e polygroup(P3, .).

. e ϑ1 ϑ2 ϑ3
e e ϑ1 ϑ2 ϑ3
ϑ1 ϑ1 ϑ1 P3 ϑ3
ϑ2 ϑ2 e, ϑ1, ϑ2􏼈 􏼉 ϑ2 ϑ2, ϑ3􏼈 􏼉

ϑ3 ϑ3 ϑ1, ϑ3􏼈 􏼉 ϑ3 P3
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(3) -e intersection of Υ(η,ξ,φ) andΘ(η,ξ,φ) is indicated by

Δ(η,ξ,φ)
� Υ(η,ξ,φ) ∩Θ(η,ξ,φ)

, (72)

and defined as

Δ(η,ξ,φ)
(u) � Υ(η,ξ,φ)

(u)∧Θ(η,ξ,φ)
(u), (73)

where

Υ(η,ξ,φ)
(u)∧Θ(η,ξ,φ)

(u)

� τηΥ(u)∧τηΘ(u), ιξΥ(u)∧ιξΘ (u), 5
φ
Υ(u)∨5φΘ(u)􏼐 􏼑,∀u ∈ Ω.

(74)

-at is,

τηΔ(u) � min τηΥ(u), τηΘ(u)􏼈 􏼉,

ιξΔ(u) � min ιξΥ(u), ιξΘ(u)􏽮 􏽯,

5
φ
Δ(u) � max 5

φ
Υ(u), 5

φ
Θ(u)􏼈 􏼉.

(75)

Definition 20. -e complement of a (η, ξ,φ)-SVNS Υ is
denoted by c(Υ(η,ξ,φ)) and is defined by

c Υ(η,ξ,φ)
􏼐 􏼑 �〈u, τηc(Υ)(u), ιξc(Υ)(u), 5

φ
c(Υ)(u)〉, (76)

where

τηc(Υ)(u) � 5
φ
Υ(u),

ιξc(Υ)(u) � 1 − ιξΥ(u),

5
φ
c(Υ)(u) � τηΥ(u), ∀u ∈ Ω.

(77)

Definition 21. Let (P, ∗) be a (weak) polygroup and Υ a
(η, ξ,φ)-SVNS over P.-enΥ is called a (η, ξ,φ)-SVNP over
P ((η, ξ,φ)-SVNweak polygroup ((η, ξ,φ)-SVNWP) overP)
if for all ∀u, v ∈ P, the following conditions are satisfied.

(1) τηΥ(w)≥min τηΥ(u), τηΥ(v)􏼈 􏼉, ιξΥ(w)≥min ιξΥ(u),􏽮

ιξΥ(v)} and 5
φ
Υ(w)≤max 5

φ
Υ(u), 5

φ
Υ(v)􏼈 􏼉

for all z ∈ x∗y,
(2) τηΥ(u− 1)≥ τηΥ(u), ιξΥ(u− 1)≥ ιξΥ(u) and 5

φ
Υ(x− 1)≤

5
φ
Υ(u).

Example 5. Let P4 � 0, 1{ }.-en (P4, ∗) defined in Table 4 is
a polygroup with 0 serving as an identity.

Let

Υ �
〈0.6, 0.7, 0.2〉

0
+

〈0.1, 0.3, 0.7〉

1
. (78)

Consider η � 0.4, ξ � 0.5,φ � 0.5.
-en Υ(η,ξ,φ) � 〈0.4, 0.5, 0.5〉/0 + 〈0.1, 0.3, 0.7〉/1.
⇒Υ is a (η, ξ,φ)-SVNP over P4.

Example 6. Let P5 � e, ϑ1, ϑ2, ϑ3􏼈 􏼉. -en P5,
°􏼈 􏼉 defined in

Table 5 is a weak polygroup with e serving as an identity.

Moreover, it is not a polygroup because ° is not associ-
ated, i.e.,

ϑ1°ϑ2( 􏼁°ϑ3 � ϑ3°ϑ3 � e, ϑ3􏼈 􏼉, ϑ1° ϑ2°ϑ3( 􏼁 � ϑ1°ϑ1 � e, ϑ1􏼈 􏼉.

(79)

Let

Υ � 〈0.8, 0.7, 0.3〉/e +〈0.1, 0.3, 0.7〉/ϑ1
+〈0.1, 0.25, 0.9〉/ϑ2 +〈0.1, 0.25, 0.9〉/ϑ3.

(80)

Consider η � 0.4, ξ � 0.5,φ � 0.5.
-en Υ(η,ξ,φ) � 〈0.4, 0.5, 0.5〉/e + 〈0.1, 0.3, 0.7〉/ϑ1+ 〈0.1,

0.25, 0.9〉/ϑ2 + 〈0.1, 0.25, 0.9〉/ϑ3.
⇒Υ is a (η, ξ,φ)-SVNWP over P5.

Remark 4. All the theorems and results in this paper that are
valid for (η, ξ,φ)-SVNP are also valid for (η, ξ,φ)-SVNWP.
So, we restrict our results to (η, ξ,φ)-SVNP.

Proposition 5. Let Υ a (η, ξ,φ)-SVNP over polygroup
(P, ∗). *en the preceding holds true ∀u ∈ P.

(1) τηΥ(u− 1) � τηΥ(u), ιξΥ(u− 1) � ιξΥ(u), and 5
φ
Υ(u− 1) �

5
φ
Υ(u);

(2) τηΥ(e)≥ τηΥ(u), ιξΥ(e)≥ ιξΥ(u), and 5
φ
Υ(e)≤ 5

φ
Υ(u)

where e is the identity in P.

Proof 9. Let u ∈ P.

(1) By Definition 21 implies that τηΥ(u− 1)≥ τηΥ(u),
ιξΥ(u− 1)≥ ιξΥ(u), and 5

φ
Υ(u− 1)≤ 5

φ
Υ(u). Also we have

(u− 1)− 1 � u implies that τηΥ(u)≥ τηΥ(u− 1), ιξΥ(u)≥
ιξΥ(u− 1), and 5

φ
Υ(u)≤5φΥ(u−1). -us, τηΥ(u−1) �

τηΥ(u), ιξΥ(u−1) � ιξΥ(u), and 5
φ
Υ(u−1) � 5

φ
Υ(u).

(2) Since e ∈ u∗ u− 1, it follows by Definition 21 (1)
that τηΥ(e)≥min(τηΥ(u), τηΥ(u− 1)) � τηΥ(u), ιξΥ(e)≥
min(ιξΥ(u), ιξΥ(u−1)) � ιξΥ(u), and 5

φ
Υ(e)≤max(5

φ
Υ(u),

5
φ
Υ(u−1)) � 5

φ
Υ(u). □

Example 7. Let P6 � e, ϑ1, ϑ2, ϑ3􏼈 􏼉. -en P6, .􏼈 􏼉 defined in
Table 6 is a polygroup with e serving as an identity.

Let

Table 4: -e polygroup(P4, ∗).

∗ 0 1
0 0 1
1 1 P1

Table 5: -e polygroup(P5,
°).

° e ϑ1 ϑ2 ϑ3
e e ϑ1 ϑ2 ϑ3
ϑ1 ϑ1 e, ϑ1􏼈 􏼉 ϑ3 ϑ2
ϑ2 ϑ2 ϑ3 e, ϑ2􏼈 􏼉 ϑ1
ϑ1 ϑ1 ϑ2 ϑ1 e, ϑ3􏼈 􏼉
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Υ �
〈0.4, 0.6, 0.2〉

e
+

〈0.8, 0.3, 0.7〉

ϑ1
+

〈0.7, 0.3, 0.7〉

ϑ2

+
〈0.1, 0.2, 0.8〉

ϑ3
.

(81)

Consider η � 0.5, ξ � 0.5, and φ � 0.5.
-en

Υ(η,ξ,φ)
�

〈0.4, 0.5, 0.5〉

e
+

〈0.8, 0.3, 0.7〉

ϑ1
+

〈0.5, 0.3, 0.7〉

ϑ2

+
〈0.1, 0.2, 0.8〉

ϑ3
.

(82)

⇒Υ(η,ξ,φ) is not a (η, ξ,φ)-SVNP over P6 as τηΥ(e)≥
τηΥ(ϑ1) does not hold.

Example 8. Let (P6, .) be the polygroup in example 7. -en
e{ } and e, ϑ1􏼈 􏼉 are subpolygroups of P6 that are not normal.

Proposition 6. Let Υ be a (η, ξ,φ)-SVNS over polygroup
(P, ∗), and (Υ(η,ξ,φ))− 1 � 〈τηΥ(u− 1), ιξΥ(u− 1), 5

φ
Υ(u− 1)〉/u:􏽮

u ∈ P}. If Υ is a (η, ξ,φ)-SVNP over P then (Υ(η,ξ,φ))− 1 �

Υ(η,ξ,φ).

Proof 10. It is simple by using Proposition 5. □

Proposition 7. Let (P, ∗) be a polygroup, τ1, τ2, τ3 be
numbers in the unit interval [0, 1].If Υ(η,ξ,φ) � 〈τ1,􏼈

τ2, τ3〉/u: u ∈ P}. *en Υ is a (η, ξ,φ)-SVNP over P.

Proof 11. -e proof is simple for readers. □

Remark 5. -e (η, ξ,φ)-SVNP present in Proposition 6 is
called the constant (η, ξ,φ)-SNVP.

Theorem 8. Let Υ a (η, ξ,φ)-SVNS over polygroup (P, ∗).
*en Υ and c(Υ) are (η, ξ,φ)-SVNP over P if and only if Υ is
the constant (η, ξ,φ)-SVNP.

Proof 12. If Υ is the constant (η, ξ,φ)-SVNP over P then
c(Υ) is also the constant (η, ξ,φ)-SVNP over P. Let Υ and
c(Υ) be (η, ξ,φ)-SVNP. -en ∀u ∈ P, we have

τηΥ(e)≥ τηΥ(u), ιξΥ(e)≥ ιξΥ(u), 5
φ
Υ(e)≤ 5

φ
Υ(u) (83)

5
φ
Υ(e)≥ 5

φ
Υ(u), 1 − ιξΥ(e)≥ 1 − ιξΥ(u),

τηΥ(e)≤ τηΥ(u)
(84)

Equations (83) and (84) implies that τηΥ(e) � τηΥ(u),
ιξΥ(e) � ιξΥ(u), 5

φ
Υ(e) � 5

φ
Υ(u). -us, Υ is the constant

(η, ξ,φ)-SVNP over P. □

Definition 22 (see [48]). Let Υ be a fuzzy set over a poly-
group (P, ∗) with membership function m. -en Υ is called
the anti-fuzzy polygroup over P if ∀u, v ∈ P, the following
conditions are fulfilled.

(1) m(w)≤max m(u), m(v){ }, ∀w ∈ u∗ v,
(2) m(u− 1)≤m(u).

Remark 6 (see [48]). Union of anti-fuzzy polygroups over P

is an anti-fuzzy polygroup.

Definition 23. Let Υ be a (η, ξ,φ)-SVNS over polygroup
(P, ∗ ). -en Υ is called an (η, ξ,φ)-anti SVNP
((η, ξ,φ)-ASVNP) over P if ∀u, v ∈ P, the following con-
ditions are satisfied.

(1) τηΥ(w)≤max τηΥ(u), τηΥ(v)􏼈 􏼉, ιξΥ(w)≤max ιξΥ(u),􏽮

ιξΥ(v)} and 5
φ
Υ(w)≥min 5

φ
Υ(u), 5

φ
Υ(v)􏼈 􏼉 for all w ∈

u∗ v,
(2) τηΥ(u− 1)≤ τηΥ(u), ιξΥ(u− 1)≤ ιξΥ(u), 5

φ
Υ(u− 1)≥ 5

φ
Υ(u).

Proposition 8. Let (P, ∗ ) be a polygroup and Υ an
(η, ξ,φ)-ASVNP over P*en following holds true:∀u ∈ P.

(1) τηΥ(u− 1) � τηΥ(u), ιξΥ(u− 1) � ιξΥ(u) and 5
φ
Υ(u− 1) �

5
φ
Υ(u).

(2) τηΥ(e)≤ τηΥ(u), ιξΥ(e)≤ ιξΥ(u), and 5
φ
Υ(e)≥ 5

φ
Υ(u)

where e is the identity element in P.

Proof 13. -e proof is similar to that of 5.10.

Example 9. Consider (P4, ∗ ) be the polygroup present in
example 5.

Let

Υ �
〈0.4, 0.7, 0.9〉

0
+

〈0.6, 0.8, 0.2〉

1
. (85)

Consider η � 0.5, ξ � 0.5,φ � 0.7.
-en Υ(η,ξ,φ) � 〈0.4, 0.5, 0.9〉/0 + 〈0.5, 0.5, 0.7〉/1.
⇒Υ is a (η, ξ,φ)-ASVNP over P4.

Theorem 9. Let Υ be a (η, ξ,φ)-SVNS over polygroup
(P, ∗ ). *en Υ is a (η, ξ,φ)-SVNP over P if and only if τηΥ
and ιξΥ are fuzzy polygroups over P and 5

φ
Υ is an anti-fuzzy

polygroup over P.

Proof 14. It follows from the definition of (η, ξ,φ)-SVNP,
fuzzy polygroups, and anti-fuzzy polygroups. □

Theorem 10. Let Υ be a (η, ξ,φ)-SVNS over polygroup
(P, ∗). *en Υ is a c(Υ)-ASVNP over P if and only if τηΥ and
ιξΥ are anti-fuzzy polygroups over P and 5

φ
Υ is an fuzzy

polygroup over P.

Table 6: -e polygroup(P6, .).

. e ϑ1 ϑ2 ϑ3
e e ϑ1 ϑ2 ϑ3
ϑ1 ϑ1 e ϑ2 ϑ3
ϑ2 ϑ2 ϑ2 e, ϑ1, ϑ3􏼈 􏼉 ϑ2, ϑ3􏼈 􏼉

ϑ3 ϑ3 ϑ3 ϑ2, ϑ3􏼈 􏼉 e, ϑ1, ϑ2􏼈 􏼉
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Proof 15. It follows from the definition of (η, ξ,φ)-ASVNP,
fuzzy polygroups, and anti-fuzzy polygroups. □

Theorem 11. Let Υ be a (η, ξ,φ)-SVNS over polygroup
(P, ∗). *en Υ is a (η, ξ,φ)-SVNP over P if and only if c(Υ)

is an (η, ξ,φ)-ASVNP over P.

Proof 16. Let Υ be a (η, ξ,φ)-SVNP. -eorem 9 asserts that
τηΥ and ι

ξ
Υ are fuzzy polygroups over P and 5

φ
Υ is an anti-fuzzy

polygroup over P. We get now that τηc(Υ) � 5
φ
Υ and ιξc(Υ) �

1 − ιξΥ are anti-fuzzy polygroups over P and 5
φ
c(Υ) � τηΥ is a

fuzzy polygroup over P. Using -eorem 10, it completes the
proof. Similarly, we can prove that if c(Υ) is an
(η, ξ,φ)-ASVNP over P then Υ is a (η, ξ,φ)-SVNP. □

Corollary 1. Let Υλ be a (η, ξ,φ)-SVNS over polygroup
(P, ∗). If Υλ is a (η, ξ,φ)-SVNP over P then ∩ λ∈φΥλ is
(η, ξ,φ)-SVNP over P.

Corollary 2. Let Υλ be a (η, ξ,φ)-SVNS over polygroup
(P, ∗). If Υλ is a (η, ξ,φ)-ASVNP over P then ∩ λ∈φΥλ is an
(η, ξ,φ)-ASVNP over P.

6. Level Sets of (η, ξ,φ)-Single-Valued
Neutrosophic (Weak) Polygroups

-is section defines level sets of (η, ξ,φ)-SVNPs and relate
them with (normal) subpolygroups.

Definition 24. Let ξ be any set t � (τ1, τ2, τ3), where
0≤ τ1, τ2 < 1 and 0< τ3 ≤ 1, and Υ be a (η, ξ,φ)-SVNS over ξ.
-en Υ(η,ξ,φ)

t � u ∈ ξ: τηΥ(u)≥ τ1, ι
ξ
Υ(u)≥ τ2, 5

φ
Υ(u)≤ τ3􏽮 􏽯 is

named a t-level set of Υ(η,ξ,φ).

Theorem 12. Let Υ be a (η, ξ,φ)-SVNS over polygroup
(P, ∗). *en Υ is a (η, ξ,φ)-SVNP over P⇔Υ(η,ξ,φ)

t ≠∅ is a
subpolygroup of (HTML translation failed) for every t � (τ1,
τ2, τ3), where 0≤ τ1, τ2 < 1 and 0< τ3 ≤ 1.

Proof 17. Let Υ be a (η, ξ,φ)-SVNP over P and
u, v ∈ Υ(η,ξ,φ)

t ≠∅. ∀w ∈ u∗ v, we have

τηΥ(w)≥min τηΥ(u), τηΥ(v)􏼈 􏼉≥ τ1,

ιξΥ(w)≥min ιξΥ(u), ιξΥ(v)􏽮 􏽯≥ τ2,
(86)

5
φ
Υ(w)≤max 5

φ
Υ(u), 5

φ
Υ(v)􏼈 􏼉≤ τ3. (87)

-us u∗ v⊆Υ(η,ξ,φ)
t .

Furthermore, we have

τηΥ u
−1

􏼐 􏼑≥ τηΥ(u)≥ τ1,

ιξΥ u
−1

􏼐 􏼑≥ ιξΥ(u)
(88)

5
φ
Υ u

−1
􏼐 􏼑≤ 5

φ
Υ(u)≤ τ3. (89)

-is implies that u−1 ∈ Υ(η,ξ,φ)
t . -us, Υ(η,ξ,φ)

t is a sub-
polygroup of P.

Conversely, let Υ(η,ξ,φ)
t ≠∅ be a subpolygroup of P and

u, v ∈ P.
Set τ1 � min τηΥ(u), τηΥ(v)􏼈 􏼉, τ2 � min ιξΥ(u), ιξΥ(v)􏽮 􏽯, τ3 �

max 5
φ
Υ(u), 5

φ
Υ(v)􏼈 􏼉 and t � (τ1, τ2, τ3).

So it illustrates that u∗ v⊆Υ(η,ξ,φ)
t and u− 1 ∈ Υ(η,ξ,φ)

t .
-is indicates ∀w ∈ u∗ v,

τηΥ(w)≥ τ1 � min τηΥ(u), τηΥ(v)􏼈 􏼉,

ιξΥ(w)≥ τ2 � min ιξΥ(u), ιξΥ(v)􏽮 􏽯,
(90)

5
φ
Υ(w)≤ τ3 � max 5

φ
Υ(u), 5

φ
Υ(v)􏼈 􏼉. (91)

As a result, condition (1) of Definition 17 is achieved.
Moreover,

τηΥ u
−1

􏼐 􏼑≥ τ1 � τηΥ(u),

ιξΥ u
−1

􏼐 􏼑≥ τ2 � ιξΥ(u),
(92)

5
φ
Υ u

−1
􏼐 􏼑≤ τ3 � 5

φ
Υ(u). (93)

-us, condition (2) of Definition 17 is satisfied. -ere-
fore, Υ become (η, ξ,φ)-SVNP over P.

Corollary 3. Let Υ be a (η, ξ,φ)-SVNP over polygroup
(P, ∗ ). *en P has no non-trivial proper subpolygroups if
and only if the constant (η, ξ,φ)-SNVP and Υ(η,ξ,φ) � 〈τ1,􏼈

τ2, τ3〉/u + 〈τ1′, τ2′, τ3′〉/e: u≠ e ∈ P}, where τ1 ≥ τ1′, τ2 ≥ τ2′
and τ3 ≤ τ3′ are the only (η, ξ,φ)-SVNP over P.

Example 10. Let P4 � 0, 1{ } and (P4, ∗ ) be the polygroup
referred in example 5. -en the constant (η, ξ,φ)-SNVP and
Υ(η,ξ,φ) � 〈τ1, τ2, τ3〉/1 + 〈τ1′, τ2′, τ3′〉/0, where τ1 ≤ τ1′, τ2 ≤ τ2′,
and τ3 ≥ τ3′ are the only (η, ξ,φ)-SVNP over P4.

Notation 1. Let t � (τ1, τ2, τ3) and let Υ is a (η, ξ,φ)-SVNS
of P. -en by A(u) � t, we means that τηΥ(u) � τ1, ι

ξ
Υ(u) �

τ2 and 5
φ
Υ(u) � τ3. And by Υ(η,ξ,φ)(u)≤ t, we mean that

τηΥ(u)≤ τ1, ι
ξ
Υ(u)≤ τ2, and 5

φ
Υ(u)≥ τ3.

Theorem 13. Each subpolygroup of polygroup (P, ∗) is a
level set of a (η, ξ,φ)-SVNP over P.

Proof 18. Let Q be a subpolygroup of P, consider
t � (τ1, τ2, τ3), where 0< τ1, τ2 < 1, and 0< τ3 < 1. Define the
(η, ξ,φ)-SVNS over P as follows:

Υ(η,ξ,φ)
(u) �

τ1, τ2, τ3( 􏼁, if x ∈ Q,

(0, 0, 1), otherwise.
􏼨 (94)

Let t′ � (τ1′, τ2′, τ3′). -en
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A
(η,ξ,φ)

t′ �

Q if τ1 ≥ τ1′, τ2 ≥ τ2′, τ3 ≤ τ3′,

P if τ1′ � 0, τ2′ � 0, τ3′ � 1, is either∅ or a subpolygroup of P.

∅ otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(95)

Using-eorem 12, we get that Υ is a (η, ξ,φ)-SVNP over
P. □

Definition 25. Let Υ be a (η, ξ,φ)-SVNP over polygroup
(P, ∗).-enΥ is said to be a normal (η, ξ,φ)-SVNP over P if
Υ(η,ξ,φ)(w) � Υ(η,ξ,φ)(w′), ∀w ∈ u∗ v, and w′∈ v∗ u.

Example 11. Let Υ be a (η, ξ,φ)-SVNP over polygroup
(P, ∗). -en the constant (η, ξ,φ)-SNVP is a normal
(η, ξ,φ)-SNVP over P.

Theorem 14. Let Υ is a (η, ξ,φ)-SVNS over polygroup
(P, ∗). *en Υ is a normal (η, ξ,φ)-SVNP over
P⇔Υ(η,ξ,φ)

t ≠∅ is a normal subpolygroup of P for every
t � (τ1, τ2, τ3), where 0≤ τ1, τ2 < 1, and 0< τ3 ≤ 1.

Proof 19. Let Υ be a normal (η, ξ,φ)-SVNP over P and
u, v ∈ Υ(η,ξ,φ)

t ≠∅. -eorem 12 argues that Υ(η,ξ,φ)
t ≠∅ is a

subpolygroup of P. Let u ∈ P. We need to show that
u− 1 ∗Υ(η,ξ,φ)

t ∗ u⊆Υ(η,ξ,φ)
t . Let w ∈ u− 1 ∗Υ(η,ξ,φ)

t ∗ u. -en ∃ v

in Υ(η,ξ,φ)
t such that w ∈ u− 1 ∗ v∗ u, hence w ∈ u− 1 ∗p,

where p ∈ v∗ u. -e latter implies that v ∈ p∗ u− 1. And
since Υ is a normal (η, ξ,φ)-SVNP over P. Accordingly,
Υ(η,ξ,φ)(w) � Υ(η,ξ,φ)(v). Hence, w ∈ Υ(η,ξ,φ)

t .
Conversely, suppose Υ(η,ξ,φ)

t ≠∅ be a normal sub-
polygroup of P. -eorem 12 argues that Υ is a
(η, ξ,φ)-SVNP over P. To show that Υ is a normal
(η, ξ,φ)-SVNP over P, it is sufficient to enhance that
Υ(η,ξ,φ)(w) � Υ(η,ξ,φ)(w′)∀w ∈ u∗ v, w′∈ v∗ u.

Let w ∈ u∗ v, w′∈ v∗ u with Υ(η,ξ,φ)(w′) � t. Having
w′∈ v∗ u implies that v ∈ w′ ∗ u− 1. -e latter reveals that let
w ∈ u∗ v′ ∗ u− 1. Since w′∈ Υ

(η,ξ,φ)
t and Υ(η,ξ,φ)

t ≠∅ is a
normal subpolygroup of P, it pursues that w ∈ Υ(η,ξ,φ)

t and
therefore,Υ(η,ξ,φ)(w)≥Υ(η,ξ,φ)(w′) � t. Similarly, we get that
Υ(η,ξ,φ)(w′)≥Υ

(η,ξ,φ)(w). ⇒Υ(η,ξ,φ)(w′) � Υ(η,ξ,φ)(w). □

Corollary 4. Let Υ be a (η, ξ,φ)-SVNP over polygroup
(P, ∗ ). *en P has no proper normal subpolygroups if and
only if the constant (η, ξ,φ)-SNVP is the only normal
(η, ξ,φ)-SNVP over P.

Example 13. Let P6 � e, ϑ1, ϑ2, ϑ3􏼈 􏼉 and (P6, .) be the pol-
ygroup illustrated in example 7. -en the constant
(η, ξ,φ)-SNVP is the only normal (η, ξ,φ)-SVNP over P6.

Theorem 15. Every normal subpolygroup of polygroup
(P, ∗ ) is a level set of a normal (η, ξ,φ)-SVNP over P.

Proof 20. -e result is identical to that of -eorem 13. □

Corollary 5. Let Υ be a (η, ξ,φ)-SVNP over polygroup
(P, ∗ ). *en (Υ(η,ξ,φ))∗ � u ∈ P: Υ(η,ξ,φ)(u) � Υ(η,ξ,φ)(e)􏽮 􏽯

is a subpolygroup of P. Moreover, if Υ is a normal
(η, ξ,φ)-SVNP over P, then (Υ(η,ξ,φ))∗ is a normal sub-
polygroup of P.

Proof 21. Let t � Υ(η,ξ,φ)(e). -en Υ(η,ξ,φ)
t � u ∈ P: τηΥ(u)≥􏼈

τηΥ(e), ιξΥ(u)≥ ιξΥ(e), 5
φ
Υ(u)5

φ
Υ(e)}. Proposition 5 and Prop-

osition 6 asserts that

Υ(η,ξ,φ)
t � u ∈P: τηΥ(u) � τηΥ(e), ιξΥ(u) � ιξΥ(e),5

φ
Υ(u)≤5φΥ(e)􏽮 􏽯

� Υ(η,ξ,φ)
􏼐 􏼑

∗
.

(96)

-eorem 12 and -eorem 14 complete the proof. □

7. Single-Valued Neutrosophic Multicriteria
Decision-Making Method

Multiple-criteria decision-making is an operations research
subdiscipline that explicitly assesses multiple competing
criteria in decision-making (both in everyday life and in
settings as well as in situations like as the business, gov-
ernment, and medicine). M-CDM offers a basis for
choosing, categorizing, and ranking items and aids in the
overall evaluation. M-CDM is a useful tool that may be used
to a variety of complicated/sophisticated or when the ma-
terials are novel. It is especially beneficial in circumstances
involving a decision between options. It helps us to focus on
the real issues and it is logical and consistent and is easy to
use; it has all the qualities of an excellent decision-making
tool.

A SVNS is a stereotype of a classic set, a fuzzy set, a
paraconsistent set, and an intuitionistic fuzzy set. It is more
broad and can handle not only partial information but also
equivocal and unreliable information, both of which are
typical in real-world situations. As a result, SVN D-M is
more suited for real-world scientific and technical
applications.

In this section, we present strategies for resolving
M-CDM issues in a SVN environment by using the WCSM
between SVNSs.

Assume R1,R2,R3, . . . ,Rr resemble the alternatives
andY1,Y2,Y3, . . . ,Yy represent the set of criteria. Consider
the weight of the criterion Yj(j � 1, 2, . . . , y) enters by
decision-makers is wj,wj ∈ [0, 1] and

􏽐
y
j�1 wj � 1. -e preceding SVNS indicate the feature of

alternative Ri(i � 1, 2, . . . , r) in this case:

Ri � 􏽘

y

j�1

〈τRi
Yj􏼐 􏼑, ιRi

Yj􏼐 􏼑, 5Ri
Yj􏼐 􏼑〉

Yj

, Yj ∈ Y, (97)

where τRi
(Yj), ιRi

(Yj), 5Ri
(Yj) ∈ [0, 1], j � 1, 2, . . . , y and

i � 1, 2, . . . , r.
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We represent a SVNS by δij � 〈ρij, ϱij, σij〉. An SVNS is
often synthesized from the evaluation of an alternative Ri

with regard to a criteria Yj in implementation using a score
law and data processing. As a result, we may derive a SVN
decision matrix D � (δij)r×y.

-e notion of ideal point has been intended to assist
discover the optimal option in aM-CDM scenario. Although
the perfect alternative does not exist in the real world, it does
give a valuable theoretical framework against which alter-
natives may be evaluated.

-e notion of optimum point has been achieved by
involving to discover the optimal option in a M-CDM
context. Although the perfect alternative somehow does not
persist in the everyday life, it does give a valuable theoretical
framework against which alternatives may be evaluated.

As a reason, the ideal alternative R@ is defined as the
SVNS δj � 〈ρ@

j , ϱ@j , σ@
j 〉 � 〈1, 0, 0〉 for j � 1, 2, . . . y. -e

WCSM between an alternative Ri and the ideal alternative
R∗ represented by the SVNSs is defined by

Qi Ri,R
@

􏼐 􏼑

� 􏽘

y

j�1
wj

ρij.ρ
∗
j + ϱij.ϱ

∗
j + σij.σ

∗
j􏽨 􏽩

�����������
ρ2ij + ϱ2ij + σ2ij

􏽱
.

������������������

ρ@
j􏼐 􏼑

2
+ ϱ@j􏼐 􏼑

2
+ σ@

j􏼐 􏼑
2

􏽱
(98)

-en, the higher the WCSM value, the better the option.
-e measure values can produce the ranking order of all
alternatives and the best option by using (98).

8. Application

-is section demonstrates an overview of a M-CDM issue
with choices to exemplify the relevance and efficacy of the
offered D-M strategy. Consider the paradox of D-M.-ere is
an investment firm that wants to put money into the finest
choice.-ere is a panel with four potential financing options:

(1) R1 is a manufacturer of automobiles;
(2) R2 is a manufacturer of electronics;
(3) R3 is a vacation rentals; and
(4) R4 is an industrial 3D printing builder company.

-e investment firm must make a judgement based on
the three criteria listed below:

(1) Y1 is the financial, risk, and sensitivities;
(2) Y2 is the progress assessment; and
(3) Y3 is the environmental and location assessment.

-e criteria’s weight vector is hence specified by
w � (0.30, 0.25, 0.45).

-e questionnaire of a professional expert is used to
appraise an alternative Ri(i � 1, 2, 3, 4) in relation to a
criteria Yj(j � 1, 2, 3).

When asked to experts of their opinion on a potential
alternative R1 corresponding to Y1, for instance, an expert
might respond that there is a 0.6 chance that the statement is
superb, a 0.2 chance that it is low, and a 0.1 chance that they
are unsure. It may be written as δ11 � 〈0.6, 0.2, 0.1〉 using the
neutrosophic notation. -e following SVN decision matrix
D may be obtained when the expert evaluates the four
potential options in light of the aforementioned three
criteria:

D �

〈0.6, 0.2, 0.1〉 〈0.5, 0.4, 0.3〉 〈0.7, 0.5, 0.4〉

〈0.3, 0.2, 0.3〉 〈0.8, 0.3, 0.5〉 〈0.5, 0.3, 0.2〉

〈0.9, 0.5, 0.4〉 〈0.7, 0.6, 0.5〉 〈0.6, 0.5, 0.4〉

〈0.8, 0.7, 0.3〉 〈0.4, 0.1, 0.1〉 〈0.9, 0.2, 0.2〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (99)

By employing (98), we can also give the following values
of WCSM Qi(Ri,R

@)(i � 1, 2, 3, 4) as

Q1 R1,R
@

􏼐 􏼑 � 0.7899;

Q2 R2,R
@

􏼐 􏼑 � 0.7589;

Q3 R3,R
@

􏼐 􏼑 � 0.7190;

Q4 R4,R
@

􏼐 􏼑 � 0.8823:

(100)

-e four options are thus ranked as follows:R4,R1,R2,
and R3.

According to the order described by the rank matrix,
industrial 3D printing builder company is turn out to be the
best investment firm to put money into the finest choice
whereas vacation rentals is the worst as per the criteria
described.

8.1. Superiority of the Proposed Approach. -rough this
analysis and comparison, it was possible to conclude that the

Table 7: Comparison between SVNS and some existing approaches.

Set Truth Indeterminacy Falsity Attributes
Zadeh [1] Fuzzy set √ × ×

Atanassov [3] Intuitionistic fuzzy set √ × √ √
Yager [49] Pythagorean fuzzy set √ × √ √
Chen et al. [50] m-polar fuzzy set √ × × √
Naeem et al. [51] Pythagorean m-polar fuzzy set √ × √ √
Maji et al. [52] Fuzzy soft set √ × × √
Maji et al. [53] Intuitionistic fuzzy soft set √ × √ √
Peng et al. [54] Pythagorean fuzzy soft set √ × √ √
Zulqarnain et al. [55] Intuitionistic fuzzy hyper soft set √ × √ √
Zulqarnain et al. [56] Pythagorean fuzzy hyper soft set √ × √ √
Proposed technique SVNS √ √ √ √
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proposed procedure has produced more frequent results
than either of the alternatives. In general, the D-M approach
associated with prevalent D-M methods permits additional
data to alleviate hesitancy. In the D-M process, it is thus
acceptable to propagate false and unclear information.
-erefore, the proposed method is reasonable, modest, and
ahead of the fuzzy set’s characteristic structures. -e general
information associated with the object could be stated
precisely and analytically, as shown in Table 7.

9. Conclusion

-is paper presented an algebraic hyperstructure of
(η, ξ,φ)-SVNSs in the form of (η, ξ,φ)-SVN hypergroup,
(η, ξ,φ)-SVNPs, and (η, ξ,φ)-ASVNPs. Several intriguing
properties of the newly defined notions were discussed. -e
findings of this article can be thought of as a generalization
of prior research on fuzzy hypergroups and fuzzy poly-
groups. We also discussed in this section a M-CDM system
developed in an SVN environment using WCSM. WCSM
between each option and the ideal alternative may be used to
establish the ranking order of all alternatives and to readily
identify the greatest alternative. Finally, an instructive ex-
ample demonstrated how the new techniquemay be used. As
a result, the proposed SVN M-CDM technique is more
suited for real-world scientific and engineering applications
since it can manage not only inadequate information but
also indeterminate and inconsistent information, both of
which are typical in real-world scenarios. -e strategy
suggested in this study enhances previous D-Mmethods and
offers decision-makers with an useable method.

-is work provided an algebraic hyperstructure of
(η, ξ,φ)-SVNSs as (η, ξ,φ)-SVN hypergroup,
(η, ξ,φ)-SVNPs, and (η, ξ,φ)-ASVNPs. Several remarkable
characteristics of the newly formed concepts were addressed.
-e results of this article can be seen as a generalization of
previous research on fuzzy hypergroups and fuzzy poly-
groups. In this part, we also described an M-CDM system
constructed in an SVN environment utilizing WCSM.
WCSM between each option and the best option may be
used to define the ranking order of all options and quickly
discover the best choice. Finally, an illustrative illustration
explained how the new method may be implemented.
Consequently, the suggested SVN M-CDM approach is
more suitable for real-world scientific and engineering ap-
plications, since it can handle not only insufficient infor-
mation but also indeterminate and inconsistent information,
both of which are characteristic of real-world settings. -is
research proposes an approach that advances earlier D-M
methods and provides decision-makers with a practical
method.

(i) Researchers will continue to work on complex D-M
issues with uncertain weights of criteria, as well as
other disciplines such as expert systems, informa-
tion fusion systems, biochemistry, epidemiology,
geology, entomology, and biomedical engineering.
In the realm of algebraic structure theory, it pos-
sesses a fantastic novel idea that has the potential to

be utilized in the future for the solution of a variety
of algebraic issues.

(ii) Using the algebraic structure of multi-polygroup in
terms of intuitionistic fuzzy set theory, this method
may be readily extended to the intuitionistic fuzzy
multi-polygroups. Connecting intuitionistic fuzzy
multiset theory, set theory, and polygroup theory
may provide a novel notion of polygroup that may
be used to illustrate the effect of intuitionistic fuzzy
multisets on a polygroup’s structure. Using this
concept, researchers may study intuitionistic fuzzy
normal multi-subpolygroups along with their
characterizations and algebraic characteristics.
Additionally, the homomorphisms of intuitionistic
fuzzy multi-polygroups and some of their structural
properties may be addressed. Additionally, this idea
may be used to investigate intuitionistic fuzzy
quotient multi-polygroups.

(iii) Researchers may expand this concept to include
various neutrosophic multi-topological group
structures. For this, they can introduce the defini-
tion of semi-open neutrosophic multiset, semi-
closed neutrosophic multiset, neutrosophic multi-
regularly open set, neutrosophic multi-regularly
closed set, neutrosophic multi-continuous map-
ping. In addition, since the idea of the almost to-
pological group is so novel, they may utilize the
definition of neutrosophic multi almost topological
group to define neutrosophic multi almost topo-
logical group.

(iv) -is idea can be used to the development of the
neutrosophic multi almost topological group of the
neutrosophic multi-vector spaces, etc. -is notion
can be expanded to soft neutrosophic polygroups,
weak soft neutrosophic polygroups, strong soft
neutrosophic polygroups, soft neutrosophic poly-
group homomorphism, and soft neutrosophic
polygroup isomorphism. Furthermore, scholars
might explore the homological properties of these
polygroups.
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