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�is study introduces a computational scheme by the bi-�nite di�erence method (Bi-FDM) to solve the hyperbolic telegraph
equation in two dimensions.�e proposed numerical method converts nonlinear two-dimensional hyperbolic telegraph equation
of second order to di�erence equations that can be solved by the Mathematica program. Consistency and stability of the proposed
scheme are discussed and found to be accurate of O((hx)

2 + (hy)
2 + (Δτ)2) and conditionally stable, respectively. �e e�ciency

and accuracy of Bi-FDM have been shown by comparing the numerical results of the presented problems with the exact solutions
and other numerical techniques.

1. Introduction

For δ > 0 and c> 0, we consider the following second-order
nonlinear hyperbolic telegraph equation in two dimensions
on region R � (x, y): x ∈ [0, 1], y ∈ [0, 1]{ }
fVττ � Vxx + Vyy − 2δVτ − c2V + G(x, y, τ, V)or temporal
coordinate with seconds τ > 0 [20]:

Vττ � Vxx + Vyy − 2δVτ − c2V + G(x, y, τ, V), (1)

with the initial conditions,

V(x, y, 0) � f1(x, y), Vτ(x, y, 0) � f2(x, y), x ∈ [0, 1], y ∈ [0, 1],

(2)

and the boundary conditions,

V(0, y, τ) � f3(y, τ), V(1, y, τ) � f4(y, τ), y ∈ [0, 1], τ > 0,
V(x, 0, τ) � f5(x, τ), V(x, 1, τ) � f6(x, τ), x ∈ [0, 1], τ > 0.

(3)

Equation (1) is in spatial-temporal spaces and represents
damped wave equation at δ > 0 and c � 0 and telegraph
equation at δ > 0 and c> 0. �e two-dimensional nonlinear
hyperbolic telegraph (1) of second-order under conditions

(2) and (3) arises in electric voltage and current in a double
conductor, signal analysis, wave propagation, random walk
theory, and atomic physics [1–4]. Also, the hyperbolic partial
di�erential equations are useful in explaining and under-
standing structures vibrations such as buildings, beams, and
machines [5]. So, most previous branches of science can be
studied by telegraph equation which is more appropriate in
modeling reaction-di�usion than ordinary di�usion equa-
tion. In most of the literature, the numerical schemes for
hyperbolic telegraph equations of second order in one di-
mension and multidimensions recently developed it as
follows. Mohanty et al. studied the stability of numerical
schemes of telegraph equations [6–8]. Hyperbolic telegraph
equations of one dimension are solved by cubic and quartic
B-spline collocation methods [9–11]. In [12, 13], Mohanty
et al. used high-order approximation to solve two-dimen-
sional quasilinear hyperbolic equations. Many authors
solved two-dimensional linear hyperbolic equations [14–18].
Two-dimensional nonlinear hyperbolic equations of second
order are studied using modi�ed B-spline method [19], bi-
cubic B-spline method [20], meshless local and stronge
forms [21], and high-order di�erence schemes [22]. Smith
introduced �nite di�erence methods [23]. Raslan and Ali
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used the finite difference method to solve MHD-duct
flow model [24]. Baleanu et al. applied a nonstandard
finite difference scheme for fractional chaotic system
[25]. Erturk et al. found some electrical engineering
applications as capacitor microphone system [26] and
description motion of beam on nanowire [27]. Hasan
et al. [28] presented formulations of fractional optimal
control of two spherical structures and one hollow cy-
lindrical structure which represented fractional partial
differential equations in two dimensions and can be
solved via our presented scheme and will discuss it in the
future work.

(e present study is organized as follows. In Section 2,
we present the bi-finite difference method of the proposed
problem. We discuss the consistency and stability of the
proposed scheme as given in Sections 3 and Section 4, re-
spectively. Section 5 investigates some numerical problems
and explains them in some tables and figures. Finally,
Section 6 provides the conclusion for this paper.

2. Bi-Finite Difference Method

We divide the region R into knots (xi, yj), for i � 0, 1, . . . , n

and j � 0, 1, . . . , m, in spatial directions with horizontal
space in x− direction hx � xi − xi− 1 � 1/n, i � 1, 2, . . . , n,
and vertical space in y− direction hy � yj − yj− 1 � 1/m,
j � 1, 2, . . . , m, where n and m are + ve integers. Suppose
that temporal direction with spacing Δτ > 0 is τk � k∗Δτ,
for k � 0, 1, . . . , l, where l is +ve integer. (e finite difference
method in two dimensions to find the approximate solution
v(x, y, τ) corresponding to the exact solution V(x, y, τ) can
be written as

v xi, yj, τk  � c
k
i,j, (4)

and its partial derivative up to second order in spatial and
temporal directions at various grid points (xi, yj, τk) is as
follows:

vx xi, yj, τk ≃
c

k
i+1,j − c

k
i− 1,j

2hx

,

vxx xi, yj, τk ≃
c

k
i+1,j + c

k
i− 1,j − 2c

k
i,j

hx( 
2 ,

vy xi, yj, τk ≃
c

k
i,j+1 − c

k
i,j− 1

2hy

,

vyy xi, yj, τk ≃
c

k
i,j− 1 + c

k
i,j+1 − 2c

k
i,j

hy 
2 ,

vτ xi, yj, τk ≃
c

k+1
i,j − c

k− 1
i,j

2Δτ
,

vττ xi, yj, τk ≃
c

k+1
i,j + c

k− 1
i,j − 2c

k
i,j

(Δτ)
2 .

(5)

Equation (1), at points (xi, yj, τk), for i � 0, 1, . . . , n,
j � 0, 1, . . . , m, and k � 0, 1, . . . , l, where V(xi, yj, τk), is
written as Vk

i,j:

Vττ( 
k

i,j � Vxx( 
k

i,j + Vyy 
k

i,j
− 2δ Vτ( 

k

i,j − c
2
V

k
i,j + G

k
i,j. (6)

Conditions (2) and (3) become

V
0
i,j � f1 xi, yj , Vτ( 

0
i,j � f2 xi, yj ,

V
k
0,j � f3 yj, τk , V

k
n,j � f4 yj, τk ,

V
k
i,0 � f5 xi, τk( , V

k
i,m � f6 xi, τk( .

(7)

Substituting (5) into (6), we obtain as follows:

c
k+1
i,j + c

k− 1
i,j − 2c

k
i,j

(Δτ)
2 �

c
k
i+1,j + c

k
i− 1,j − 2c

k
i,j

hx( 
2 +

c
k
i,j− 1 + c

k
i,j+1 − 2c

k
i,j

hy 
2

− 2δ
c

k+1
i,j − c

k− 1
i,j

2Δτ
− c

2
c

k
i,j + G

k
i,j,

(8)

where (8) with conditions (7) can be solved.

3. Local Truncation Error

In this section, we introduce the local truncation error of our
scheme.

Theorem 1. .e local truncation error of finite difference
scheme (8) is O((hx)2 + (hy)2 + (Δτ)2).

Proof. By using Taylor’s expansion in (8), we investigate the
local truncation error in two-dimensional space and time as
follows:

T c
k
i,j  �

z
2
c

k
i,j

zt
2 −

z
2
c

k
i,j

zx
2 −

z
2
c

k
i,j

zy
2 + 2δ

zc
k
i,j

zt
+ c

2
c

k
i,j − G

k
i,j

+
hx( 

2

12
z
4
c

k
i,j

zx
4 +

hy 
2

12
z
4
c

k
i,j

zy
3 +

δ(Δτ)
2

3
z
3
c

k
i,j

zt
3

+
(Δτ)

2

12
z
4
c

k
i,j

zt
4 + . . . ,

(9)

T c
k
i,j  �

hx( 
2

12
z
4
c

k
i,j

zx
4 +

hy 
2

12
z
4
c

k
i,j

zy
3 +

δ(Δτ)
2

3
z
3
c

k
i,j

zt
3

+
(Δτ)

2

12
z
4
c

k
i,j

zt
4 + · · · .

(10)

Hence, T(ck
i,j)⟶ 0 as (hx)2, (hy)2, (Δτ)2⟶ 0.

(en, the local truncation error of finite difference
scheme (8) is

O hx( 
2

+ hy 
2

+(Δτ)
2

 . (11)
□
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4. Stability of Bi-Finite Difference Scheme

In this section, we test the stability of the difference scheme.

Theorem 2. .e difference scheme (8) is conditionally stable.

Proof. Firstly, suppose ck
i,j � ζk

eIϑ(ihx)eIφ(jhy), and
substituting with it in (8), we use the following linearization
of the nonlinear term Gk

i,j � MVk
i,j, where M is locally

constant; we obtain

ζk+1
e
Iϑ ihx( )e

Iφ jhy( 
  + ζk− 1

e
Iϑ ihx( )e

Iφ jhy( 
  − 2 ζk

e
Iϑ ihx( )e

Iφ jhy( 
 

�
Δτ
hx

 

2

ζk
e
Iϑ(i+1)hx e

Iφ jhy( 
  + ζk

e
Iϑ(i− 1)hx e

Iφ jhy( 
 

− 2 ζk
e
Iϑ ihx( )e

Iφ jhy( 
  +

Δτ
hy

 

2

ζk
e
Iϑ ihx( )e

Iφ(j+1)hy 

+ ζk
e
Iϑ ihx( )e

Iφ(j− 1)hy  − 2 ζk
e
Iϑ ihx( )e

Iφ jhy( 
 

− δ ∗Δτ ζk+1
e
Iϑ ihx( )e

Iφ jhy( 
  − ζk− 1

e
Iϑ ihx( )e

Iφ jhy( 
  

− c
2

− M (Δτ)
2 ζk

e
Iϑ ihx( )e

Iφ jhy( 
 ,

(12)

where I �
���
− 1

√
, and we divided equation (12) by

ζk− 1
eIϑ(ihx)eIφ(jhy) as

(1 + δ ∗Δτ)ζ2 + Bζ2 +(1 − δ ∗Δτ) � 0, (13)

where

B � − 2 + c
2

− M (Δτ)
2

+ 2
Δτ
hx

 

2

1 − cos ϑhx( 

+ 2
Δτ
hy

 

2

1 − cos φhy .

(14)

(en,

|ζ| �
− B ±

�������������
B
2

+ 4δ2Δτ2 − 4


2(1 + δΔτ)




≤ 1. (15)

If |B|⩽1 + δ ∗Δτ and δ ∗Δτ ⩽ 1, so, the bi-finite differ-
ence scheme is conditionally stable under the condition
|B|⩽ 2. □

5. Numerical Problems

In this section, we test some numerical experiments for
several two-dimensional hyperbolic telegraph problems
using the bi-finite difference scheme (Bi-FDM).We calculate
L∞-errors, L2-errors, root mean square errors (RMSE), and
relative errors (RE) to show the efficiency of the proposed
numerical scheme by comparing the exact solutions and the
numerical solutions in our presented method and other
different methods. (e formulas of the used errors in two-
dimensional space at different levels τ are given by [16]

L∞ − error � maxn,m
i,j�0 V

k
i,j − v

k
i,j



,

L2 − error �

���������������������

hx ∗ hy 

n

i�0


m

j�0
V

k
i,j − v

k
i,j 

2




,

Rootmean square error(RMSE) �

������������������


n
i�0 

m
j�0 V

k
i,j − v

k
i,j 

2

n∗m




,

Relative error(RE) �

������������������


n
i�0 

m
j�0 V

k
i,j − v

k
i,j 

2


n
i�0 

m
j�0 V

k
i,j 

2




.

(16)

Problem 1. We consider two-dimensional second-order
nonlinear hyperbolic telegraph equation [20]:

Vττ − Vxx − Vyy + 2δVτ + c
2
V − 2(cos τ − sin τ)sin x sin y � 0.

(17)

Subject to the initial and boundary conditions, for
x, y ∈ [0, 1] and τ ⩾ 0,

V(x, y, 0) � sin x cos y, Vτ(x, y, 0) � 0,

V(0, y, τ) � 0, V(1, y, τ) � sin 1 cos y cos τ,

V(x, 0, τ) � sin x cos τ, V(x, 1, τ) � sin x cos 1 cos τ.

(18)

and the exact solution is V(x, y, τ) � sin x cos y cos τ,
where δ � c � 1.
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Keeping Δτ � 0.01, Table 1 presents L2, L∞ errors and
relative error for equal grid sizes hx � hy � 0.1, while Table 2
shows the same errors for different grid sizes
hx � 0.1 and hy � 0.2 at different time levels. Our results are
compared with the obtained results in [19, 20]. Obviously,
our numerical results are preferable. Figure 1 and 2 show the
surface plots of numerical and exact solution at τ � 1, 3 for
hx � hy � 0.05 andΔτ � 0.001, respectively. (e maximum
absolute error plots are observed that, with increase in time,
the errors are decreasing, as shown in Figure 3.

Problem 2. We consider two-dimensional second-order
nonlinear hyperbolic telegraph equation [20]:

Vττ − Vxx − Vyy + 2δVτ + c
2
V − − 2δ + c

2
− 1 e

− τsinh x sinh y � 0,

(19)

with the initial and boundary conditions, for x, y ∈ [0, 1]

and τ⩾0,

V(x, y, 0) � sinh x sinh y, Vτ(x, y, 0) � − sinh x sinh y,

V(0, y, τ) � 0, V(1, y, τ) � e
− τsinh 1 cosh y,

V(x, 0, τ) � 0, V(x, 1, τ) � e
− τsinh x sinh 1.

(20)

(e exact solution is V(x, y, τ) � e− τsinh x sinh y,
where δ � 10 and c � 5.

Root mean square error and relative error for equal
grid sizes hx � hy � 0.1 and Δτ � 0.01 are calculated at
different time levels, as shown in Table 3. Comparison of
obtained results with results of other methods in [19, 20]
display that our numerical results are effective. Figure 4
appears the surface plots of numerical and exact solution
at τ � 2 for hx � hy � 0.05 andΔτ � 0.001. Figure 5 pres-
ents error plots at various time levels. We find the
maximum absolute errors are increasing with time
increasing.

Problem 3. We consider two-dimensional second-order
nonlinear hyperbolic telegraph equation [20]:

Vττ − Vxx − Vyy + 2δVτ + c
2
V

+ 3 cos τ + 2δ sin τ − c
2 cos τ sinh x sinh y � 0,

(21)

with the initial and boundary conditions, for x, y ∈ [0, 1]

and τ⩾0,

V(x, y, 0) � sinh x sinh y, Vτ(x, y, 0) � 0,

V(0, y, τ) � 0, V(1, y, τ) � sinh 1 sinh y cos τ,

V(x, 0, τ) � 0, V(x, 1, τ) � sinh x sinh 1 cos τ.

(22)

(e exact solution is V(x, y, τ) � sinh x sinh y cos τ,
where δ � 10 and c � 5.

We tabulate root mean square errors and relative errors
for hx � hy � 0.05 andΔτ � 0.001 at different time levels in
Table 4. (e acquired results are better than acquired results
in [19, 20]. Surface plots of and exact and numerical solution
at τ � 1 for hx � hy � 0.05 andΔτ � 0.001 are as observed in
Figure 6.

Problem 4. We consider two-dimensional second-order
nonlinear hyperbolic telegraph equation [20]:

Vττ − Vxx − Vyy + 2δVτ + c
2
V + 2e

x+y− τ
� 0. (23)

Subject to the initial and boundary conditions, for
x, y ∈ [0, 1] and τ ⩾ 0,

V(x, y, 0) � e
x+y

, Vτ(x, y, 0) � − e
x+y

,

V(0, y, τ) � e
y− τ

, V(1, y, τ) � e
1+y− τ

,

V(x, 0, τ) � e
x− τ

, V(x, 1, τ) � e
x+1− τ

.

(24)

(e exact solution is V(x, y, τ) � ex+y− τ , where
δ � c � 1.

We compute L2, L∞ norms and relative errors for equal
grid sizes hx � hy � 0.05 and Δτ � 0.001 at different time
levels, as shown in Table 5. Table 5 clarifies our obtained
results are in good agreement with results in [19, 20].
Figure 7 illustrates surface plots of numerical solution with
exact solution at τ � 1, for hx � hy � 0.1 andΔτ � 0.01.
Figure 8 shows error plots are decreasing versus time in-
creasing at various time levels for hx � hy � 0.1,Δτ � 0.01
and hx � hy � 0.05,Δτ � 0.001, respectively.

Problem 5. We consider two-dimensional second-order
nonlinear hyperbolic telegraph equation [20]:

Vττ − Vxx − Vyy + 2δVτ + c
2
V − 1 + c

2
 x

2
y
2sinh τ − 2δx

2
y
2cosh τ

+ 2 x
2

+ y
2

 sinh τ + sin x
2
y
2sinh τ  − sin V � 0,

(25)

with the initial and boundary conditions, for x, y ∈ [0, 1]

and τ ⩾ 0,

Table 1: L2, L∞, and relative errors at different time levels for Problem 1.

τ L2 error (Bi-FDM) L∞ (E)error (Bi-FDM) R (E)E (Bi-FDM) L2 (E)[20] L∞ (E)[20] R (E)E [19]

1 1.197–5 2.1390–5 7.1789–5 2.2277–4 5.6153–4 5.976E-3
2 4.129–6 8.9229–6 3.2132–5 1.0859–4 3.9413–4 8.501E-3
4 1.091–5 2.1178–5 5.4081–5 2.7579–4 6.7468–4 - - - - -
7 1.229–5 2.3968–5 5.2785–5 3.1130–4 7.7897–4 3.157E-3
10 1.346–5 2.6265–5 5.1976–5 3.4167–4 8.6373–4 2.287E-3
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Figure 3: Maximum error plots at τ � 5, 7, 10 and x � 0.5 with hx � hy � 0.1 andΔτ � 0.01 for Problem 1.

Table 2: L2, L∞, and relative errors for Problem 1 at different time levels with hx � 0.1, hy � 0.2, and.Δτ � 0.01.

τ L2 error (Bi-FDM) L∞ error (Bi-FDM) RE (Bi-FDM) L2 [20] L∞ [20]

1 3.0401E-05 5.3037E-05 1.7200E-04 1.2561E-04 4.0150E-04
3 3.8642E-05 7.5546E-05 1.1931E-04 2.4419E-04 7.1428E-04
5 7.6946E-06 1.5049E-05 8.2919E-05 5.7786E-05 1.9111E-04

Numerical solution at τ=1 Exact solution at τ=1

0.3
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Figure 1: Numerical and exact surface plots at τ � 1 for Problem 1.

Numerical solution at τ=3 Exact solution at τ=3
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Figure 2: Numerical and exact surface plots at τ � 3 for Problem 1.
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Figure 5: Maximum error plots at τ � 5, 7, 10 and x � 0.5 with hx � hy � 0.1 andΔτ � 0.01 for Problem 2.

Table 4: Root mean square and relative errors at different time levels for Problem 3.

τ RMSE (Bi-FDM) RE (Bi-FDM) RMSE [20] RE [19]
0 (E).5 1.6828E-06 4.3384E-06 8.9921E-05 1.3787–5
1 1.6932E-06 7.0904E-06 6.8547E-05 3.5957–5
2 2.3164E-07 1.2593E-06 2.9487E-05 4.4722–5
5 2.8018E-07 2.2346E-06 1.8225E-05 7.0735–5

Table 3: Root mean square and relative errors at different time levels for Problem 2.

τ RMSE (Bi-FDM) RE (Bi-FDM) RMSE [20] RE [19]
0 (E).5 6.2971E-06 2.1684E-05 2.6594E-04 1.3787–5
1 5.5545E-06 3.1535E-05 1.9039E-04 3.5957–5
3 9.3544E-07 3.9242E-05 2.8681E-05 1.0266–6
5 1.2770E-07 3.9585E-05 3.8988E-06 7.0735–5
10 8.6081E-10 3.9601E-05 2.6275E-08 1.6514–5

Numerical solution at τ=2
Exact solution at τ=2

1.0

0.5
y

0.0 0.0

X
0.5

1.0

0.15
0.10
0.05
0.00 1.0
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y
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Figure 4: Numerical and exact surface plots at τ � 2 for Problem 2.
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Table 5: L2, L∞, and relative errors at different time levels for Problem 4.

τ L2 error (Bi-FDM) L∞ error (Bi-FDM) RE (Bi-FDM) L2 (E)[19] L∞ (E)[20] R (E)E [19]

1 (E) 2.309E-5 3.786E-5 1.8424–5 3.2351–3 1.0000–3 1.2906–4
3 9.048E-7 2.458E-6 5.3347–6 3.1028–4 1.3654–4 9.1555–5
5 6.557E-7 1.347E-6 2.8567–5 2.4495–5 2.8590–5 5.3354–5
10 3.940E-10 8.052E-10 2.5475–6 3.6505–6 9.2105–8 1.1812–5

Numerical solution at τ=1 Exact solution at τ=1

2.5
2.0
1.5
1.0
0.5
1.0

0.5
y
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X
0.5

1.0

2.5
2.0
1.5
1.0
0.5
1.0

0.5
y

0.0 0.0

X
0.5

1.0

Figure 7: Numerical and exact surface plots at τ � 1 for Problem 4.
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Figure 6: Numerical and exact surface plots at τ � 1 for Problem 3.
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Table 6: L2 and L∞ errors at different time levels for Problem 5.

τ L2 error (Bi-FDM) L∞ (E)error (Bi-FDM) L2 (E)[20] L∞ [20]

1 3.0796–8 1.2502–7 6.2420E-05 2.3975E-04
2 7.5325–8 3.0573–7 1.8389E-04 7.3788E-04
3 2.0166–7 8.1908–7 5.1608E-04 2.7000E-03
5 1.4865–6 6.0327–6 3.6000E-03 2.0900E-02
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Figure 8: Maximum error plots at τ � 2, 3, 4 and x � 0.6 for Problem 4.
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Figure 9: Numerical and exact surface plots for Problem 5 at τ � 1.
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V(x, y, 0) � 0, Vτ(x, y, 0) � x
2
y
2
,

V(0, y, τ) � 0, V(1, y, τ) � y
2sinh τ,

V(x, 0, τ) � 0, V(x, 1, τ) � x
2sinh τ,

(26)

and the exact solution is V(x, y, τ) � x2y2sinh τ, where δ �

10 and c � 50.
We evaluate L2, L∞ errors for

hx � hy � 0.1 andΔτ � 0.01 at different time levels. We get
precise results by comparing with results in [20] as in Ta-
ble 6, and Figure 9 clears surface plots of numerical and exact
solution at τ � 1 for hx � hy � 0.1 andΔτ � 0.01.

6. Conclusion

(is study employed the bi-finite difference method (Bi-
FDM) as a collocation method to solve a nonlinear hy-
perbolic telegraph equation of second order in two di-
mensions.(e local truncation error of the proposed scheme
is derived. (e numerical scheme has conditionally stable.
Five different forms of the equation under study were
studied to verify the accuracy of the proposed method, and
their L2, L∞ norms were calculated. According to the ob-
tained results, the proposed numerical scheme is efficient
and in good agreement with other works in [19, 20]. In
addition, the Bi-FDM allows us to produce an extremely
better estimation of the hidden aspects for a system of the
different applications under study.
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