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Layered functionally graded (FG) plate plays an important role in engineering constructions. In this work, an efficient analytical
solution is proposed to investigate the time-dependent characters of layered FG plate with viscoelastic interlayers, in which each
FG layer is described by the elasticity theory, and the interlayer viscoelasticity is simulated by the generalized Maxwell model. The
constitutive equations in the interlayer are simplified, and then, the analytical solutions of stresses and displacements for
the layered FG plate are solved by virtue of the efficient recursive matrix method. Some examples are analyzed to investigate the
influences of geometric and material characteristics on the long-term behaviors for the FG plate.

1. Introduction

The layered plates are commonly used in various engi-
neering [1-4], by right of their outstanding merits, such as
high strength, lightweight, and corrosion resistance. Enough
bonding stiffness between adjacent members is the guar-
antee of mechanical performance of layered plates. In many
cases, the connection between adjacent layers is not rigid,
and thus, the interfacial slip often happens [5, 6]. Besides, the
bond behavior in layered plates exhibits viscoelastic prop-
erty, due to the use of polymer adhesive [7, 8]. As a result, the
mechanical performance of the whole layered plates is time-
dependent under sustained loads [9].

Although the layered plates exhibit good mechanical
performance, it is necessary to reduce immediately the
modulus difference between adjacent layers, which is a
major cause of large interlaminar stress [10]. This require-
ment has led to the development of a novel material, called
functionally graded (FG) materials, which can be designed to
have continuous mechanical properties [11-13]. Due to its
outstanding behaviors, FG materials have been applied in
various areas, such as piezoelectric fiber-reinforced com-
posite [14], heat-resistant materials [15], and nonuniform
porous materials [16]. The concept of FG materials has also

been introduced into the layered plates as face and/or
transition layers, which can optimize the stress distribution
and deformation [17, 18].

A number of works have been proposed to study the
mechanical responses of layered FG plates. Gunes et al. [19]
presented a backpropagation artificial neural network
method for investigating the three-dimensional free vibra-
tion response of an adhesively bonded wide and narrow FG
plates. Demirbas and Apalak [20] performed a thermoelastic
investigation of FG circular plates with adhesive bond and
gave the thermal stress and strain distributions with different
gradient indexes. Based on the equivalent single-layer
higher-order theory, Tornabene et al. [21] analyzed the
dynamic response of anisotropic doubly curved shells with
arbitrary geometry and variable thickness. According to the
four-variable refined plate theory, an analytical solution was
deduced by Li et al. [22] for the thermomechanical bending
analysis of FG sandwich plate. Wang et al. [23] derived an
analytical solution for investigating the heat transfer be-
havior in FG Sandwich plates. Tornabene et al. [24, 25] used
the higher-order theory to study the dynamic behavior of
anisotropic doubly curved shells. An extended cohesive
damage model was proposed by Ghimire and Chen [26] for
the analysis of geometrical ratio influences on the failure
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mechanisms of FG sandwiches, and they found that the
layered core can provide significant improvements in
loading capacity. On the basis of the four-variable plate
theory, Trinh el al. [27] presented a Levy solution with state
space concept for static, dynamic, and buckling analyses for
sandwich FG plates. Khorshidi and Karimi [28] established
an analytical model based on a modified shear deformation
theory for flutter investigation of sandwich plates with FG
face sheets under thermal condition. A full layerwise method
was employed by Nikbakht et al. [29] to obtain the yielding
initiation of FG sandwich plates subjected to bi-sinusoidal
distributed loading under general boundary conditions.
Based on the first-order shear deformation theory, Torna-
bene [30] investigated the dynamic behavior of moderately
thick functionally graded conical, cylindrical shells, and
annular plates.

In the above literature, most works in regard to layered
plates were based on the assumption of perfectly bonding or
static slip, while the time-dependent characters resulting
from viscoelastic bonding interlayers were neglected. Fur-
thermore, the solutions based on the simplified plate the-
ories have considerable error for thick plates.

This work proposes an efficient analytical model for
investigating the time-dependent bending behavior of lay-
ered FG plates with considering viscoelastic bonding in-
terlayer. In the analytical model, the mechanical behavior of
each FG layer is expressed by the three-dimensional elas-
ticity theory, which renounces the shear deformation as-
sumption. Thus, it is highly accurate for structures with any
thickness. The interlayer viscoelasticity is described by the
generalized Maxwell model. The constitutive equations in
the interlayer are simplified, and then, the analytical solu-
tions of stresses and displacements for the layered FG plate
are solved by virtue of the efficient recursive matrix method.
Additionally, some examples provided by the present so-
lution are conducted to investigate the influences of geo-
metric and material characteristics on the time-dependent
behaviors of the FG plate.

2. Efficient Analytical Model

In Figure 1, a layered FG plate formed by p FG layers bonded
by viscoelastic bonding interlayer is considered, which is
simply supported and bears to a sustained load gq(x,y) on its
top. The three-dimensional size of the plate is a x b x H, and
the thicknesses for FG layer and bonding interlayer are,
respectively, h; and Ah, in which the label i means the layer
index. The elastic modulus of each FG layer, denoted by
E;(z), varies according to the exponential law along the
thickness direction, and is expressed by

E,(z) = E)ébi (=), (1)

where k; is the graded index and E} = E,(d?). The gener-
alized Maxwell model, as shown in Figure 2, is employed to
model the interlayer viscoelasticity, with time-dependent
shear modulus given by
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2.1. Governing Equations for a FG Layer. According to the
elasticity theory, the constitutive equations for the ith (i=1,
2, ..., p) FG layer are

0‘; = (A,l + 2Gl)€; + Ai“:; + Aie,iz’ T;Z = GiYi/Z’
Po=Gy ()

i i i i i i
0, = Ae, +hE), + (A +2G))e, oy = Gy

where 0, 0, 0, T, T, and 7. are stresses, €, €, £, Yy,
1 1 3

Vy.»> and ¥\ are strains and A; and G; are lame parameters

expressed as follows:

.E.
/\i (Z) _ Abll i (Z)
(14 ) (1= 2u)
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G;(z) = &
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The strain-displacement relations are given by
gi _ aui gi _ aVi gi _ awi
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where /, v/, and w' represent the displacements in x, y,
and z direction, respectively. The stress components of

each FG layer should meet the following static equilibrium
equations:

i i i
dg,, 0T, Or

ox Ty Toz ©
9 Ity Oy (6)
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The simply supported boundary conditions can be
expressed by
P

Vv =w atx = 0,a,

=0,=0,
i (7)
uw=w=0.=0, aty=0,b.

i
X
i
X

Four steps are taken to obtain the differential equation
involving displacement components. Firstly, by substituting
(1) and (5) into (3) and eliminating the strain components,
one has
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The present structural problem is displacement-based,
and the stresses can be determined by (8) after the dis-
placements are solved. The above governing equations are
actually partial differential equations which can hard to be
solved directly. Secondly, for simply supported boundary
conditions, the displacements of each FG layer can be ex-
panded in Fourier series as follows:

Wopoh] o o [E s (e)sin (5,)
Vi(xyzt) [ = ) )| V" ( tsin(ay,x)cos (B,y) |
w' (x, y,2,1) S P (z,t)sin (a,,x)sin (B, )

(10)

U™ (z,t) . U™ (z,t)
+k -

2(1-
0z% 0z

(1-2u;)

+ ko, W™ (z,t) = 0,

Auz)“fn + ﬁi]ul,mn (Z, t) _ mﬁn Vl,mn (Z, t) + m

+ + K = U.
ox* 9y (1-2w) oz (1-2u;) "0z

where a,, = mm/a and B, = nn/b. Thirdly, by applying the
Fourier series expansion of (10) to (9), the partial differential
equations become ordinary differential equations as follows:

ow'™ (z,t)
0z

(1-2y;) (1-2y)
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At last, a fourth-order differential equation of w
derived out by eliminating »#*™" and v""" in (11):

a4 wi,mn a3 i,mn

i,mn

is  details of g, ; are defined in Appendix A. By substituting
into (13) and (11), 4*™ and v*"" are obtained:
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The general solution of w"™" is (14)
4 y
W (z,t) = Zeg'ﬂ“zczn(t), (13) wher.e the details of f,/ are hst.ed in Appendix A. By
i substituting of (13), (14), and (8) into (9), the stress com-
4 ponents involving undetermined coeflicients can be written
where C; . (t) are the undetermined time-dependent co- 3¢

efficients, which can be obtained according to the boundary
and continuity conditions in the subsequent sections; the
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2.2. Governing Equations for a Viscoelastic Interlayer.
According to the Boltzmann superposition principle, the
constitutive equations for the ith (i=1, 2, .. ., p-1) interlayer
are given by

o ' * a ic*z I 2
) (16)
*i t . a 1*2( : ’&.)
Ty (% p,1) = J, G (t—f)%dg

The above convolution integral equations means that the
stress of viscoelastic interlayer depends on the total strain
history, which leads to the heavy calculation and time-
consuming. In the present work, they are simplified as

T (x, 9,t) = G (B (x, 9, 1),

1% * i% (17)
7, (% 3,1) =G (t)y,, (x, y,10).

In comparison with the exact solution, this simplification
leads to small error, and the present solution is always on the
side of safety [25]. Considering that Ah is far less than h;, the
shear strains can be assumed to be constant in z direction
and given by

u”l(x, ¥, d?H, t) - ui(x, y,d., t)

Yi:z (-x7 y) t) = Ah >
(18)
i+1 b i t
" V(X p,d] s t) = V(X p,dist
Vi (3 3,1) = ( 1 A)h ( )

The shear stress continuity relationships between adja-
cent layers are

T;z(x’ y’ d:’t) = Ti:z (x’ y’ t) = T;Jrzl(x’ y’ d?+l’t)’

i+1

i t i% b (19)
Tyz(x, ¥, di,t) =1, (% pt) =7, (x, v, di+1,t).

2.3. Recursive Matrix Method. The stresses on the top and
bottom surfaces of the plate are

of (x,y,H,t) = —q(x, y),

™ (x,y,H,t) =0,

Tﬁz (x, y,H,t) =0, o0
0; (x,9,0,t) =0,
Tiz (x,9,0,t) =0,
T;Z (x,9,0,t) = 0.

Since the stresses and displacements are in series form,
q(x,y) should also be expanded as

q(%,9) = Y Y Gy sin (@, x)sin (B,),
m=1n=1

(21)

4 (@ (b
G = —— J J q(x, y)sin(a,,x)sin (B, y)dxdy.
ab JoJo

By substitution of (13)-(15) into (8), the general solution
of stresses and displacements can be transferred into the
matrix form as

o (z,t)=M _(2)A (1), (22)

where

O (z,t) = [ ut" (z,t) VM (z,t) W (z,t) 0™ (2,t) T (2, t) T’);’;“" (z,1) ] ,
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61 62 63 64 65 66
LR, (2) R (2) R (2) Ry, (2) Ry, (2) R, (2) ]
where the nonzero coeflicients in matrix Minn(z) can be b ; .
found in Appendix B. By combining (17)-(19), the conti- @, (di\t) = ‘I’(t)q)m,,(di,f), (24)

nuity relationships between the adjacent FG layers are re-
written in the matrix form as

where
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By substituting d? and d! into the z-coordinate in (24),

respectively, we obtain

®,,,(d]:t) = M, (), ()
: . , (26)
@, (di,t) =M, (d))A,,, ().

Elimination of Ainn (t) in (26) yields

o, (d' ) = [M;n(d;)M;m(df)‘l]cpim(df, . @)

By reusing (24) and (27), from i=1 to i = p, one obtains
2

00,y £) = TT[Mo (M () 0] )00,
i=p
(&) oL ().
(28)

Four 3 x 3, submatrices are used to define the matrix
multiplication in (28) as follows:

Con Conis]_ Pyl (g (i
| T o),

2
mn,21 i=
(d)ML ()

'mn,22

(29)
Thus, (28) can be written as
C.,.. C
o (di1) = [le””’“ C:””’“ of (d,t).  (30)
w2l Smn,22

By the decomposition of (30), two submatrix equations
are given as
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By solving (31), the displacement boundary value on the
bottom surface of the structure can be expressed as

ul,mn(d?, t) a
Vglc’zmn(dllj’ t) = (Cinn,m)_l 0 | (32)
wy"(d),t) 0

Similar to the relationship in (28), @ (d!,t) for any FG
layer is obtained from (24) and (27) as follows:

i t j t j t\~ 1 1 t 1

@, (di,t) = [Mfm(dj)M{W(dj) ‘I’(t)]an(dj)an

2
j=i
(@) o (),

(33)

The time-dependent coefficients of the ith FG layer are
turther obtained as

2
A () = M () [n Mzm(da)Mzm(da)"w]
j=i

M (M () b ().

Finally, the substitution of (34) into (13)-(15) yields the
solution of stress and displacement components for each FG
layer.

(34)

3. Numerical Results and Discussion

In the following, the FG sandwich plate (p = 3) is taken as an
example. The variables with the superscript r, e.g., o', are
defined as the result of stress or displacement at the point of
x=0-25a, y =0-25b, and z = h,. The variables with two
vertical lines denote their absolute values, e.g., |wil.

3.1. Validation of the Present Solution. The convergence
property of the present solution is assessed first. The series
are truncated into a finite number M for actual calculations
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FIGUre 1: Schematic diagram of the layered FG plate bonded by the viscoelastic interlayer.

F1Gure 2: The configuration of the generalized Maxwell model (6; = #,/G)).

here. The parameters in the FG plate are taken as g(x,y) =
IN/mm’,  a=1000mm, b=800mm, Ah=0.5mm,
hy=h3=30mm, h,=40mm, E} E} =80GPa, E;
=40GPa, k1 =k3;=0.05, k,=0, and p; = p, = y; = y”
=0.3. The material of polyvinyl butyral (PVB) is chosen for
the viscoelastic interlayer and its viscoelastic parameters of
which are given in Table 1. Table 2 lists the present results
with different series terms, respectively. It is found that the
present results tend to be constant as series terms increase,
and the convergence accuracy is four significant digits.

The present solution is compared with the Kirch-
hoff-Love (KL) solution [26], respectively. The parameters
in the FG plate are fixed at q(x,y) = sin(nx/a)sin(my/b) N/
mm’, a=b=1000mm, Ah=0.2mm, k=0, Ej = Eleh™
=80GPa, E2 =40GPa, y; = y, = p3 = p* =03, t=10"s,
G:, =0.5MPa, G; =500MPa, 05, =1s, hi:hyhy=1:21,
and k3 = —k;. The above parameters mean that the geometric
and material properties of the present structure are sym-
metric about the midplane in the direction of thickness.
Figure 3 represents the relative error between KL solution
and the present one for a different length-to-height ratio a/H
and graded index k;, respectively. A good agreement is
found for KL solution in thin plate case with small |k, |, while
the relative error of KL results increases gradually as the
plate become thick or k; decreases. The errors for o’ 77,
and w" are 15.4%, 6.6%, and 15.9%, respectively, as a/H=8
and k; =-0.09. The imprecision of KL solutions mainly
results from the neglect of the transverse shear deformation
and the deviation of neutral plane of the FG layer.

3.2. Parameter Research. In this section, some examples
provided by the present solution are conducted to investi-
gate the influences of geometric and material characteristics
on the time-dependent behaviors of the FG plate. Some of
the parameters are fixed at q(x,y) =sin(nx/a)sin(my/b) N/
mm’, a=b=1000mm, k;:k;=-1, k,=0, Ej = Elef, E2
=25Gpa, and py; = Y, = py = p* =0.3; the viscoelastic
constants are given in Table 1, while the others are variable.

Figure 4 plots the stress and displacement distribution in z
direction when t=1 day, 1 year, and 10 years and the corre-
sponding results in perfectly bonded (PB) case. The constants
are fixed at h;=h;=20mm, h,=40mm, Ah=02mm, and
ky;=-0.05. It can be obtained from Figure 4 that |d’ |, |7*,],
|T;y|, |4], and |w'| considerably increase with ¢, while Iag,l
changes slightly with time. o', and 7, show zig-zag distribu-
tions, and they, in the facial layers, are obviously curve dis-
tribution, which is different from isotropic material. ' also
show a zig-zag distribution but keeps straight in each FG layer.
7!, gives a multipeak distribution. Compared with the results of
PB case, the maximum values of |’ |, 7%, |7 |, [/, and |w'|
increase by 200.1%, 26.2%, 200.2%, 604.7%, and 1221%, re-
spectively, at t=10 years.

The effect of the graded index on the stress and
displacement of the FG plate, as well as the elastic
modulus distributions along the thickness direction, are
illustrated in Figure 5. The parameters are taken as
hy=h3;=10mm, h,=30mm, Ah=0.2mm, and =1 day,
and the average modulus of FG facial layer, i.e.,

(Igi Eiekvdy)/h; (i=1, 3), is fixed at 80 GPa. From the
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TaBLE 1: The relaxation moduli and relaxation time of the generalized Maxwell model for PVB material.

] G}‘ (MPa) GGJ (s)
1 75.6426 3.256x107"
2 37.0677 4.949x107°
3 137.1552 7.243 %1078
4 33.5140 9.864x107°
5 126.6048 2.806%x107°
6 42.1950 1.644x107"
7 14.2162 2.265x10°
8 3.5822 3.536 x 10"
9 0.4538 9.368 x10°
10 0.1912 6.414 x10°
11 0.2893 4.135x107
[ 0.0880
TaBLE 2: Convergence analysis of the present method as =1 day, 1 year, and 10 years, respectively.
T M u" (mm) w" (mm) o', (MPa) o), (MPa) T;y (MPa) 7., (MPa)
1 0.03731 —1.068 —67.96 —0.2896 40.41 —0.1065
1 day 5 0.03582 —-1.088 -74.98 —-0.3933 38.20 —0.1009
9 0.03583 -1.088 -74.94 -0.3916 38.20 —0.1010
13 0.03583 —-1.088 -74.94 —-0.3916 38.20 -0.1010
1 0.04072 ~1.152 ~74.16 -0.3056 44.10 ~0.04183
I year 5 0.03866 ~1.180 -83.43 -0.4379 41.03 ~0.03940
9 0.03867 ~1.180 -83.30 ~0.4307 41.04 -0.03946
13 0.03867 ~1.180 -83.30 ~0.4310 41.04 -0.03946
1 0.04226 -1.190 -76.97 -0.3129 45.77 -0.01196
10 years 5 0.03977 -1.222 -87.06 -0.4366 42.20 -0.01121
9 0.03984 -1.222 -86.65 —0.4143 42.23 —0.01124
13 0.03983 -1.222 -86.67 -0.4164 42.23 —-0.01124

Note. M means the series terms.

Relative errors [%]
Relative errors [%)]

0 1 1 1 1 1 0 1 it L i i 1 i i i
8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20 22 24 26 28 30
alH alH
k,=-0.03 —a— k=-0.07 k,=-0.03 —a ky=-0.07
—+— k;=-0.05 —o— k;=-0.09 —+— k;=-0.05 —o— k;=-0.09

(a) (b)

FiGgure 3: Continued.
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Relative errors [%]
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0 1 1 1 1 1
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alH
k;=-0.03 —a— k;=-0.07
—— k;=-0.05 —o— k;=-0.09
(0)

FIGURE 3: Relative errors of the KL solution compared with the present one for different length-to-height ratios as k; =—-0.03, —0.05, -0.07,
and —0.09 when #=10000s. Note. The errors are defined by |[(KL)-Present]/Present| x100%. (a) o%, (b) 77, and (c) w'".
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FiGURE 4: Continued.
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FIGURE 4: The distribution of the stress and displacemgnt in the thickness dirfection at different time periods. (a) ¢ (x = 0.5a, y = 0.5b), (b)
0y, (x =0.5a, y = 0.5b), (c) 7, (x = 0,y = 0.5), (d) Ty, (x =0,y = 0), (e) u' (x =0,y =0.5b), and () w'(x = 0.5a, y = 0.5b).
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F1GUurEe 5: The influence of graded index on the distribution of the elastic modulus, stress, and displacement along the thickness direction

with fixed material consumption. (a) E; (2), (b) ¢’, (c) 7., and (d) w'.
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FIGURE 6: The influence of time and graded index or the interlayer thickness on the maximum value of the normal stress, shear stress, and

deflection. (a) |d’ | .. (Ah = 0.2mm), (b) |¢* |, (k; = —0.1), (c) |7,

and (f) [w'],, (k, = —0.1).

results shown in Figures 5(b) and 5(c), the decline of k;
reduces the maximum value of |T;Z| and |w'| but enlarges
that of |0’ |. As k; goes down from 0.2 to -0.2, |7, and
|w'],ax fall by 10.0% and 15.7%, respectively, while |a’ | ...
increases by 156.7%. In the other word, the stress and
displacement distribution can be optimized by adjusting
the graded index.

Figure 6 shows the influences of ¢, k;, and Ah on the
maximum value of the stress and displacement. The pa-
rameters are fixed at the same as those in Figure 5, except t,
k; and Ah are variable. It can be seen from Figure 6 that, as
k,=-0.1, i (W

10" |mar 1T lmas and increase

Ninax (AR = 0.2mm), (d) |75 |0 (ky = —0.1), (€) |w],0 (AR = 0.2 mm),

monotonously and keeps invariant as ¢ or Ah increases. Due
to the increase of ¢t and Ah resulting in a reduced shear
modulus of the interlayer, and as t— 00, G* (t) approaches
to the fixed value G7,. Similarly, |7/ | ... and |w],,, increase
monotonously and tend to definite values with the increase
of ky or t as Ah=0.2mm, which results from that the dif-
ference in elastic modulus between the adjacent layer sur-
faces grows gradually as k; increases. For a given t, |0’ |,
decreases first and then increases as k; grows, which is owing
to the fact that the location of |0’ |, transfers from the
outer surface of the facial layer to the inner surface in the
early stage, while in the medium or long term, the location of
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|0° | max transfers from the facial layer to the core layer as k,
increases. Similarly, for a small certain ki, |0’ |, increases
monotonously with f, while for a large k;, |0’ |, firstly
decreases and then increases as t goes on, which is due to the
transfer of the ||, location from the facial layer to the
core layer.

max

4. Conclusion

The elasticity theory with the recursive matrix method was
proposed to analyze the time-dependent behavior of the
layered functionally graded plates with viscoelastic inter-
layer. The following conclusions can be provided:

(1) In the thin plate case, the KL solution with small
graded index approaches the present one. Since the
transverse shear deformation is neglected and the
neutral plane gradually deviates from the middle
plane, the relative errors increase gradually as length-
to-height ratio or graded index increases.

2130 =) [P (1= 1) + 4105 ] = K (1= i)

Mathematical Problems in Engineering

(2) As time goes on, the influence of the interlayer shear
modulus degeneration for the adhesive bonding case
is obvious, which leads to the reduced interface shear
stress and the increased interfacial slip as well as the
greater deflection.

(3) By adjusting the graded index, the stress and dis-
placement distribution of the case with fixed material
consumption can be optimized and the location of
the maximum value of the normal stress transfers
between the facial layer and the core layer. The
maximum value of deflection and shear stress de-
creases with the reduction of the graded index and
the interlayer thickness.

Appendix

A. Details of Coefficients in General Solutions

In (13) and (14), the details ofgij,m (j=1-6) and fil

o (1=1-4)
are given as follows:

Gmn 2 -

o V(=) [ (L= ) + 470 ] + 6 (1= )
G = - g

s 1) [ (=) = 4] ki (1- )
G =5 - ,

w1 [ (1= ) = 4] = k(1 - )
I =3 - ,

i5 1 i
9; = E( T mn2 ~ k‘),

L3

56 = _i( Tona + kr)
fxl _ T’mn

= i i i i R i i i i ’

{*3 (5= 1) 7P\ (4 + T (1= )] (U= )+ (475 (1= 1) + (1= )] (BR324 (=482, — TR =y + s +(86%, + 10K = 4rf, Y] = 64 (= )" (s — 1)K (82, 2rmn,3)}

fxz _ T‘mn

= ) s V[ o (1= )] (=100 = (4700 0) 1 =00 (8K (0~ 1R = s+ 40y + (8004 10K — )] = 64t~ 1 (= VAR (8, 201 ) |
o Ty

8= 1 s[4 P (V= )] (U ) + (400 = 1)+ (U ][5 (4= 17K = 0 = A+ (5004 10K+ 40}, ] = 64t = 1)* Gty = VAR (s + 20)}

i

i

N
H

32

"8G 0 i V[0 # o (U= )] (0= 10) = [40hs 1= 1)+ (= 0] 88507 (-

i=1,2,...,p,mn=123...,

where

, 2 2
¢mn = “m+ﬁn’

i 2 1, 1y
Vo1 = i”i_gi_i n T A
i 2 2 2
Toma = ki +4a, +4f,,

2

G KW T A+ (8 10K 4]~ 68— 1)t~ 1R ($o + 2]

(A1)

1,
o,

(A.2)

Fona = Kt (o, + ) (1 = 1),

i 1
Tlmn = 128#1’ (/’lx - 1)4k12(xm(ktznulz - ktztul - Z(pfnn)
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B. Details of Elements in Coefficient Matrix
M’m (2) in (22) is with the following nonzero elements:
B gz 15y _ gz 26 () _ g
(z) = eI R (2) = —=eIms", R’ (z) = —=eIms”,
‘Xm n n
i , 7 ,-
T")legmn,sz’ szn (Z) — T")legmn,ﬂ’
mn
egiwn,lz,
e.‘]inn‘zz,
eg’mnﬁz’
egirm,liz’
(B.1)
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