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 e paper deals with stochastic-deterministic modelling of radiated electric �eld by base station antennas (BSAs) operating in
GSM frequency range. Within the framework of deterministic analysis, the total electric �eld above a two-layered lossy ground is
obtained by considering the incident and re�ected ray in the far �eld zone.  e in�uence of nonhomogeneous lower medium is
taken into account via two approaches: Fresnel plane wave re�ection coe�cient (FRM) and simpli�ed re�ection coe�cient
stemming from Modi�ed Image  eory (MIT). Antenna height, relative conductivity, and permittivity of each ground layer, as
well as the thickness of the upper ground layer, are considered as input parameters with inherent uncertainty. To quantify the
uncertainty of output electric �eld, deterministic models are treated as black boxes by two stochastic methods, Monte Carlo (MC)
and Stochastic Collocation (SC), respectively. Stochastic mean and standard deviation of the output are computed, and sensitivity
analysis is carried out in order to analyze the impact of input parameters’ variations on the resulting electric �eld variance.  e
presented results expose weakness and strength of the two stochastic methods, particularly identifying the cases when the
preferred SC method fails to converge. Furthermore, sensitivity analysis reveals that despite the smallest variation around its
respective average value, the antenna height has the highest impact on the output variance at observation points in the vicinity of
the antenna. However, as the distance from the antenna increases, the 1st layer depth and its relative electric permittivity become
the most signi�cant parameters.

1. Introduction

In the last few decades, radiation from base station antennas
(BSAs) has become a controversial topic regarding the
possible adverse health e�ects. Namely, it is a well-known
fact that the principal biological e�ect due to exposure of
humans to high frequency (HF) radiation is tissue heating.
Two main organizations proposing guidelines for limiting
values of EM �elds for human exposure, IEEE and ICNIRP,
have published revised editions regarding the HF exposure
in 2019 [1] and 2020 [2], respectively. Both documents agree
that the transition frequency of 6GHz is the frequency above
which body surface heating becomes dominant over volume
heating.  erefore, the electromagnetic measure for body
heating due to HF radiation is the speci�c absorption rate
(SAR) for frequencies below 6GHz, while for frequencies
above transition frequency both guidelines suggest the

absorbed power density (Sab) to be calculated. Since either
SAR or Sab are not likely to be readily assessed, the IEEE and
ICNIRP guidelines provide exposure reference levels de�ned
in terms of incident power density (Sinc) or incident electric
�eld strength (Einc).

 erefore, BSAs are required to satisfy certain exposure
conditions according to regulations based on standards such
as [3, 4], which are in consistence with the IEEE and ICNIRP
exposure reference levels [1, 2]. However, in calculation
procedures of radiated �eld levels, most of the present
standards consider incident �eld ray only, thus neglecting
the re�ection from the ground or other objects [4–7].
Furthermore, in order to consider the worst-case exposure
scenario, standards such as [8] provide possibility to use
correction factors based on �xed re�ection coe�cients. On
the other hand, some studies deal with BSA actual trans-
mitted power, instead of considering maximal BSA
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transmitted power with the intention to provide the most
realistic scenario [9]. +is approach could be of some use in
5G electric field calculations and exposure estimations [10].

However, despite the efforts of the presented regulations
[3–7], deterministic computations are not sufficient for
computation of electric field levels due to the inherent
uncertainty of the input parameters. Namely, it is practically
impossible to prescribe exact/fixed values for input pa-
rameters in computational modelling of many realistic ex-
posure scenarios. On one hand, there is an inherent
uncertain nature of body tissues’ electric parameters since
their direct measurements on human beings are not ac-
ceptable. On the other hand, the sources of radiation also
exhibit random nature, e.g., the position and the orientation
of antennas have different impact on the resulting radiated
and thus the internal fields [11]. Finally, the environment
and soil parameters may also be considered as random
variables since their structure and electric parameters are not
always straightforward to obtain [12]. +erefore, in order to
consider variable nature of input parameters, stochastic
approaches in radiated field calculation play an important
role. Since purely stochastic modelling is either time con-
suming or impossible to obtain, the hybrid approach in
terms of stochastic-deterministic modelling in HF dosimetry
has been readily used for a decade [13]. Many examples of
stochastic-deterministic modelling in internal EM and
thermal dosimetry can be found in, e.g., [11, 14–17].
However, extensive stochastic dosimetry of incident fields,
i.e., the radiated fields, is still scarce in the literature. Some
recent examples include the work of Al Hajj et al. in [18],
where statistical estimation of 5G massive MIMO networks’
exposure using stochastic geometry in mmWave bands is
carried out. Namely, in [18], the stochastic input parameters
are exponential and gamma distribution for antenna and
channel gain, respectively. +erefore, since stochastic de-
termination of electric field radiated by a base station an-
tenna above a multilayered ground and incorporating the
ground parameters as random variables has not yet been
reported to the best of the authors’ knowledge, the analysis
presented in this paper serves as an opener to the subject.

+e motivation for this research arises from the practical
on-site situations when engineers work in a realistic envi-
ronment, outside the lab. In such environments some of the
parameters, which are crucial for electric field calculation,
are difficult to measure, e.g., antenna height, soil structure,
thickness of soil characteristic layers, their relative electric
permittivities, and conductivities. Usually, such input pa-
rameters are prescribed with some fixed expected/average
values according to the in-situ measurements and delivered
technical data. Consequently, the deterministic computa-
tions of radiated electric field lead to fixed output value
without the information about the field distribution or
confidence intervals, thus limiting the knowledge about the
field level. +erefore, the goal of this analysis is to investigate
the most likely electric field radiation level in case of
maximum transmitted power and its confidence intervals
when certain input parameters cannot be prescribed with
fixed values. In other words, the aim is to obtain the sto-
chastic mean and standard deviation of the output field level,

as well as the impact of input parameters on the total electric
field.

+e single electric field computation is based on deter-
ministic model which considers the incident and reflected
ray, respectively, in the far field zone above the two-layered
half-space media. +e influence of nonhomogeneous lower
medium is taken into account via both Fresnel plane wave
reflection coefficient and simplified reflection coefficient
stemming from Modified Image +eory Method [19]. Based
on the chosen analytical model, the following input pa-
rameters are represented as random variables: antenna
height, thickness of the upper ground layer, relative con-
ductivity, and permittivity of both ground layers. Bymeans of
numerical stochastic methods, Monte Carlo and Stochastic
Collocation, the uncertainties are propagated from the input
parameter set to the output electric field, thus computing its
expectation and variance. Due to the nonintrusive nature of
the chosen stochastic methods, the deterministic electric field
computation is considered as a black box. Furthermore,
sensitivity analysis is carried out to investigate the impact of
the input parameters on output field variance.

+e rest of the paper is organized as follows: deter-
ministic field computation is described in Section 2. Sto-
chastic Collocation and Monte Carlo methods are described
in Section 3, while Section 4 presents the procedures for
sensitivity analysis. Numerical results are presented in
Section 5, followed by discussion in Section 6. Finally,
concluding remarks are given in the last section.

2. Deterministic Modelling of Electric Field

Geometry of interest is a BSA system radiating over a
multilayered ground. +e ground consists of two layers
where the thickness of upper layer is defined as d1 and the
thickness of bottom layer, d2 is infinite. Each layer is pre-
scribed with the corresponding electric conductivity (σ1 and
σ2) and relative electric permittivity (ε1 and ε2) (Figure 1).

+ere are several approaches to calculate radiated
electric field at high frequencies and the review of the most
used techniques can be found elsewhere, e.g., in [20]. +e
simplest approaches to calculate the total field (ETOT) ac-
count for incident ray only (Ei), while some techniques
include reflections (Er) with different approximations. As an
example, according to regulations in [4], approximation of
antenna insulated in free space is officially used to obtain
radiated electric field while reflected field components are
neglected.

Considering the defined antenna height (Ah � 20m), and
operating frequency, (f� 936.8MHz), as well as the fact that
maximum antenna dimension is approximately 2m, it is
assumed that all calculation points in this research are in far
field area [4, 6]. +erefore, the following relation for the
electric field magnitude in free space can be used [8]:

E �

�����������������
30 · N · EIRP · 10G/10



r
, (1)

where EIRP stands for effective isotropic radiated power,G is
antenna gain expressed in dB, N is the number of active
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channels (N� 1), and r is the distance from the antenna.
Note that this relation is the official relation used from far
field computation in practical engineering studies [21].

Since in this paper both the incident and the reflected
rays are taken into consideration for the total field com-
putation, the final expression assumes the summation of the
incident and reflected field as follows:

ETOT �

�������

E
2
i + E

2
r



. (2)

Note that both incident and reflected field components
Ei and Er are computed by means of an approximate formula
(1) and the field reflected from the interface is determined by
using the corresponding reflection coefficient, as reported
elsewhere, e.g., in [19, 22].

It is worth emphasizing that the multilayered lossy half-
space is taken into account by two approaches: Fresnel
reflection coefficient model (FRM) and a more simplified
reflection coefficient arising from Modified Image +eory
method (MIT) [19].

+e reflection coefficient for two-layered media Γr is
given by the following expression [23]:

Γr �
R02 + R12 · e

− j2βd1 · cos ϑi−01( )

1 + R02 · R12 · e
−j2βd1 · cos ϑi−01( )

, (3)

where Rmn stands for the reflection coefficient between the
two media (indexed bym and n) computed either with FRM
or MIT model. Indices 0, 1, and 2 stand for air, 1st ground
layer, and 2nd ground layer, respectively.+e incidence angle
between the air and 1st layer is denoted by θi-01 while β is the
phase propagation constant for air, β2 �ω2μ0ε0. +e angular
frequency is denoted by ω.

In particular, the reflection coefficient Rmn between the
two media according to Fresnel approximation for trans-
verse magnetic polarization is given by [19, 24]

R
FRM
mn �

Zm · cos θi−mn(  − Zn · cos θt−mn( 

Zm · cos θi−mn(  + Zn · cos θt−mn( 
, (4)

where Zm and Zn stand for the impedance of upper and
lower medium, respectively. θi-mn and θt-mn are the inci-
dence and transmission angles with respect to the normal of
the interface between the media m and n.

+e general expression for the media impedance is
defined as follows:

Zm �

���������
jμmω

σm + jωεm



. (5)

Unlike FRM, the model stemming from the Modified
Image +eory neglects the angle of incidence and angle of
reflectance, i.e., the incident wave is perpendicular with

y

z

AIR

Ah

d1 εr1,σ1,μr1 = 1

εr2,σ2,μr2 = 1

r

ETOT (r)

Figure 1: Base station antenna above a two-layered lossy ground. +e red arrow represents the incident ray, blue arrows represent the ray
reflected from the 1st ground layer, and green arrows represent the ray reflected from the 2nd ground layer.
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respect to the media surface (θi � 0). +us, the reflection
coefficient Rmn between the two media according to MIT is
given by [23]

R
MIT
mn �

ε(m)
eff − ε(n)

eff

ε(m)
eff + ε(n)

eff

, (6)

where εeff is the refraction index of the medium:

ε(m)
eff � ε(m)

r − j
σm

ωε0
. (7)

Hence, the total reflection coefficient Γr stemming from
MIT is analog to (3).

As it is visible from (1)–(7), the deterministic model is
rather simple, i.e., it is based on the extension of the well-
known ray-tracing algorithm (mostly dealing with free
space, or perfectly conducting half-space, or half-space, at
best) with reflection coefficient approximation (RCA)
arising from Fresnel plane wave approach and Modified
Image +eory (MIT), respectively, to account for the
reflecting effects of a layered medium. As such a deter-
ministic model is entirely analytical in nature, the total
computational cost is negligible when compared to highly
sophisticated full-wave models based on numerical methods.

3. Methods forUncertaintyQuantification (UQ)

+e first step in the stochastic part of the analysis is to
determine the input parameters exhibiting the random
nature which are, in this case, antenna height, the thickness
of the first layer, relative permittivities, and electric con-
ductivities of both ground layers.+ese input parameters are
grouped in the vector of random input parameters X� [Ah,
d1, ε1, σ1, ε2, σ2]. Each input parameter is prescribed with the
corresponding uniform distribution.

Uncertainty from the input parameter set is propagated
to the output of interest and uncertainty quantification (UQ)
of electric field is carried out. Stochastic moments (e.g.,
expectation, variance, and standard deviation) of the electric
field are computed via two stochastic methods: Monte Carlo
(MC) and Stochastic Collocation (SC).

3.1. Monte Carlo. MC is a simple and robust method based
on statistical analysis of a large number of deterministic
realizations of the output of interest. +e mean and the
variance of the output electric field are thus obtained by
using the following formulas [25]:

MC electric field expectation:

EMC ≈
1

NMC



NMC

i�1
Ei. (8)

MC electric field variance:

V(E)MC ≈
1

NMC − 1


NMC

i�1
Ei − EMC( 

2
, (9)

where Ei is the i-th out of the NMC deterministic realizations
of the model defined by equation (3).

MC convergence does not depend on the stochastic
dimensionality of the model (which is 6 in this case) but only
on total number of deterministic simulations (NMC).
However, NMC needs to be quite large, very often up to the
order of 104 and higher, which presents a computational
burden when underlying deterministic models require long
execution time. +erefore, some other stochastic methods
are being investigated in order to increase the computational
efficiency.

3.2. Stochastic Collocation. SC is a sampling-based method
where the focus is to utilize a polynomial expansion of the
model output in the domain defined by probability density
functions of stochastic input parameters [26]. +e ap-
proximation for the output electric field is thus defined as
follows:

E Ah, d1, ε1, σ1, ε2, σ2(  � 

NSC

i�1
Li Ah, d1, ε1, σ1, ε2, σ2(  · Ei,

(10)

where Li(Ah, d1, ε1, σ1 ε2, σ2)� Li( X) is the multivariate basis
function, Ei is the i-th output of deterministic model defined
by eq. (3), and NSC is the total number of deterministic
simulations. +e multivariate basis function Li( X) is built by
using the sparse grid algorithm with Lagrange basis func-
tions in 1-dimensional case [26].

When the polynomial expression from equation (10) is
plugged into a well-known formula for stochastic moments
(mean, variance, etc.) [27], the final expressions for the
electric field stochastic moments are as follows [26].

SC expectation of electric field:

ESC ≈ 
n

i

Ei · ωi. (11)

SC variance:

V(E)SC ≈ 

n

i

Ei( 
2

· ωi − ESC( 
2
. (12)

Here, ωi denotes the weight of the i-thmultidimensional
simulation computed as [26]

ωi � 
X

Li(X) · pdf(X)dX, (13)

where pdf( X )� k pdf(Xk) is the joint probability density
function. +is integral is evaluated numerically. In this
paper, the numerical integration is done according to the
Clenshaw–Curtis integration rule [16].

Stochastic Collocation can be regarded as a “smart
Monte Carlo” since it combines MC’s nonintrusive nature
with a functional approximation of the output of interest
thus enabling a rather small number of deterministic real-
izations of the model for accurate UQ. More details about
the mathematical background can be found elsewhere, e.g.,
in [26].
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3.3. Standard Deviation and Confidence Intervals
Computation. Regardless of the method of choice for the
UQ, the standard deviation is computed as the square root of
variance [27]:

Std(E) �
�����
V(E)


. (14)

+e standard deviation is important for the crude es-
timation of confidence intervals. +erefore, the confidence
intervals used in this paper (CI) are defined as

CI � E ± 2 · Std(E), (15a)

CI � E ± 3 · Std(E), (15b)

for 95% or 99% level of confidence, respectively.
Confidence intervals play an important role in the

comparison with reference levels and basic restrictions
defined by ICNIRP and IEEE since they define the range in
which the output value is expected with a certain level of
confidence. Also, confidence intervals defined as in equa-
tions (15.a) and (15.b) are of particular importance since
calculation results in technical reports are mostly presented
with the precision of 95% or 99.7%, respectively [10].

4. Sensitivity Analysis

Sensitivity analysis (SA) is a process of ranking the input
parameters from the least to the most significant ones with
respect to the impact that each parameter’s variability has on
the output variance [28]. Two approaches are described in
this section, the one-at-a-time (OAT) and Analysis of
Variance (ANOVA). It is worth noting that both ANOVA
and OAT SA are independent on the underlying UQ
method; namely, the conditional variances, expectations as
well as one-dimensional variances used in the computation
can be obtained with either MC or SC method.

4.1. “One-at-a-Time” (OAT) Approach. “One-at-a-time”
(OAT) approach is a simple SA approach that compares the
variances stemming from univariate stochastic problems, V

[Y | Xk], k� 1, 2, ..., n, (n� 6) [16]. Univariate stochastic
model is 1-dimensional, i.e., only one input parameter ex-
hibits random nature (n� 1) while others are kept constant.
Instead of variances, standard deviations of univariate cases
may be compared, too. +e main advantage of this approach
is that it enables rather quick parameter ranking. When
stochastic collocation is used as a method for variance
computation, the OAT is computationally inexpensive when
compared to MC method. Namely, SC for 1-dimensional
problem requires only few deterministic simulations while
MC always assumes large NMC, regardless of the stochastic
dimensionality.

4.2.Analysis ofVariance (ANOVA)Approach. +e drawback
of the OAT approach is a possibility of masking out the
impact that parameter’s interactions have on the output
variance. +erefore, the ANOVA based on Sobol’s indices
computation is often used in parallel [29]. +e Sobol indices
are based on Hoeffding’s function decomposition of total
variance into terms pertaining to variances of 1-dimen-
sional, 2-dimensional, up to (n-1)-dimensional cases.

Hence, the first-order sensitivity index S1(Xk) gives in-
formation about the impact of the k-th input parameter on
the total variance [28]:

S1 Xk(  �
VXk

EX∼k E | Xk(  

V(E)
k � 1, 2, . . . n, (16)

where <E>X∼k(E | Xk) is the conditional expectation for the
output electric field. Namely, there are n-1 such expecta-
tions: the k-th input parameter is kept at its constant value
while the expected E field is computed for (n-1)-dimensional
stochastic model. +e tilde sign “∼” stands for “all except”.
After the computation of (n-1) conditional expectations,
their variance is computed, i.e., VXk(·). +e V(E) stands for
the electric field variance in n-dimensional case (total
variance).

+e second-order sensitivity index gives information
about the impact of the interaction between the i-th and j-th
input parameters on the total variance:

S2 Xi, Xj  �
VXiXj

EX∼i,j E | Xi, Xj   − VXi
EX∼i E | Xi(   − VXj

EX∼j E | Xj  

V(E)

i � 1, 2, . . . n,

j � 1, 2, . . . n, i≠ j.

(17)

Since the computation of higher order indices (2nd, 3rd, 4th,
. . .) may present a certain computational burden for the
postprocessing, the total effect sensitivity index ST(Xk) is
computed instead, giving the information about the impact of
the k-th input parameter along with its interaction with all
other input parameters [28]:

ST Xk(  � 1 −
VX∼k

EX∼k E | Xk(  

V(E)
k � 1, 2, . . . n. (18)

If S1(Xk) and ST(Xk) have the same value, then the in-
teraction between input parameters does not impact the
output variance at all.
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5. Numerical Results

Base station antenna system radiating over a multilayered
ground depicted in Figure 1 is considered. +e output an-
tenna power (EIRP) is set to 58.45 dBmW and operating
frequency is 936.8MHz which is the common frequency for
2G and 3G technology (GSM and UMTS). Antenna is
modelled as a panel antenna whose horizontal and vertical
radiation pattern are obtained by using the software package
NEC (Numerical Electromagnetic Code) [30] (Figure 2).

In practice it is difficult to exactly determine all input
parameters since some values are measured in-situ, there-
fore, specific uncertainties of measured parameters are ex-
pected. +erefore, for the purpose, the main antenna as well
as ground layers’ parameters are modelled as random var-
iables (RVs) uniformly distributed around their respective
averages. +e values are presented in Table 1.

+e rest of the section is organized as follows: firstly, the
convergence of MC and SC methods is presented, and the
two methods are compared for the chosen scenario. After
that, the UQ of the electric field is presented, including the
estimation of confidence intervals. Finally, the results of the
sensitivity analysis are given.

5.1. Convergence of SC andMCMethods. +e convergence of
MC and SCmethods is tested by changing the sizeN of input
sets also referred to as the Design of Experiment (DoE),
where N � NMC or NSC for MC or SC method, respectively.
Input simulation points are n-dimensional, e.g., n� 6 for full
stochastic model and n� 1 for one-dimensional stochastic
model (univariate cases, i.e., the case when only one input
parameter is random variable, and the rest are fixed at their
respective average values).

Generally, the convergence of MC method depends only
on NMC, hence, DoEs for 6-dimensional and 1-dimensional
stochastic models are with NMC � 1.000, 10.000, and 100.000

simulation points in either case. It is assumed that stochastic
mean and standard deviation obtained with NMC � 100.000
represent the true stochastic mean and standard deviation
values.

On the other hand, NSC depends both on dimensionality
of the stochastic model and on number of points used for the
numerical evaluation of the integral in equation (13). For 1-
dimensional cases, the size of the DoE is set to 3, 5, 9, and 17
while for 6-dimensional stochastic model NSC � 13, 85, and
1457.

+e convergence of MC and SC methods for 6-di-
mensional stochastic model is depicted in Figure 5, Figure 3
and 4 for both Fresnel reflection coefficient and Modified
Image +eory approaches.

+e convergence of MCmethod is rather satisfactory for
computation of both stochastic mean and standard deviation
in FRM and MIT models. However, SC method exhibits
problems with convergence when computing the standard
deviation of the electric field. +e convergence is not ac-
complished for chosen DoEs. To improve the convergence,
NSC should be increased over 1457 which is no longer ef-
ficient with respect to MC which accomplishes convergence
for NMC � 1.000.

It is worth noting that SC convergence for standard
deviation tends to improve when observation points are
moved further away from the antenna. Namely, at distances
over appx. 650m away from the antenna, standard deviation
obtained by SC method converges. However, these values
overestimate or underestimate the true standard deviation
with relative absolute error up to 22% for FRM model. In
case of MIT model, the standard deviation obtained by SC
method overestimates the true standard deviation up to 35%.

In order to investigate the reason for poor SC conver-
gence, the convergence of standard deviation for six 1-di-
mensional cases is depicted in Figure 5 for FRM model. +e
MC method, again, shows good results at NMC � 1000.

+e standard deviation of electric field obtained by SC
method for univariate cases when Ah, σ1, εr2 and σ2 (antenna
height, 1st layer conductivity, 2nd layer relative permittivity,
and 2nd layer conductivity, respectively), are set as random
variables one-at-a-time, exhibits good convergence even at
lowest number of simulation points (NSC � 3). It can be
concluded that the variation of these input parameters does
not have any effect on the convergence of the total standard
deviation, i.e., the standard deviation of 6-dimensional
stochastic model.

When only third input parameter, i.e., the relative
permittivity of 1st ground layer (εr1), is RV, the SC method
converges to correct value atNSC � 9 which is relatively small
number of simulation points. However, if 9 collocation
points are used in each of 6 dimensions, then for 6-di-
mensional stochastic model, the total NSC is 1457 which is
more than NMC � 1000.

Finally, when the 1st layer thickness (d1) is considered as
the only RV in the input parameter set, the convergence is
accomplished at NSC � 17 collocation points which is effi-
cient just for univariate stochastic model.

+e same analysis is valid for MIT model of field
computation, too.

90

180

0

-10

-20

-3

dB

270

Figure 2: Horizontal (blue) and vertical (red) antenna patterns.
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5.2. Uncertainty Quantification of Electric Field Strength.
+e electric field expectation and confidence intervals are
computed by using MC method only, since SC method did
not show high reliability in computation of standard de-
viation at lowNSC level. As mentioned above, the size ofNMC
(1.000, 10.000, or 100.000) has no significant impact on

electric field expectation and standard deviation, respec-
tively. +erefore, the uncertainty quantification is carried
out with 1.000 sets of input parameters (Figures 6 and 7).

Deterministic values of electric field obtained by using
FRM and MITmodels differ to a certain extent, and this has
been documented elsewhere, e.g., in [22, 23]. Since input
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Figure 3: +e convergence of MC and SC methods in computation of expected electric field (a) and its standard deviation (b). +e
deterministic computation is based on Fresnel reflection coefficient approach (FRM).

Table 1: Input parameters.

[min, avg, max] Avg±CV (%)
Antenna height Ah (m) [19, 20, 21] 20m± 5%
1st layer thickness d1 (cm) [15, 20, 25] 20 cm± 25%
1st layer relative permittivity εr1 [12, 15, 18] 15± 20%
1st layer electric conductivity σ1 (mS/m) [0.8, 1, 1.2] 1mS/m± 20%
2nd layer relative permittivity εr2 [3.2, 4, 4.8] 4± 20%
2nd layer electric conductivity σ2 (S/m) [0.04, 0.05, 0.06] 50mS/m± 20%
min and max stand for the lower and upper boundaries, respectively, of the uniform distribution; avg and CV stand for the average value and coefficient of
variation.
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parameters are modelled as RVs, it is of particular interest to
investigate to which extent the confidence intervals (CI)
obtained with FRM and MIT models overlap.

At distances shorter than 200m, CI stemming from FRM
and MIT approaches overlap. However, as the distance
increases up to 750–800m, confidence intervals differ at
some observation points. Finally, at distances above
750–800m, confidence intervals overlap again, and electric
field expectations obtained by FRM and MIT models
approach to each other. It is worth noting that the width of
CI does not change to a greater extent as the distance
increases.

Although the width of CI is practically constant, the
expectation for field level fluctuates between 100mV/m and
500mV/m for FRMmodel and 50mV/m and 700mV/m for
MITmodel. +erefore, it is useful to compare the half-width
of the confidence intervals with the expected electric field
value at each observation point of interest by computing the
following metric:

κα(%) �
α · Std(E)

E
· 100, α � 2 or 3. (19)

+e results for κ are depicted in Figure 8.
Considering the confidence interval with 95% level of

precision i.e., ± 2Std(E), the largest variability does not
exceed 107% of expected field value no matter which cal-
culation model is used, MIT or FRM, respectively.

In case of confidence level of 99.7% i.e., ± 3Std(E), the
variability does not exceed the 152% of expected field value,
no matter which calculation model is used, MIT or FRM,
respectively.

5.3. Sensitivity Analysis of Input Parameters. Using the
Global Sensitivity Analysis Toolbox (GSAT) [31], ANOVA
SA approach described in Section 4 is carried out. +e SA
analysis for FRM and MIT models is depicted in Figures 9
and 10, respectively.
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Figure 4: +e convergence of MC and SC methods in computation of expected electric field (a) and its standard deviation (b). +e
deterministic computation is based on Modified Image +eory approach (MIT).
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Starting with the first-order sensitivity index for FRM
model (S1 in Figure 9(a)), it can be concluded that antenna
height is the parameter with the highest impact on the
output electric field.+is is a valid conclusion for most of the
observation points of interest.

However, the summation of all indices (first, second, and
higher, up to n-1� 5) must be equal to 1 or 100%, i.e.,
iS1 +jS2 +kS3 +iiS4 +jjS5�1. Since the summation
of all six S1 indices is not equal to 1 at each observation point
of interest, the first-order sensitivity indices are clearly not
sufficient for SA. +is indicates that the higher order sen-
sitivity indices do have significant values, higher than 0.
+erefore, a total effect sensitivity index (ST) is computed
for each input parameter (Figure 9(b)).

Starting with the first input parameter, the 1st order
sensitivity index S1(X1) and total effect sensitivity index
ST(X1) have approximately the same value. +is means that
the antenna height does not have any interactions with other
input parameters which may have some significant impact
on the output field variance.

On the other hand, the values of total effect sensitivity
index ST(X2) and ST(X3) differ greatly from the corre-
sponding first-order sensitivity indices S1(X2) and S1(X3),
respectively. Moreover, ST(X2) and ST(X3) have appx. the
same value. +is leads to the conclusion that, although input
parameters 2 and 3 (1st layer thickness and 1st layer per-
mittivity) do not impact directly on the output variance,
their interactions in the mathematical model cause the
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Figure 5:+e convergence of MC and SCmethods in computation of electric field standard deviation, Std(E) (V/m). Six univariate cases are
depicted, i.e., when only one input parameter is random at a time: (a) antenna height–Ah, (b) 1st layer thickness–d1, (c) 1st layer relative
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computation is based on Fresnel reflection coefficient approach (FRM).
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variability in the electric field output, therefore, their un-
certainties should not be neglected.

+e rest of the input parameters do not impact the
output variance significantly.+eir impact is less than 5% for
all observation points of interest.

It is worth noting that Figure 5, besides the convergence
of the SC and MC methods, contains the information about
the OATsensitivity analysis for FRMmodel. Comparing the
standard deviations in plots a) – f ) in Figure 5, it can be
concluded that antenna height, 1st layer depth, and 1st layer
relative permittivity are the first three most significant input
parameters. +eir order of significance depends on the
observation point of interest. However, OATcannot give the
information if the impact originates from the input pa-
rameter sole variability or its interaction with another
parameter.

+e SA analysis with both ST and S1 sensitivity indices
for MIT model is depicted in Figure 10.

+e conclusions are the same as for FRM model: the
variability of antenna height has the highest impact on the
total variance at certain observation points of interest, while
at other points the mutual interaction between the 1st layer
depth and 1st layer relative permittivity prevails. It is in-
teresting how the impact of the antenna height, X1 alone and
the impact originating from the interaction of the other two
parameters, [X2&X3], changes from one observation point to
another. For smaller distances, the impact switches from X1
to [X2&X3], but after approximately 500m the interaction
between X2 and X3 is completely dominant and antenna
height loses its significance.

6. Discussion

Stochastic-deterministic approach to computation of radi-
ated electric field level is presented in this paper. +e in-
herent uncertain nature of some input parameters is
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Figure 9: 1st order sensitivity index (a) and total effect sensitivity index (b) for six input parameters. +e computation model is based on
FRM approach.
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considered, and the range of possible field levels is computed
at different distances from the antenna. Two approaches for
uncertainty quantification (UQ) of the output field are
presented: one is a traditional and robust Monte Carlo
method, and the second method is Stochastic Collocation
stemming from spectral numerical approaches. Finally, the
framework for sensitivity analysis based on the analysis of
variance (ANOVA) is outlined, independent of the chosen
UQ method. Beside the proposed methodology for the
stochastic-deterministic modelling of field levels radiated by
BSA, the results of stochastic and sensitivity analysis are
depicted. +e stochastic analysis is carried out as a pre- and
postprocessing of the input and output samples, while a
single electric field value is computed in a deterministic way.

Firstly, deterministic techniques for BSA far field
computation include numerous formulations, e.g., a free
space approximation, antenna above the perfectly con-
ducting ground, ground modelled as a homogeneous half-
space with finite conductivity, multilayered ground. Each

variant accounts for new parameters from the real exposure
scenarios and thus different approximations. Interestingly,
many international standards deal with free space approx-
imation, or perfectly conducting (PEC) ground. Homoge-
neous half-space scenarios have still not been investigated to
a greater extent, particularly layered half-space. Since the
main feature of the paper is stochastic-deterministic analysis
of the problem, the use of relatively simple analytical model
of base station radiation in a deterministic sense is a
plausible choice as an opener to the subject, while more
sophisticated deterministic models are likely to be dealt with
in future work.

Furthermore, to consider the presence of a two-layered
ground, the deterministic model in this paper takes ad-
vantage of Fresnel reflection coefficient and another, sim-
plified reflection coefficient stemming from the Modified
Image +eory, FRM, and MITmodels, respectively [19, 23].
Namely, the idea is to recognize the exposure scenarios in
which the simplified reflection coefficient may be used
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Figure 10: 1st order sensitivity index (a) and total effect sensitivity index (b) for six input parameters. +e computation model is based on
MIT approach.
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instead of FRM one. Results show that the two approaches
may be considered as equivalent for distant observation
points while for closer observation points there is a certain
under- or overestimation of the referent values.

As for the stochastic part of the problem, the input
parameters exhibiting the random nature are dictated by the
deterministic model itself. Nevertheless, their choice is also
based on experience from realistic scenarios in engineering
practice. Hence, input parameters exhibiting random nature
and their corresponding coefficients of variation (CV) are
chosen as follows: antenna height (CV� 5%), thickness of
the surface ground layer (CV� 25%), surface ground layer
relative electric permittivity (20%) and conductivity (20%),
2nd ground layer relative electric permittivity (20%) and
conductivity (20%). It is worth noting that additional input
parameters whose inherent uncertainty may affect radiated
field levels (e.g., the roughness of the surface layer) can be
considered in future investigation, however, the determin-
istic model should be chosen accordingly. Once the random
input parameters are determined, the proposed stochastic-
deterministic model is used to explore of a complete input
parameter space instead of only its average or extreme values
(i.e., average, minimal, or maximal input parameter values)
thus leading not only to computation of radiated field ex-
pectation but also its confidence intervals.

+e results of stochastic-deterministic analysis presented
in this paper can be summed up as follows. Based on the
results for radiated field uncertainty quantification, it can be
stated with 95% level of precision that the largest variability in
field level does not exceed 107% of its expectation, no matter
which calculation model is used, MITor FRM. If the level of
precision is increased to 99.7% the variability does not exceed
the 152% of expected field value, no matter which deter-
ministic calculation model is used. In addition, even with
uncertainty in input parameters, the expected field levels, and
corresponding confidence intervals from FRM and MIT
model do not overlap at observation points positioned close
to antenna, therefore, the stochastic-deterministic models
cannot be considered as equivalent. As distance increases,
however, expectations tend to approach to each other,
therefore, the confidence intervals start to overlap, and the
computation approaches can be considered as equivalent.

Furthermore, sensitivity analysis reveals that three input
parameters have significant impact on the output CI width
while other three can be neglected. Namely, up to ap-
proximately 180m for FRM model and 275m for MIT
model, the domination changes between two groups of
parameters, antenna height being the 1st group while the 2nd
group pertains to 1st layer thickness and its permittivity.
Namely, the variability of 5% in antenna height changes the
relative elevation of the antenna with respect to the point of
interest. +is can lead to significant changes in correlation to
vertical antenna diagram which results in enlarged changes
in electric field strength. However, at distances higher than
180m and 275m for FRM and MITmodels, respectively, the
2nd group becomes dominant and antenna height has no
longer significant impact on field variance.

Hence, regardless of the model (FRM and MIT), the
stochastic-deterministic approach to computing the field

level at larger distances is practically 2-dimensional as there
are only 2 relevant RVs in the input parameter space, the first
layer relative electric permittivity and its thickness. Un-
certainty in the 1st layer thickness and relative electric
permittivity may result in unreliable levels of electric field
strength which imposes problems to reliable compliance to
reference levels defined by standards such as ICNIRP and
IEEE.

Additionally, beside the results obtained by uncertainty
quantification and sensitivity analysis procedures, the aim of
the paper was also to investigate if Monte Carlo method can
be replaced by Stochastic Collocation. +e convergence of
the SC method is satisfactory for computation of electric
field expectation both for 6-dimensional and 1-dimensional
cases. However, the method does not converge fast enough
for variance computation, and consequently, standard de-
viation computation. Namely, to accomplish the conver-
gence, the number of simulations points in 6-dimensional
case has to be larger than 1.000, which is, on the other hand,
enough for MC method also. Nonetheless, given that SC
method generally offers lower computation effort than MC
method, this is worth of future investigation. However,
beside the SC method, other methods exist whose efficiency
is worth investigating which is part of a future work. On the
other hand, future work is likely to deal with more so-
phisticated deterministic models, too.

7. Concluding Remarks

Stochastic-deterministic approach to computation of electric
field radiated by a base station antenna is presented. +e
stochastic approaches in the form of two methods, Monte
Carlo (MC) and Stochastic Collocation (SC), are used as a
wrapper around the deterministic field computation. Within
the framework of deterministic analysis, the total electric
field above a two-layered lossy ground is obtained by
considering the incident and reflected ray in the far field
zone. +e influence of nonhomogeneous lower medium is
taken into account via two approaches: Fresnel plane wave
reflection coefficient (FRM) and simplified reflection coef-
ficient stemming fromModified Image+eory (MIT). Given
that antenna height, relative permittivity, and conductivity
of each ground layer, as well as the thickness of the upper
ground layer are considered as input parameters with in-
herent uncertainty, the electric field mean along with con-
fidence intervals is computed for observation points up to
1 km away from the antenna.

+e results of the stochastic analysis can be summed up
as follows:

(i) +e convergence of MC method is rather satisfac-
tory for computation of both stochastic mean and
confidence intervals for FRM and MIT models,
requiring 1.000 input samples. On the other hand,
to accomplish a satisfactory convergence, SC
method requires more than 1.000 input samples for
computation of confidence intervals which is no
longer efficient with respect to MC method. SC
method is generally more efficient in case of small
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number of input random variables. However, this is
not the case in the presented 6-dimensional sto-
chastic-deterministic model. +erefore, the sto-
chastic analysis of the electric field is carried out by
using MCmethod with 1.000 samples for both FRM
and MIT deterministic models.

(ii) +e width of confidence intervals does not change
with distance from the antenna. As the distance
increases the confidence intervals from FRM and
MIT approaches start to overlap, therefore the two
approaches can be considered as equivalent.

(iii) Furthermore, sensitivity analysis of input parame-
ters has been carried out via one-at-a-time (OAT)
and analysis of variance (ANOVA) approaches. +e
impact of antenna height is dominant at some
observation points up to 250m distance. Although
the 1st layer thickness and 1st layer relative per-
mittivity do not impact directly on the output
variance, their interactions in the mathematical
model have impact on the variability in the electric
field output and this influence is dominant at dis-
tances higher than 250m.+e impact of other input
parameters is less than 5%.+ese results are valid for
both FRM and MIT models.
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