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In this research work, we study two types of fractional boundary value problems for multi-term Langevin systems with
generalized Caputo fractional operators of different orders. 'e existence and uniqueness results are acquired by applying
Sadovskii’s and Banach’s fixed point theorems, whereas the guarantee of the existence of solutions is shown by Ulam–Hyer’s
stability. Our reported results cover many outcomes as special cases. An example is provided to illustrate and validate
our results.

1. Introduction

Fractional order models are more convenient than integer-
order ones as fractional derivatives give superb tools for the
portrayal of memory and inherited processes. Fractional
differential equations (FDEs) have been applied in nu-
merous fields, such as engineering, physical science,
chemistry, financial matters, electrodynamics, aerodynam-
ics, and dynamical systems (see [1–8]).

Some new contributions to Langevin FDEs have been
investigated (see [9–13]) and the references referred to in
that). 'ere are many definitions of fractional integrals and
derivatives, e.g., Riemann–Liouville type, Caputo type,
Hadamard type, Hilfer type, and Erdelyi–Kober type, etc.
With regard to the exciting development of local fractional
calculus, it has been applied to deal with numerous different
nondifferentiable problems in many applied fields (see
[14–16]).

'e generalized Riemann–Liouville definition with re-
spect to another function was first presented by Osler [17].
'en, Kilbas et al. [2] presented important characteristics of
this operator. 'e Caputo version called φ-Caputo fractional
derivative has been introduced by Almeida [18]. Some

amazing properties and generalized Laplace transform for
the same operator were introduced by Jarad and Abdel-
jawad [19]. 'is recently defined fractional operator could
model more precisely the process utilizing differential
kernel. In order to evolve these definitions, special kernels
and some kinds of operators are selected to apply on
FDEs; for more details, we refer to some recent results
associated with this development (see [20–29]).

In 2018, Almeida et al. [30] considered the following
φ-Caputo type FDE with initial conditions:

C
D

α;φ
a+ υ(ρ) � g(ρ, υ(ρ)), ρ ∈ [a, b],

υ(a) � υa, υ(k)
φ (a) � υk

a, k � 1, . . . , n − 1.

⎧⎪⎨

⎪⎩
(1)

Ahmad and Nieto [31] considered the following Caputo-
type Langevin FDE with boundary conditions:

C
D

α C
D

κ
+ λ υ(ρ) � g(ρ, υ(ρ)),

υ(0) � c1, υ(1) � c2.

⎧⎨

⎩ (2)

In 2020, Laadjal et al. [32] studied a Caputo-type
multiterm Langevin FDE with boundary conditions of the
form:
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C
D

α C
D

κ
+ λ υ(ρ) − 

m

i�1
ξi

C
D

α C
D

κi + λi υ(ρ) � g(ρ, υ(ρ)), υ(0) � υφ′(0) � υ(1) � 0. (3)

In this work, we study two classes of generalized Caputo
Langevin equations with two various fractional orders. 'is
work is inspired by the recent works of Laadjal et al. [32] and
Almeida et al. [30]. Precisely, we consider the following
Langevin-type fractional differential problems (FDPs):

C
D

α;φ C
D

κ;φ
+ μ υ(ρ) � g(ρ, υ(ρ)),

υ(0) � υφ′(0) � υ(1) � 0,

⎧⎪⎨

⎪⎩
(4)

C
D

α;φ C
D

κ;φ
+ μ υ(ρ) − 

m

i�1
ξi

C
D

α;φ C
D

κi;φ + μi υ(ρ) � g(ρ, υ(ρ)), υ(0) � υφ′(0) � υ(1) � 0, (5)

where ρ ∈ [ � [0, 1], 0< κ1 < . . . < κm ≤ 1, 1< κ≤ 2, 0< α
≤ 1, 1≤ κ − κi < 2, (i � 1, 2, . . . , m), m ∈ N, ξi, μi ∈ R, the
symbol CDθ;φ denotes the generalized fractional derivative
in the Caputo sense of order θ ∈ α, κ, κi , and
g: [ × R⟶ R is a given continuous nonlinear function.

Here, we investigate the existence and uniqueness of
solutions for FDPs (1.4) and (1.5) involving generalized
Caputo fractional derivatives of various orders. Moreover,
the guarantee of the existence of solutions is proved by UH
stability. 'e studied results expand and generalize many
results by selecting special cases of the φ function.

'e paper is organized as follows: In Section 2, we give
some definitions and lemmas that are used in the research
paper. Section 3 derives equivalent fractional integral
equations to the linear variants of Langevin FDPs (1.4) and
(1.5). Section 4 deals with the qualitative analysis of proposed
problems. In Section 5, we give an example to substantiate
the main outcomes.

2. Preliminaries and Lemmas

We are beginning this portion by endowment with some
essential definitions and results required for forthcoming
analysis.

We consider the Banach space C([,R) with the norm
‖υ‖∞ � max |υ(ρ)|, ρ ∈ [ .

Let υ: [⟶ R be an integrable function and
φ ∈ Cn([,R) an increasing function such that φ′(ρ)≠ 0, for
any ρ ∈ [.

Definition 1 (see [2]). 'e φ-Riemann–Liouville fractional
integral of a function υ of order θ is described by

I
θ;φ
a+ υ(ρ) �

1
Γ(θ)


ρ

a
φ′(ς)(φ(ρ) − φ(ς))θ− 1υ(ς)dς. (6)

Definition 2 (see [2]). 'e φ-Riemann–Liouville fractional
derivative of a function υ of order θ is described by

D
θ;φ
a+ υ(ρ) �

1
φ′(ρ)

d

dρ
 

n

I
n− θ;φ
a+ υ(ρ), (7)

where n � [α] + 1, n ∈ N.

Definition 3 (see [18]). 'e φ-Caputo fractional derivative of
a function υ ∈ Cn([,R) of order θ is described by

C
D

θ; φ
a+ υ(ρ) � I

(n− θ);φ
a+ υ[n]

φ (ρ), (8)

where υ[n]
φ (ρ) � (1/φ′(ρ)d/dρ)nυ(ρ) and n � [α] + 1, n ∈ N.

Lemma 1 (see [2, 18]). Let r1, r2 > 0. ;en,

(1) Ir1;φ
a+ (φ(ρ) − φ(a))r2− 1(ρ) � Γ(r2)/Γ(r1 + r2)(φ(ρ)

− φ(a))r1+r2− 1

(2) CDr1;φ
a+ (φ(ρ) − φ(a))r2− 1(ρ) � Γ(r2)/Γ(r2 − r1) (φ

(ρ) − φ(a))r1+r2− 1

(3) CDr1;φ
a+ (φ(ρ) − φ(a))k(ρ) � 0, for r1 > k ∈ N

Lemma 2 (see [18]). If υ ∈ Cn([,R) and r1 ∈ (n − 1, n), then

(1) Ir1;φC
a+ Dr1;φ

a+ υ(ρ) � υ(ρ) − 
n− 1
k�0 υ

[n]
φ (a+)/ k!(φ(ρ) −

φ(a))k.

In particular,
if r1 ∈ (0, 1), we have

I
r1;φC
a+ D

r1;φ
a+ υ(ρ) � υ(ρ) − υ(a). (9)

If r1 ∈ (1, 2), we have

I
r1;φC
a+ D

r1;φ
a+ υ(ρ) � υ(ρ) − υ(a) − υφ′(a)(φ(ρ) − φ(a)). (10)

Moreover, if υ ∈ C([,R), then
C
D

r1;φ
a+ I

r1;φ
a+ υ(ρ) � υ(ρ). (11)

Lemma 3 (see [18]). Let 0< θ< 1. ;en, the unique solution
of the following linear FDP is as follows:

C
D

θ;φ
0+ υ(ρ) � g(ρ), ρ ∈ [0, ρ],

υ(0) � υ0,

⎧⎨

⎩ (12)

is obtained as

υ(ρ) � υ0 +
1
Γ(θ)


ρ

0
φ′(ς)(φ(ρ) − φ(ς))θ− 1

g(ς)dς. (13)
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Lemma 4. Let 1< θ< 2. ;en, the unique solution of the
following linear FDP is as follows:

C
D

θ;φ
0+ υ(ρ) � g(ρ), ρ ∈ [0, ρ],

υ(0) � υ0, υφ′(0) � υ1,

⎧⎪⎨

⎪⎩
(14)

is obtained as

υ(ρ) � υ0 +(φ(ρ) − φ(0)) υ1 − I
θ− 1;φ
0+ g(ρ)  + I

θ;φ
0+ g(ρ).

(15)

Proof. In view of Lemma 2, we have

υ(ρ) � c0 + c1(φ(ρ) − φ(0)) +
1
Γ(θ)


ρ

0
φ′(ς)(φ(ρ) − φ(ς))θ− 1

g(ς)dς, (16)

where c0, c1 ∈ R. By conditions of (14), we get c0 � υ0 and

υφ′(ρ) �
υ′(ρ)

φ′(ρ)
� c1 +

1
Γ(θ − 1)


ρ

0
φ′(ς)(φ(ρ) − φ(ς))θ− 2

g(ς)dς, (17)

which implies

c1 � υ1 −
1
Γ(θ − 1)


ρ

0
φ′(ς)(φ(ρ) − φ(ς))θ− 2

g(ς)dς. (18)

Substituting the value of c0 and c1 in (16), we get

υ(ρ) � υ0 +(φ(ρ) − φ(0)) υ1 −
1
Γ(θ − 1)



· 
ρ

0
φ′(ς)(φ(ρ) − φ(ς))θ− 2

g(ς)dς

+
1
Γ(θ)


ρ

0
φ′(ς)(φ(ρ) − φ(ς))θ− 1

g(ς)dς,

(19)

which is identical to (15). □

Theorem 1 (see [33]). Let X is a Banach space. ;e map
P + Q is a λ-set contraction with 0≤ λ< 1, and thus also

condensing, if (i) P, Q: D⊆X⟶ X are operators on X; (ii) P

is λ contractive; (iii) Q is compact.
To apply Sadovskii’s and Banach’s fixed point theorems,

we will suffice herewith reference to [34, 35].

3. The Linear Variant of FDPs (1.4) and (1.5)

'is section deals with the linear variant of FDPs (1.4) and
(1.5). For simpleness, we denote CD

α;φ
0+ and I

α;φ
0+ by CDα;φ

and Iα;φ, respectively.

Lemma 5. Let 1< κ≤ 2, 0< α≤ 1, and f ∈ C(℧,R).;en, υ
is a solution of the following linear Langevin-type FDP:

C
D

α;φ C
D

κ;φ
+ μ υ(ρ) � f(ρ),

υ(0) � υφ′(0) � υ(1) � 0,

⎧⎪⎨

⎪⎩
(20)

if and only if υ satisfies
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υ(ρ) �
1
Γ(α + κ)


ρ

0
φ′(ς)(φ(ρ) − φ(ς))α+κ− 1

f(ς)dς

−
μ
Γ(κ)


ρ

0
φ′(ς)(φ(ρ) − φ(ς))κ− 1υ(ς)dς

+
X

κ
φ(ρ)

X
κ
φ(1)

μ
Γ(κ)


1

0
φ′(ς)(φ(1) − φ(ς))κ− 1υ(ς)dς

−
1
Γ(α + κ)


1

0
φ′(ς)(φ(1) − φ(ς))α+κ− 1

f(ς)dς,

(21)

where Xκ
φ(ρ) � [φ(ρ) − φ(0)]κ.

Proof. Applying the operator Iα;φ on both sides of the first
(20) and using Lemma 2, we get

C
D

κ;φ
+ μ υ(ρ) � I

α;φ
f(ρ) + c0, (22)

where c0 ∈ R.
Next, applying the operator Iκ;φ on both sides of (22)

and using Lemma 2, again, we obtain

υ(ρ) � c1 + c2X
1
φ(ρ) + I

α+κ;φ
f(ρ) − μIκ;φυ(ρ) +

c0

Γ(κ + 1)
X

κ
φ(ρ), (23)

where c1, c2 ∈ R. In view of (23), we have

υφ′(ρ) �
υ′(ρ)

φ′(ρ)
� c2X

1
φ(ρ) + I

α+κ− 1;φ
f(ρ) − μIκ− 1;φυ(ρ) +

c0

Γ(κ)
X

κ− 1
φ (ρ), (24)

where we used the fact that

I
θ;φ

f(ρ) φ
′ �

1
φ′(ρ)

d

dρ
  I

θ;φ
f(ρ) 

�
1

φ′(ρ)

d

dρ
 

1
Γ(θ)


ρ

0
X

θ− 1
φ (ρ, ς)f(ς)dς

�
1
Γ(θ − 1)


ρ

0
X

θ− 2
φ (ρ, ς)f(ς)dς

� I
θ− 1;φ

f(ρ),

(25)

where Xθ
φ(ρ, ς) � φ′(ς)(φ(ρ) − φ(ς))θ. Using the initial

conditions of (23), we find that c1 � c2 � 0 and

c0 �
Γ(κ + 1)

X
κ
φ(1)

μIκ;φυ(1) − I
α+κ;φ

f(1) . (26)

Substituting the values of c0, c1, and c2 in (23), we obtain
the solution given by (21), where

I
r;φ

h(η) �
1
Γ(r)


ρ

0
φ′(ς)(φ(η) − φ(ς))r− 1

h(ς)dς,

r ∈ κ, α + κ{ }, h ∈ f, υ , η ∈ ρ, 1 .

(27)

'e converse follows by direct calculation. Hence, the
proof is achieved. □

Lemma 6. Let 1< κ≤ 2, 0< α≤ 1, 1≤ κ − κi < 2, and
f ∈ C(℧,R). ;en, υ is a solution of the following linear
Langevin-type multiterm FDP:

C
D

α;φ C
D

κ;φ
+ μ υ(ρ) − 

m

i�1
ξi

C
D

α;φ C
D

κi;φ + μi υ(ρ) � f(ρ), υ(0) � υφ′(0) � υ(1) � 0, (28)

if and only if υ satisfies
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υ(ρ) � 
m

i�1

ξi

Γ κ − κi( 

ρ

0
φ′(ς)(φ(ρ) − φ(ς))κ− κi− 1υ(ς)dς

+
1
Γ(α + κ)


ρ

0
φ′(ς)(φ(ρ) − φ(ς))α+κ− 1

f(ς)dς

−
σ
Γ(κ)


ρ

0
φ′(ς)(φ(ρ) − φ(ς))κ− 1υ(ς)dς

+
X

κ
φ(ρ)

X
κ
φ(1)

σ
Γ(κ)


1

0
φ′(ς)(φ(1) − φ(ς))κ− 1υ(ς)dς − 

m

i�1

ξi

Γ κ − κi( 

1

0
φ′(ς)(φ(1) − φ(ς))κ− κi − 1υ(ς)dς⎛⎝

−
1
Γ(α + κ)


1

0
φ′(ς)(φ(1) − φ(ς))α+κ− 1

f(ς)dς,

(29)

where σ � μ − 
m
i�1 ξiμi. Proof. Applying the operator Iα;φ on both sides of the first

(28) and using Lemma 2, we get

I
α;φ C

D
α;φ C

D
κ;φ

+ μ υ(ρ)  − 
m

i�1
ξiI

α;φ C
D

α;φ C
D

κi;φ + μi υ(ρ)  � I
α;φ

f(ρ),

C
D

κ;φ
+ μ υ(ρ) − 

m

i�1
ξi

C
D

κi;φ + μi υ(ρ) � I
α;φ

f(ρ) − συ(ρ) + c0,

(30)

where c0 ∈ R.
Next, applying the operator Iκ;φ on both sides of (30)

and using Lemma 2, again, we obtain

υ(ρ) � c1 + c2[φ(ρ) − φ(0)] + 
m

i�1
ξiI

κ− κi;φ[υ(ρ) − υ(0)]

+ I
α+κ;φ

f(ρ) − σIκ;φυ(ρ) +
c0

Γ(κ + 1)
X

κ
φ(ρ),

(31)

where c1, c2 ∈ R. In view of (31), we have

υφ′(ρ) �
υ′(ρ)

φ′(ρ)
� c2X

1
φ(ρ) + 

m

i�1
ξiI

κ− κi− 1;φ
[υ(ρ) − υ(0)]

+ I
α+κ− 1;φ

f(ρ) − σIκ− 1;φυ(ρ) +
c0

Γ(κ)
X

κ− 1
φ (ρ).

(32)

Using the condition υφ′(0) � 0 in (32) and υ(0) � 0 and
υ(1) � 0 in (31), we find that c1 � c2 � 0 and

0 � 
m

i�1
ξiI

κ− κi;φυ(1) + I
α+κ;φ

f(1) − σIκ;φυ(1) +
c0

Γ(κ + 1)
X

κ
φ(1), (33)

which implies

c0 �
Γ(κ + 1)

X
κ
φ(1)

σIκ;φυ(1) − 
m

i�1
ξiI

κ− κi;φυ(1) − I
α+κ;φ

f(1)⎡⎣ ⎤⎦.

(34)

Substituting the values of c0, c1, and c2 in (31), we obtain
the solution given by (29). 'e converse follows by direct
calculation. Hence, the proof is achieved. □
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4. Qualitative Analysis

4.1.ExistenceandUniquenessResults. 'is subsection proves
the existence and uniqueness results for FDPs (4) and (5) by
applying Sadovskii’s theorem [34] and Banach’s theorem
[35].

Theorem 2 (existence). Let g: ℧ × R⟶ R is a continuous
function. We assume that

(H1): there exists a function p ∈ C(℧,R+) such that
|g(ρ, x)|≤p(ρ), for (ρ, x) ∈ ℧ × R.

(H2): c1: � 2(
m
i�1 |ξi| Xκ− κi

φ (1)/Γ(κ − κi + 1) + |σ|Xκ
φ

(1)/Γ(κ + 1))< 1.
Then, the FDP (1.5) has at least one solution on ℧.

Proof. Let Er be a closed bounded and convex subset of
C(℧,R), where r is a fixed constant. By virtue of Lemma 6,
we define an operator f: C(℧,R)⟶ C(℧,R) as follows:

fυ(ρ) � 
m

i�1
ξiI

κ− κi;φυ(ρ) + I
α+κ;φ

g(ρ, υ(ρ)) − σIκ;φυ(ρ)

+
X

κ
φ(ρ)

X
κ
φ(1)

σIκ;φυ(1) − 
m

i�1
ξiI

κ− κi;φυ(1) − I
α+κ;φ

g(1, υ(1))⎛⎝ ⎞⎠,

(35)

for ρ ∈ ℧. Let us define two operators
F1, F2: C(℧,R)⟶ C(℧,R) by

f1υ( (ρ) � 

m

i�1
ξiI

κ− κi;φυ(ρ) − σIκ;φυ(ρ)

+
X

κ
φ(ρ)

X
κ
φ(1)

σIκ;φυ(1) − 
m

i�1
ξiI

κ− κi;φυ(1)⎛⎝ ⎞⎠,

F2υ( (ρ) � I
α+κ;φ

g(ρ, υ(ρ)) −
X

κ
φ(ρ)

X
κ
φ(1)

I
α+κ;φ

g(1, υ(1)).

(36)

We observe that (Fυ)(ρ) � (F1υ)(ρ) + (F2υ)(ρ), ρ ∈ ℧.
In order to show that F1 + F2 has a fixed point, we prove

that F1 and F2 satisfy the hypotheses of Sadovskii’s theorem.
'is will be provided in several steps: □

Step 1. FEr ⊂ Er.
Let us select r≥ c2/1 − c1, where

c2: � 2‖p‖Xα+κ
φ (1)/Γ(α + κ + 1). For any υ ∈ Er, we have

‖Fυ‖≤ sup
ρ∈℧



m

i�1
ξiI

κ− κi;φ|υ(ρ)| +|σ|I
κ;φ

|υ(ρ)|
⎧⎨

⎩ +
X

κ
φ(ρ)

X
κ
φ(1)

σIκ;φυ(1) + 
m

i�1
ξi


I

κ− κi;φυ(1)⎛⎝ ⎞⎠

+I
α+κ;φ

|g(ρ, υ(ρ))| +
X

κ
φ(ρ)

X
κ
φ(1)

I
α+κ;φ

|g(1, υ(1))|
⎫⎬

⎭

≤ 2‖υ‖ 
m

i�1
ξi



(φ(1) − φ(0))

κ− κi

Γ κ − κi + 1( 
+|σ|

(φ(1) − φ(0))
κ

Γ(κ + 1)
⎛⎝ ⎞⎠ + 2‖p‖

(φ(1) − φ(0))
α+κ

Γ(α + κ + 1)

≤ 2r 
m

i�1
ξi




X
κ− κi

φ (1)

Γ κ − κi + 1( 
+|σ|

X
κ
φ(1)

Γ(κ + 1)
⎛⎝ ⎞⎠ + 2‖p‖

X
α+κ
φ (1)

Γ(α + κ + 1)

� rc1 + c2 ≤ rc1 + r 1 − c1(  � r,

(37)

which implies that (F1 + F2)Er ⊂ Er.
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Step 2. F2 is compact. We note that F2 is uniformly bounded
from Step 1. Let ρ1, ρ2 ∈ ℧ with ρ1 ≤ ρ2 and υ ∈ Er. 'en, we
obtain

F2υ(  ρ2(  − F2υ(  ρ1( 




�
1
Γ(α + κ)


ρ2

0
X

α+κ− 1
φ ρ2, s( g(s, υ(s))ds −

X
κ
φ ρ2( 

X
κ
φ(1)

1
Γ(α + κ)


1

0
X

α+κ− 1
φ (1, s)g(s, υ(s))ds



−
1
Γ(α + κ)


ρ1

0
X

α+κ− 1
φ ρ1, s( g(s, υ(s))ds +

X
κ
φ ρ1( 

X
κ
φ(1)

1
Γ(α + κ)


1

0
X

α+κ− 1
φ (1, s)g(s, υ(s))ds



≤
X

κ
φ ρ1(  − X

κ
φ ρ2( 

X
κ
φ(1)

1
Γ(α + κ)


1

0
X

α+κ− 1
φ (1, s)g(s, υ(s))ds

+
1
Γ(α + κ)


ρ1

0
X

α+κ− 1
φ ρ1, s(  − X

α+κ− 1
φ ρ2, s(  |g(s, υ(s))|ds

+
1
Γ(α + κ)


ρ2

ρ1
X

α+κ− 1
φ ρ2, s( |g(s, υ(s))|ds

≤
φ ρ1(  − φ(0)( 

κ
− φ ρ2(  − φ(0)( 

κ

Γ(α + κ + 1)
(φ(1) − φ(0))

α+κ
‖p‖

+
2‖p‖

Γ(α + κ + 1)
φ ρ2(  − φ ρ1( ( 

α+κ

≤
2‖p‖

Γ(α + κ + 1)
φ ρ2(  − φ ρ1( ( 

α+κ
.

(38)

From the continuity of φ, |(F2υ)(ρ2) − (F2υ)(ρ1)|⟶ 0
as ρ2⟶ ρ1. 'us, F2 is equicontinuous. So, by the Arze-
la–Ascoli theorem, F2(Er) is a relatively compact set.

Step 3. F1 is c contractive. Let υ1, υ2 ∈ Er. 'en, we have

F1υ1 − F1υ2
����

���� � sup
ρ∈℧

| 
m

i�1
ξiI

κ− κi;φ υ1(ρ) − υ1(ρ)  − σIκ;φ υ1(ρ) − υ1(ρ) 
⎧⎨

⎩

+
X

κ
φ(ρ)

X
κ
φ(1)

σIκ;φ υ1(1) − υ1(1)  − 

m

i�1
ξiI

κ− κi;φ υ1(1) − υ1(1) ⎛⎝ ⎞⎠|
⎫⎬

⎭

≤ 

m

i�1
ξi I

κ− κi;φ(s)( (1) υ1 − υ2
����

���� +|σ| I
κ;φ

(s)( (1) υ1 − υ2
����

����

+ σ I
κ;φ

(s)( (1) υ1 − υ2
����

���� + 
m

i�1
ξi


 I

κ− κi;φ(s)( (1) υ1 − υ2
����

����

≤ 2 
m

i�1
ξi




X
κ− κi

φ (1)

Γ κ − κi + 1( 
+|σ|

X
κ
φ(1)

Γ(κ + 1)
⎛⎝ ⎞⎠ υ1 − υ2

����
���� � c1 υ1 − υ2

����
����,

(39)
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which is c contractive since c1 < 1.

Step 4. F is condensing.
Due to the fact that F1 is continuous, a c is a contraction

and F2 is compact, it follows from Lemma 1 that
F: Er⟶ Er with F � F1 + F2 is a condensing onEr. From
the previous arguments, we conclude through Sadovskii’s

theorem that F has a fixed point. As a result, FDP (5) has a
solution on ℧.

'e second result is based on Banach’s fixed point
theorem.

Theorem 3 (uniqueness). Let g: ℧ × R⟶ R is a contin-
uous function, and there exists Lg > 0 such that

g(ρ, x) − g ρ, x
∗

( 


≤ Lg x − x
∗
, ρ ∈ ℧, x, x

∗ ∈ R. (40)

If

σ ≔ c1 +
2Xα+κ

φ (1)

Γ(α + κ + 1)
Lg < 1, (41)

then the FDP (5) has a unique solution on ℧, where c1 is
defined in ;eorem 2.

Proof. We apply Banach’s theorem to prove that F defined
by (35) has a fixed point. For this end, we show that F is a
contraction. Let υ, υ∗ ∈ C(℧,R) and ρ ∈ ℧. 'en,

Fυ(ρ) − Fυ∗(ρ)


≤ 
m

i�1
ξiI

κ− κi;φ υ(ρ) − υ∗(ρ)




+ I
α+κ;φ

g(ρ, υ(ρ)) − g ρ, υ∗(ρ)( 


 +|σ|I
κ;φ υ(ρ) − υ∗(ρ)




+
X

κ
φ(ρ)

X
κ
φ(1)

σIκ;φ υ(1) − υ∗(1)


 + 
m

i�1
ξi


I

κ− κi;φ υ(1) − υ∗(1)


⎛⎝ ⎞⎠

+
X

κ
φ(ρ)

X
κ
φ(1)

I
α+κ;φ

g(1, υ(1)) − g 1, υ∗(1)( 




≤ 2 
m

i�1
ξi




X
κ− κi

φ (1)

Γ κ − κi + 1( 
+|σ|

X
κ
φ(1)

Γ(κ + 1)
⎛⎝ ⎞⎠ υ − υ∗

����
���� + 2

X
α+κ
φ (1)

Γ(α + κ + 1)
 Lg υ − υ∗

����
����

� c1 +
2Xα+κ

φ (1)

Γ(α + κ + 1)
Lg  υ − υ∗

����
����,

(42)

which implies

Fυ − Fυ∗
����

����≤ σ υ − υ∗
����

����. (43)

As σ < 1, it follows that F is a contraction. As a result of
Banach’s theorem, there is a unique fixed point υ ∈ C(℧,R)

such that Fυ � υ. 'erefore, the FDP (5) has a unique so-
lution on ℧. □

Corollary 1 (existence). Let g: ℧ × R⟶ R is a continuous
function, and there exists a function p ∈ C(℧,R+) such that
|g(ρ, x)|≤p(ρ), for (ρ, x) ∈ ℧ × R. If c3 < 1, where
c3 � 2|μ|Xκ

φ(1)/Γ(κ + 1),
then the FDP (4) has at least one solution on ℧.

Corollary 2 (uniqueness). Let g: ℧ × R⟶ R is a con-
tinuous function, and there exists Mg > 0 such that

g(ρ, x) − g ρ, x
∗

( 


≤Mg x − x
∗
, ρ ∈ ℧, x, x

∗ ∈ R.

(44)

If Λ2 < 1, where Λ2 � c3 + 2Xα+κ
φ (1)/Γ(α + κ + 1)Lg,

then the FDP (4) has a unique solution on ℧, where c3 is
defined in Corollary 1.

Remark 1. Proofs of Corollaries 1 and 2 can be obtained
easily using the same arguments as in the previous theorems.
'us, we omit the details.

Remark 2. If φ(ρ) � ρ, then the obtained results on FDP
(1.5) include the results of Laadjal et al. [32].

Remark 3. 'e Langevin FDPs (4) and (5) are new to the
literature on Langevin-type multiterm FDPs and include
many problems, as a special case, for φ(ρ) � log ρ and
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φ(ρ) � ρρ; our problems are reduced to Hadamard-type
problems and Katugampola problems, respectively.

4.2. UH Stability Analysis. In this subsection, we discuss the
UH stability of the considered problem.

Definition 4. FDP (5) is UH stable if there exists a constant
Υf > 0 such that for each ε> 0 and every solution
ω ∈ C(℧,R) of the inequalities

C
D

α;φ C
D

κ;φ
+ μ ω(ρ) − 

m

i�1
ξi

C
D

α;φ C
D

κi;φ + μi ω(ρ) − g(ρ,ω(ρ))




≤ ε, ρ ∈ ℧, (45)

there exists a solution υ ∈ C(℧,R) of FDP (5) that
satisfies

|ω(ρ) − υ(ρ)|≤Υfε. (46)

Remark 4. ω ∈ C(℧,R) satisfies the inequality (45) if and
only if there exists a function Π ∈ C(℧,R) with

(i) |Π(ρ)|≤ ε, ρ ∈ ℧
(ii) For all ρ ∈ ℧

C
D

α;φ C
D

κ;φ
+ μ ω(ρ) − 

m

i�1
ξi

C
D

α;φ C
D

κi;φ + μi ω(ρ) � g(ρ,ω(ρ)) + Π(ρ). (47)

Lemma 7. We suppose that 1< κ≤ 2, 0< α≤ 1 and
1≤ κ − κi < 2, and ω ∈ C(℧,R) is a solution of the inequality
(45). ;en, ω satisfies

ω(ρ) − W(ρ) − I
α+κ;φ

g(ρ,ω(ρ))


≤ 2ε
X

α+κ
φ (1)

Γ(α + κ + 1)
, (48)

where

W(ρ) � 
m

i�1
ξiI

κ− κi;φω(ρ) − σIκ;φω(ρ)

+
X

κ
φ(ρ)

X
κ
φ(1)

σIκ;φω(1) + 
m

i�1
ξiI

κ− κi;φω(1) + I
α+κ;φ

g(1,ω(1))⎛⎝ ⎞⎠.

(49)

Proof. We suppose that ω is a solution of (45). By Lemma 6
and (ii) of Remark 4, we have

C
D

α;φ C
D

κ;φ
+ μ ω(ρ) − 

m

i�1
ξi

C
D

α;φ C
D

κi;φ + μi ω(ρ) � g(ρ,ω(ρ)) + Π(ρ),

ω(0) � ωφ′(0) � ω(1) � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(50)

'en, the solution of FDP (50) is
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ω(ρ) � 
m

i�1
ξiI

κ− κi;φω(ρ) + I
α+κ;φ

g(ρ,ω(ρ)) − σIκ;φω(ρ)

+
X

κ
φ(ρ)

X
κ
φ(1)

σIκ;φω(1) − 
m

i�1
ξiI

κ− κi;φω(1) − I
α+κ;φ

g(1,ω(1))⎛⎝ ⎞⎠

+ I
α+κ;φΠ(ρ) −

X
κ
φ(ρ)

X
κ
φ(1)

I
α+κ;φΠ(1).

(51)

Again by (i) of Remark 4, it is implied that

ω(ρ) − W(ρ) − I
α+κ;φ

g(ρ,ω(ρ))


≤Iα+κ;φ
|Π(ρ)| +

X
κ
φ(ρ)

X
κ
φ(1)

I
α+κ;φ

|Π(1)|

≤ ε
X

α+κ
φ (ρ)

Γ(α + κ + 1)
1 +

X
κ
φ(ρ)

X
κ
φ(1)

⎛⎝ ⎞⎠≤ 2ε
X

α+κ
φ (1)

Γ(α + κ + 1)
.

(52)

□
Theorem 4. Under the hypotheses of ;eorem 3, the solution
of the FDP (5) is UH stable.

Proof. We suppose that ω ∈ C(℧,R) is a solution of the
inequality (45) and υ ∈ C(℧,R) is a unique solution of FDP
(5). From Lemma 6, we obtain
υ(ρ) � V(ρ) + Iα+κ;φg(ρ, υ(ρ)), where

V(ρ) � 
m

i�1
ξiI

κ− κi;φυ(ρ) + I
α+κ;φ

g(ρ, υ(ρ)) − σIκ;φυ(ρ)

+
X

κ
φ(ρ)

X
κ
φ(1)

σIκ;φυ(1) − 
m

i�1
ξiI

κ− κi;φυ(1) − I
α+κ;φ

g(1, υ(1))⎛⎝ ⎞⎠.

(53)

Clearly, if υ(0) � ω(0), υφ′(0) � ωφ′(0), υ(1) � ω(1),
then



m

i�1
ξiI

κ− κi;φυ(ρ) � 

m

i�1
ξiI

κ− κi;φω(ρ),

I
α+κ;φ

g(ρ, υ(ρ)) � I
α+κ;φ

g(ρ,ω(ρ)),

I
κ;φυ(ρ) � I

κ;φω(ρ),



m

i�1
ξiI

κ− κi;φυ(1) � 
m

i�1
ξiI

κ− κi;φω(1).

(54)

Hence, we get V(ρ) � W(ρ).
Using Lemma 7 and due to the fact that

|x + y|≤ |x| + |y|, for any ρ ∈ ℧, we have

|ω(ρ) − υ(ρ)| � ω(ρ) − V(ρ) − I
α+κ;φ

g(ρ, υ(ρ))




≤ ω(ρ) − W(ρ) − I
α+κ;φ

g(ρ,ω(ρ))


 + I
α+κ;φ

|g(ρ,ω(ρ)) − g(ρ, υ(ρ))|

≤ 2ε
X

α+κ
φ (1)

Γ(α + κ + 1)
+ I

α+κ;φ
Lg|ω(ρ) − υ(ρ)|

≤ 2ε
X

α+κ
φ (1)

Γ(α + κ + 1)
+

X
α+κ
φ (1)Lg

Γ(α + κ + 1)
|ω(ρ) − υ(ρ)|,

(55)

which implies

1 −
X

α+κ
φ (1)Lg

Γ(α + κ + 1)
 |ω(ρ) − υ(ρ)|≤ 2ε

X
α+κ
φ (1)

Γ(α + κ + 1)
. (56)

From (41), we getXα+κ
φ (1)Lg/Γ(α + κ + 1)< 1. It follows

that

|ω(ρ) − υ(ρ)|≤Υfε, (57)

where

Υf �
2Xα+κ

φ (1)

Γ(α + κ + 1) − X
α+κ
φ (1)Lg

. (58)

Hence, the FDP (5) is UH stable in C(℧,R). □
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Example 1. We consider the generalized Caputo-type
Langevin FDP:

C
D

1
4
;φ C

D

7
4
;φ

+
5
6

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠υ(ρ) −
1
3

C

D
α;φ C

D

1
5
;φ

+
1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠υ(ρ) �
1
100

cos ρ + tan− 1 υ(ρ) , ρ ∈ [0, 1],

υ(0) � υφ′(0) � υ(1) � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(59)

where α � 1/4, κ � 7/4, μ � 5/6, m � 1, ξ1 � 1/3, κ1 � 1/5, μ1
� 1/2, 1≤ κ − κ1 � 31/20< 2,φ(ρ) � ρ/3,℧ � [0, 1], and

g(ρ, υ) � cos ρ + tan− 1 υ. (60)

We observe that

g ρ, υ1(  − g ρ, υ2( 


≤
1
100

tan− 1υ1 − tan− 1υ2


≤
1
100

υ1 − υ2


 � Lg υ1 − υ2


,

X
κ
φ(1) � [φ(1) − φ(0)]

κ
�

1
3

 

7
4, σ � μ − ξ1μ1 �

2
3
,

(61)

σ �
2

9 × 311/20 Γ(51/20)
+

4
9 × 33/4Γ(11/7)

+
1
900
< 1. (62)

Clearly, all the hypotheses of'eorem 3 hold, and hence,
FDP (59) has a unique solution on [0, 1]. Furthermore, we
have

|g(ρ, υ)|≤ cos ρ + 1 ≔ p(ρ) ∈ C [0, 1],R
+

( , (63)

which satisfies the assumption (H1) of 'eorem 2.
Moreover, we can find that

c1 �
2

9 × 311/20Γ(51/20)
+

4
9 × 33/4Γ(11/7)

< 1. (64)

Consequently, by 'eorem 1, the FDP (59) has at least
one solution on [0, 1]. Moreover, we have

Υf �
200
1799
> 0. (65)

From 'eorem 3, the FDP (59) is UH stable on [0, 1].

5. Conclusions

In this paper, we have given some results dealing with the
existence and stability of solutions for two types of fractional
boundary value problems for multiterm Langevin equations
with generalized Caputo fractional operators of different
orders. As an initial step, we obtained the equivalent solutions
associated with linear problems by applying the instruments
of advanced fractional calculus and characterizing a fixed
point problem. Once the fixed point problem is available, the
existence and uniqueness theorems are established via
Banach’s and Sadovskii’s fixed point techniques, whereas the
guarantee of the existence of solutions has been shown by the
vigorous techniques, such as UH stability.

We do not apply any significant bearing to the complex
transformations, and our outcomes are characteristic of the
integral operators’ theory of such kind. Indeed, our meth-
odology is straightforward and can without much of a
stretch be applied to an assortment of real-world problems.
For the justification of the main results, we have given an
example. As a special case, the reported results are new, and
we have generalized many results with various values of φ
function.

Data Availability

No data were used to support this study.

Conflicts of Interest

'e authors declare no conflicts of interest related to this
work.

Acknowledgments

'e authors are grateful for the support provided by their
institutions.

References

[1] K. B. Oldham and J. Spanier, “'e fractional calculus: theory
and applications of differentiation and integration to arbitrary
order,” Mathematics in Science and Engineering, Academic
Press, New York, NY, USA, 1974.

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “'eory and
applications of fractional differential equations,” North-Hol-
land Mathematics Studies, Elsevier Science B.V., Amsterdam,
Netherlands, 2006.

[3] G. A. Anastassiou, “On right fractional calculus,” Chaos,
Solitons & Fractals, vol. 42, no. 1, pp. 365–376, 2009.

Mathematical Problems in Engineering 11



[4] A. Atangana, “Convergence and stability analysis of a novel
iteration method for fractional biological population equa-
tion,” Neural Computing & Applications, vol. 25, no. 5,
pp. 1021–1030, 2014.

[5] W. G. Glöckle and T. F. Nonnenmacher, “A fractional cal-
culus approach to self-similar protein dynamics,” Biophysical
Journal, vol. 68, no. 1, pp. 46–53, 1995.

[6] R. Hilfer,Applications of Fractional Calculus in Physics, World
Scientific, Singapore, 2000.

[7] D. Kumar, J. Singh, and D. Baleanu, “On the analysis of
vibration equation involving a fractional derivative with
Mittag-Leffler law,” Mathematical Methods in the Applied
Sciences, vol. 43, no. 1, pp. 443–457, 2020.

[8] D. Baleanu, J. H. Asad, and A. Jajarmi, “New aspects of the
motion of a particle in a circular cavity,” Proceedings of the
Romanian Academy - Series A: Mathematics, Physics, Tech-
nical Sciences, Information Science, vol. 19, no. 2, pp. 361–367,
2018.

[9] H. Baghani, “Existence and uniqueness of solutions to frac-
tional Langevin equations involving 440 two fractional or-
ders,” J. Fixed point ;eory Appl, vol. 20, no. 2, pp. 1–7, 2013.

[10] B. Ahmad, J. J. Nieto, A. Alsaedi, and M. El-Shahed, “A study
of nonlinear Langevin equation involving two fractional or-
ders in different intervals,” Nonlinear Analysis: Real World
Applications, vol. 13, no. 2, pp. 599–606, 2012.

[11] O. Baghani, “On fractional Langevin equation involving two
fractional orders,” Communications in Nonlinear Science and
Numerical Simulation, vol. 42, pp. 675–681, 2017.

[12] B. Li, S. Sun, and Y. Sun, “Existence of solutions for fractional
Langevin equation with in nite-point boundary conditions,”
J. Appl. Math. Comput., vol. 53, no. 1-2, pp. 683–692, 2017.

[13] H. Fazli and J. J. Nieto, “Fractional Langevin equation with
anti-periodic boundary conditions,” Chaos, Solitons & Frac-
tals, vol. 114, pp. 332–337, 2018.

[14] X.-J. Yang, F. Gao, and H. M. Srivastava, “A new computa-
tional approach for solving nonlinear local fractional PDEs,”
Journal of Computational and Applied Mathematics, vol. 339,
pp. 285–296, 2018.

[15] X. J. Yang, F. Gao, and H. M. Srivastava, “New rheological
models within local fractional derivative,” Romanian Reports
in Physics, vol. 69, no. 3, p. 113, 2017.

[16] X. J. Yang, J. A. Machado, and J. J. Nieto, “A new family of the
local fractional PDEs,” Fundamenta Informaticae, vol. 151,
no. 1-4, pp. 63–75, 2017.

[17] T. J. Osler, “Leibniz rule for fractional derivatives generalized
and an application to infinite series,” SIAM Journal on Applied
Mathematics, vol. 18, no. 3, pp. 658–674, 1970.

[18] R. Almeida, “A Caputo fractional derivative of a function with
respect to another function,” Communications in Nonlinear
Science and Numerical Simulation, vol. 44, pp. 460–481, 2017.

[19] F. Jarad and T. Abdeljawad, “Generalized fractional deriva-
tives and Laplace transform,” Discrete & Continuous Dy-
namical Systems-S, vol. 13, no. 3, 2000.

[20] A. Seemab, M. Rehman, J. Adjabi, and Y. Abjabi, “Langevin
equation with nonlocal boundary conditions involving a $ \psi
$-Caputo fractional operators of different orders,” AIMS
Mathematics, vol. 6, no. 7, pp. 6749–6780, 2021.

[21] H. A. Wahash, M. S. Abdo, A. M. Saeed, and S. K. Panchal,
“Singular fractional differential equations with ψ-Caputo
operator and modified Picard’s iterative method,” Applied
Mathematics E-Notes, vol. 20, pp. 215–229, 2020.

[22] H. A. Wahash, M. S. Abdo, and S. K. Panchal, “Existence and
Ulam-Hyers stability of the implicit fractional boundary value
problem with %ψ-Caputo fractional derivative,” Journal of

Applied Mathematics and Computational Mechanics, vol. 19,
no. 1, 2020.

[23] C. Derbazi, Z. Baitiche, M. S. Abdo, and T. Abdeljawad,
“Qualitative analysis of fractional relaxation equation and
coupled system with ψ-Caputo fractional derivative in Banach
spaces,” AIMS Math, vol. 6, pp. 2486–2509, 2021.

[24] A. Boutiara, M. S. Abdo, M. A. Alqudah, and T. Abdeljawad,
“On a class of Langevin equations in the frame of Caputo
function-dependent-kernel fractional derivatives with anti-
periodic boundary conditions,” AIMS Mathematics, vol. 6,
no. 6, pp. 5518–5534, 2021.

[25] A. Suechoei and P. S. Ngiamsunthorn, “Existence uniqueness
and stability of mild solutions for semilinear ψ-Caputo
fractional evolution equations,” Advances in Difference
Equations, vol. 2020, no. 1, 28 pages, Article ID 114, 2020.

[26] L. Lin, Y. Liu, and D. Zhao, “Controllability of impulsive
ψ-caputo fractional evolution equations with nonlocal con-
ditions,” Mathematics, vol. 9, no. 12, 2021.

[27] D. Yang and C. Bai, “Existence of solutions for anti-periodic
fractional differential inclusions involving ψ-Riesz-Caputo
fractional derivative,” Fractional Differential Equations, In-
clusions and Inequalities with Applications, vol. 7, no. 7, 2020.

[28] J. V. d. C. Sousa, F. G. Rodrigues, and E. Capelas de Oliveira,
“Stability of the fractional Volterra integro-differential
equation by means of ψ -Hilfer operator,” Mathematical
Methods in the Applied Sciences, vol. 42, no. 9, pp. 3033–3043,
2019.

[29] D. Vivek, K. Kanagarajan, and E. M. Elsayed, “Some existence
and stability results for Hilfer-fractional implicit differential
equations with nonlocal conditions,” Mediterranean Journal
of Mathematics, vol. 15, no. 1, pp. 1–21, 2018.

[30] R. Almeida, A. B. Malinowska, and M. T. T. Monteiro,
“Fractional differential equations with a Caputo derivative
with respect to a kernel function and their applications,”
Mathematical Methods in the Applied Sciences, vol. 41, no. 1,
pp. 336–352, 2018.

[31] B. Ahmad and J. J. Nieto, “Solvability of nonlinear Langevin
equation involving two fractional orders with Dirichlet
boundary conditions,” International Journal of Differential
Equations, vol. 2010, Article ID 649486, 10 pages, 2010.

[32] Z. Laadjal, B. Ahmad, and N. Adjeroud, “Existence and
uniqueness of solutions for multi-term fractional Langevin
equation with boundary conditions,” Dynamics of Continu-
ous, Discrete and Impulsive Systems Series A: Mathematical
Analysis, vol. 27, pp. 339–350, 2020.

[33] E. Zeidler, “Nonlinear functional analysis and its applica-
tions,” Fixed-point ;eorems, Springer, New York, NY, USA,
1986.

[34] B. N. Sadovskii, “On a fixed point principle,” Functional
Analysis and Its Applications, vol. 1, pp. 74–76, 1967.

[35] A. Granas and J. Dugundji, Fixed Point;eory, Springer, New
York, NY, USA, 2003.

12 Mathematical Problems in Engineering


