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Te hepatitis B infection is a global epidemic disease which is a huge risk to the public health. In this paper, the transmission
dynamics of hepatitis B deterministic model are presented and studied.Te basic reproduction number is attained and by applying
it, the local as well as global stability of disease-free and endemic equilibria of continuous hepatitis B deterministic model are
discussed. To better understand the dynamics of the disease, the discrete nonstandard fnite diference (NSFD) scheme is produced
for the continuous model. Diferent criteria are employed to check the local and global stability of disease-free and endemic
equilibria for the NSFD scheme. Our fndings demonstrate that the NSFD scheme is convergent for all step sizes and consequently
reasonable in all respect for the continuous deterministic epidemic model. All the aforementioned properties and their efects are
also proved numerically at each stage to show their mathematical as well as biological feasibility. Te theoretical and numerical
fndings used in this paper can be employed as a helpful tool for predicting the transmission of other infectious diseases.

1. Introduction

Hepatitis is a general term that means infammation of the
liver. Tis disease can cause both acute and chronic infec-
tions. Te acute stage is usually defned as the frst six
months of virus infection. During this phase, the immune
system is capable to manipulate the infection of human
body. Te two primary indications of the acute stage are
feeling sick and having a high temperature, which subsides
after few weeks due to the immune system. Chronic disease
afects the liver ability to perform life-sustaining processes
such as removing dangerous transmitted substances from
the blood, collecting sugar levels, and converting it to useable
energy forms [1]. Hepatitis B virus (HBV) is one of the world
most serious health problems [2]. HBV has a large rate of
deaths, both from acute and chronic infection [3]. HBV is

spread by blood transfusion and gets transmitted to the
newly born child during pregnancy from afected mother.
Vaccination is the most enchanting and efcient process in
newly born children to decrease the occurrence of HBV [4].

HBV can induce chronic infection which can lead to
death from cirrhosis and liver cancer if not treated properly.
Te HBV fatality rates are among the higher causes of
universal deaths [5]. Some pharmacological therapies for
chronic HBV have been proposed, including alpha inter-
feron, lamivudine, pegylated interferon, tenofovir dis-
oproxil, entecavir, and telbivudine [6]. During treatment, the
viral load is decreased, which reduces virus-related repro-
duction in the liver [7]. Te vaccine against HBV is available
since 1982, but still its transmission continues to rise [8, 9].
According to Sheikhan and Ghoreishi [6], HBV can also live
beyond the mortal body. HBV can survive on the outer part
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of the body for at least seven days, and it can be transmitted
to any unimmunized human body during this time.

Te use of mathematical modeling helps us to con-
centrate on the procedure by which an infectious disease
spreads throughout an area. Many mathematical models are
constructed by researchers from all around the world to
understand diferent types of infectious diseases and their
dynamic characteristics. In [10–13], the mathematical
models of fractional order derivatives have been employed to
investigate and evaluate the transmission of various infec-
tious diseases. Te authors not only examined the precise
qualitative characteristics of the formulated models but also
ofered numerical simulations to verify the obtained theo-
retical fndings. In [14, 15], the authors presented vacci-
nation efects on HBV transmission with control strategies
by using diferent age structures in the population. In
[16–20], several specialized models of HBV transmission
dynamics have been focused on the impact of commitment
and control measures like vaccination and antiviral therapy.
Din et al. [21] performed a detailed analysis of stability,
showing that the reproduction number determines the
entire dynamic activities of the system. Recently, in [22], the
author discussed and analyzed the stochastic SACR model
for HBV transmission and left the deterministic model
unsolved. Te author investigated the analytical results,
including the stability of disease-free and endemic equilibria
only for the continuous stochastic model. Te purpose of the
present work is continuous and discrete characterization of
the hepatitis B deterministic model. Diferent criteria are
used to discuss the local as well as global stability of disease-
free and endemic equilibria for the continuous deterministic
model. Te discrete NSFD scheme is constructed for the
continuous model to display its sustainability and biological
suitability. Te NSFD scheme constructed for the model is
dynamically consistent with the original system for any step
size. Our theoretical and numerical fndings indicate that the
NSFD scheme retains the essential qualitative characteristics
of the continuous model. Consequently, this scheme is not
only realistic but also verifes various features of the con-
tinuous model. Te results acquired through this scheme are
very precise and accurate.

Te paper is structured as follows: In Section 2, the HBV
epidemic model is presented and associated parameters are
explained. Te existing equilibria and reproduction number
are established for the deterministic model in Section 3. By
using the reproduction number, the local and global stability
of disease-free and endemic equilibria for the continuous
model are discussed in Section 4. Te discrete NSFD scheme
is constructed in Section 5 to analyze the convergence and
divergence of disease-free and endemic equilibria for the
proposed model. Our calculations show that the NSFD
scheme is an efective and powerful technique that presents a
clear portrait of the continuous model. Te numerical
simulations are also provided which strengthen our theo-
retical results. Finally, a brief conclusion is presented in the
last section.

2. Mathematical Model for HBV

In order to defne the stochastic HBV disease model with
variable population environment, it is required to put some
conditions on the epidemic model. It is assumed that the
total population N(t) at time t is divided into four classes,
i.e., susceptible S(t), acutely infected A(t), chronically in-
fected C(t), and recovered R(t) where N(t) � S(t) + A(t) +

C(t) + R(t). Te second supposition is that all state variables
and parameters of the proposedmodel are non-negative.Te
function Ω⟶Ω +ΩB with Ω2 > 0 denotes the concen-
tration of white noise, where B(t) shows the normal which
satisfy B(0) � 0. Based on all above information, the sto-
chastic hepatitis B epidemic model [22] illustrated by the
system of four stochastic diferential equations is defned as
follows:

dS(t) � p − βS(t)C(t) − τ + μ1( S(t)( dt − ΩS(t)A(t)dB(t),

dA(t) � βS(t)C(t) − c + μ1 + ω( A(t)( dt +ΩS(t)A(t)dB(t),

dC(t) � ωA(t) − c2 + μ1 + ε( C(t)( dt,

dR(t) � τS(t) + c2C(t) + ωA(t) − μ1R(t)( dt.

(1)

By putting Ω � 0, the model (1) deduces into the fol-
lowing deterministic model:

dS(t)

dt
� p − βS(t)C(t) − τ + μ1( S(t),

dA(t)

dt
� βS(t)C(t) − c + μ1 + ω( A(t),

dC(t)

dt
� ωA(t) − c2 + μ1 + ε( C(t),

dR(t)

dt
� τS(t) + c2C(t) + ωA(t) − μ1R(t),

dC(t)

dt
� ωA(t) − c2 + μ1 + ε( C(t).

(2)

Our main aim is continuous and discrete characteriza-
tion of model (2). It is assumed that all the parameters are
positive constants where the parameters and their expla-
nations are provided in Table 1.

As the total population N is denoted by

N � S + A + C + R. (3)

So, by employing model (2), we attain

dN

dt
� p − μ1S − cA − μ1A − μ1C + ωA − μ1R. (4)

From previous equation, we can write that

dN

dt
≤p − μ1S. (5)
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lim
t⟶∞

supN≤
p

μ1
. (6)

Terefore, the feasible region for model (2) becomes

K � (S, A, C, R) ∈ R
4
, N≤

p

μ1
 . (7)

3. Equilibria of the Model and Basic
Reproduction Number

3.1. Equilibria of the Model. Te following two equilibria
exist for model (2):

3.1.1. Disease Free Equilibrium (DFE) Point. To fnd DFE
point, we take all other classes equal to zero except the
susceptible class, i.e., if A(t) � 0, C(t) � 0, R(t) � 0, then we
get S(t) � p/τ + μ1. Terefore, the DFE point denoted by
E0(S0, A0, C0, R0) becomes E0 � (p/t + μ1, 0, 0, 0).

3.1.2. Disease Endemic Equilibrium (DEE) Point. To fnd
DEE point, we simultaneously solve the proposed model (2)
for S, A, C and R. If the DEE point is denoted by
E∗(S∗, A∗, C∗, R∗), then from model (2), we get

S
∗
(t) �

c + μ1 + ω( A
∗
(t)

β c2 + μ1 + ε( C
∗
(t)

,

A
∗
(t) �

c2 + μ1 + ε( C
∗
(t)

ω
,

C
∗
(t) �

ωA
∗
(t)

c2 + μ1 + ε( 
,

R
∗
(t) �

p

τ + μ1( μ1
.

(8)

3.2. Te Basic Reproduction Number (R0). Te quantity R0
is the most crucial threshold related to any infectious
disease. It assists to fnd out whether an infectious disease
will transmit through population or not [23]. If R0 < 1
throughout its infectious period, then infection does not
grow. On the other hand, if R0 > 1 then infection grows
and disease remains in the population. To obtain R0, we

employ transmission and translation matrices F(x) and
V(x), respectively. Te previously discussed matrices can
be demonstrated as

F(x) �
βS(t)C(t)

0
 andV(x) �

− c + μ1 + ω( A(t)

ωA(t) − c2 + μ1 + ε( C(t)
 .

(9)

From the abovementioned matrices, we get

F �

0
βp

τ + μ1

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

V �

c + μ1 + ω(  0

− ω c2 + μ1 + ε( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(10)

As we know that

R0 � ρ FV
− 1

 . (11)

Terefore, using F and V, we obtain

R0 �
βpω

c + μ1 + ω(  c2 + μ1 + ε(  τ + μ1( 
. (12)

4. Local and Global Stability of DFE and DEE
Points for the Deterministic Model

In the following section, we frst discuss the local and global
stability of DFE point for the deterministic HBV disease
model (2):

4.1. Local and Global Stability of DFE Point. To discuss the
local stability, we assume

F � p − βS(t)C(t) − τ + μ1( S(t),

G � βS(t)C(t) − c + μ1 + ω( A(t),

H � ωA(t) − c2 + μ1 + ε( C(t),

I � τS(t) + c2C(t) + ωA(t) − μ1R(t).

(13)

In the following theorem, we frst discuss the local
stability of DFE point by using Routh− Hurwitz criterion
[24, 25]:

Table 1: Parameters included in model (2) and their explanations.

Parameter Parameter description
p Te constant birth rate
β Te transmission rate
τ Te vaccination rate
μ1 Natural death rate
c Te constant recovery rate for acutely infected individuals
ω Te moving rate of acutely infected individuals to chronic stage
c2 Te disease induced death rate
ε Te constant recovery rate for chronically infected individuals

Mathematical Problems in Engineering 3



Theorem 1. Te DFE point E0 of model (2) is locally as-
ymptotically stable whenever R0 < 1.

Proof. Let us take the Jacobian matrix as follows:

J �

zF

zS

zF

zA

zF

zC

zF

zR

zG

zS

zG

zA

zG

zC

zG

zR

zH

zS

zH

zA

zH

zC

zH

zR

zI

zS

zI

zA

zI

zC

zI

zR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

We frst fnd all the derivatives included in (14) as
follows:

zF

zS
� − βC(t) − τ + μ1( ,

zF

zA
� 0,

zF

zC
� − βS(t),

zF

zR
� 0,

zG

zS
� βC(t),

zG

zA
� − c + μ1 + ω( ,

zG

zC
� βS(t),

zG

zR
� 0,

zH

zS
� 0,

zH

zA
� ω,

zH

zC
� − c2 + μ1 + ε( ,

zH

zR
� 0,

zI

zS
� τ,

zI

zA
� ω,

zI

zC
� c2,

zI

zR
� − μ1.

(15)

By replacing all the derivatives in (14), we get

J �

− βC(t) − τ + μ1(  0 − βS(t) 0

βC(t) − c + μ1 + ω(  βS(t) 0

0 ω − c2 + μ1 + ε(  0

τ ω c2 − μ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

By putting DFE point E0 � (p/t + μ1, 0, 0, 0), we get

J E
0

  �

− τ + μ1(  0 −
βp

τ + μ1( 
0

0 − c + μ1 + ω( 
βp

τ + μ1( 
0

0 ω − c2 + μ1 + ε(  0

τ ω c2 − μ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)
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In order to fnd eigenvalues, we consider

− τ + μ1(  − λ 0 −
βp

τ + μ1( 
0

0 − c + μ1 + ω(  − λ
βp

τ + μ1( 
0

0 ω − c2 + μ1 + ε(  − λ 0

τ ω c2 − μ1 − λ





� 0. (18)

Te characteristic equation for the abovementioned
equation becomes

− τ + μ1(  − λ(  − μ1 − λ(  λ2 + λP + Q  � 0, (19)

where

P � c + μ1 + ω(  + c2 + μ1 + ε( ,

Q � c + μ1 + ω(  c2 + μ1 + ε(  1 − R0( .
(20)

Te two negative roots of (19) are λ1 � − μ1 and λ2 �

− (τ + μ1). Also, it is clear that P> 0 and Q> 0 whenever
R0 < 1. So, by using Routh− Hurwitz criterion, the other two
roots of λ2 + λP + Q � 0 must have negative real parts.
Terefore, we deduce that E0 is locally asymptotically stable
for R0 < 1. Tis completes the proof. □

Theorem  . Te DFE point E0 of model (2) is globally as-
ymptotically stable whenever R0 ≤ 1.

Proof. In order to demonstrate the global stability of DFE
point E0 of model (2), we construct the Lyapunov function
as

L � S − S0(  + A + C + R. (21)

From (21), the following can easily be obtained:

dL

dt
�

dS

dt
+

dA

dt
+

dC

dt
+

dR

dt
. (22)

After simple calculations, we get

dL

dt
� p − τ + μ1( S − c + μ1( A − c2 + μ1 + ε( C − μ1R(t),

dL

dt
� − τ + μ1(  S − S0(  − c + μ1( A − c2 + μ1 + ε( C − μ1R(t),

dL

dt
� − τ + μ1(  S − S0(  + c + μ1( A + c2 + μ1 + ε( C + μ1R(t)( ≤ 0.

(23)

Tus, dL/dt≤ 0 forR0 ≤ 1. Also note that dL/dt � 0 if and
only if S � S0 andA � C � R � 0. Hence, Labzai et al. [26]
imply that E0 is globally asymptotically stable, as shown in
Figure 1(a). □

4.2. Local and Globally Stability of DEE Point

Theorem 3. Te DEE point E∗ of model (2) is locally as-
ymptotically stable whenever R0 > 1.

Proof. In the similar way as in Teorem 1, the Jacobian
matrix can be written as

J �

− βC(t) − τ + μ1(  0 − βS(t) 0

βC(t) − c + μ1 + ω(  βS(t) 0

0 ω − c2 + μ1 + ε(  0

τ ω c2 − μ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(24)

By putting DEE point E∗, we get
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J E
∗

(  �

− βωA
∗
(t)

c2 + μ1 + ε( 
− τ + μ1(  0 −

β c + μ1 + ω( A
∗
(t)

c2 + μ1 + ε( C
∗
(t)

0

βωA
∗
(t)

c2 + μ1 + ε( 
− c + μ1 + ω( 

β c + μ1 + ω( A
∗
(t)

c2 + μ1 + ε( C
∗
(t)

0

0 ω − c2 + μ1 + ε(  0

τ ω c2 − μ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)
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Figure 1: Te solutions of HBV model (2) obtained through ODE-45. (a) Stable DFE point whenever R0 ≤ 1 and p � 0.05, (b) stable DEE
point whenever R0 ≥ 1 and p � 2. Other parameters remain fxed, as β � 0.60, c � 0.2,ω � 0.5, τ � 0.001, μ1 � 0.2, c2 � 0.4, ε � 0.5.
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In order to fnd the eigenvalues, we consider

− βωA
∗
(t)

c2 + μ1 + ε( 
− τ + μ1(  − λ 0 −

β c + μ1 + ω( A
∗
(t)

c2 + μ1 + ε( C
∗
(t)

0

βωA
∗
(t)

c2 + μ1 + ε( 
− c + μ1 + ω(  − λ

β c + μ1 + ω( A
∗
(t)

c2 + μ1 + ε( C
∗
(t)

0

0 ω − c2 + μ1 + ε(  − λ 0

τ ω c2 − μ1 − λ





� 0. (26)

Te characteristic equation of abovementioned equation
becomes (− μ1 − λ) (λ3 + Bλ2 + Dλ + E) � 0.

Te abovementioned equation gives one negative ei-
genvalue λ1 � − μ1. Te other eigenvalues can be obtained
from

λ3 + Bλ2 + Dλ + E � 0, (27)

where

B �
βωA
∗
(t)

c2 + μ1 + ε( 
+ τ + μ1(  + c + μ1 + ω(  + c2 + μ1 + ε( ,

D �
βωA
∗
(t) c + μ1 + ω( 

c2 + μ1 + ε( 
+ βωA

∗
(t) + τ + μ1(  c + μ1 + ω( 

+ τ + μ1(  c2 + μ1 + ε(  + c + μ1 + ω(  c2 + μ1 + ε(  +
βω c + μ1 + ω( A

∗
(t) τ + μ1( 

c2 + μ1 + ε( C
∗
(t)

.

(28)

E �
βωA
∗
(t) τ + μ1(  c + μ1 + ω( A

∗
(t)

c2 + μ1 + ε( C
∗
(t)

1 −
c + μ1 + ω( A

∗
(t)

p
R0 > 0. (29)

It is clear that B, D, E> 0 whenever R0 > 1. Also,

BD − E �
βωA
∗
(t)

c2 + μ1 + ε( 
+ τ + μ1(  + c + μ1 + ω(  + c2 + μ1 + ε(  

βωA
∗
(t) c + μ1 + ω( 

c2 + μ1 + ε( 
+ βωA

∗
(t)

+ τ + μ1(  c + μ1 + ω(  + τ + μ1(  c2 + μ1 + ε(  + c + μ1 + ω(  c2 + μ1 + ε(  +
βω c + μ1 + ω( A

∗
(t) τ + μ1( 

c2 + μ1 + ε( C
∗
(t)



−
βωA
∗
(t) τ + μ1(  c + μ1 + ω( A

∗
(t)

c2 + μ1 + ε( C
∗
(t)

1 −
c + μ1 + ω( A

∗
(t)

p
R0  > 0.

(30)
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Hence, by applying Routh− Hurwitz criterion, all the
solutions of (27) must have negative real parts if and only if
R0 > 1. Terefore, E∗ is locally asymptotically stable when-
ever R0 > 1. □

Theorem 4. Te DEE point E∗ of model (2) is globally as-
ymptotically stable whenever R0 ≥ 1.

Proof. In order to demonstrate the global stability of DEE
point E∗ of model (2), we construct the Lyapunov function
as

Ψ �
1
2

S − S
∗

(  + A − A
∗

(  + C − C
∗

(  + R − R
∗

(  
2
. (31)

Now, we calculate the derivative with respect to the time
of (31) and then using model (2), we get

dΨ
dt

� S − S
∗

(  + A − A
∗

(  + C − C
∗

(  ∗ p − τ + μ1( S − c + μ1( A − c2 + μ1 + ε( C − μ1R . (32)

If we put Φ1 � (τ + μ1),Φ2 � (c + μ1),Φ3 � (c2 + μ1 +

ε),Φ4 � μ1. Ten, after simple arrangement, we get

dΨ
dt

� S − S
∗

(  + A − A
∗

(  + C − C
∗

(  + R − R
∗

(  ∗ − S
∗
R0Φ1 − SΦ1 − Φ2A − Φ3C − Φ4R ,

dΨ
dt

� − S − S
∗

(  + A − A
∗

(  + C − C
∗

(  + R − R
∗

(  ∗ S
∗
R0Φ1 + SΦ1 +Φ2A +Φ3C +Φ4R ,

dΨ
dt

� − S − S
∗

(  + A − A
∗

(  + C − C
∗

(  + R − R
∗

(  ∗ S
∗
R0 + S( Φ1 +Φ2A +Φ3C +Φ4R .

(33)

Since the right-hand side of (33) has a negative sign, so
the derivative on right hand side is less than or equal to zero,
i.e., dΨ/dt≤ 0. Substituting S � S∗, A � A∗, C � C∗, R � R∗

in (33), dΨ/dt yields zero, i.e., dΨ/dt � 0. Terefore, the
largest invariant set in (S, A, C, R)ϵR4: dΨ/dt � 0  is the
singleton invariant set E∗, where E∗ is the DEE point. Ten,
by applying invariant principle of LaSalle et al. [27], it
implies that E∗ is globally asymptotically stable, as shown in
Figure 1(b). □

5. The NSFD Scheme

Te main objective of this subsection is to develop a dy-
namically reliable discrete NSFD scheme for system (2). Te
NSFD scheme has been taken successfully to a variety of
challenges, including ecology [28, 29], epidemiology [30, 31],
and population models [32, 33]. To develop the NSFD
scheme for system (2), we use Sn,An,Cn, andRn as numerical
approximations of S(t), A(T), C(t),and R(t) at t � nh,
where n � 0, 1, 2 . . . ., and h denotes the time-step size. By
applying the concept of Mickens [34], we can discretize
model (2) as follows:

Sn+1 − Sn

h
� p − βSn+1(t)Cn(t) − τ + μ1( Sn+1(t),

An+1 − An

h
� βSn+1(t)Cn(t) − c + μ1 + ω( An+1(t),

Cn+1 − Cn

h
� ωAn(t) − c2 + μ1 + ε( Cn+1(t),

Rn+1 − Rn

h
� τSn+1(t) + c2Cn+1(t) + ωAn+1(t) − μ1Rn+1(t).

(34)

8 Mathematical Problems in Engineering



Te discrete NSFD model (10) can be rearranged to get
explicit form as

Sn+1 �
Sn + hp

1 + h βCn(t) + h τ + μ1( ( ( 
,

An+1 �
An + hβCn(t)Sn+1(t)

1 + h c + μ1 + ω( ( 
,

Cn+1 �
Cn + hωAn(t)

1 + h c2 + μ1 + ε( ( 
,

Rn+1 �
Rn + h τSn+1(t) + c2Cn+1(t) + ωAn+1(t)( 

1 + hμ1( 
.

(35)

5.1. Local and Global Stability of DFE Point for NSFD Scheme.
To obtain the local stability of the DFE point, we assume
that

F1 � Sn+1 �
Sn + hp

1 + h βCn(t) + h τ + μ1( ( ( 
,

F2 � An+1 �
An + hβCn(t)Sn+1(t)

1 + h c + μ1 + ω( ( 
,

F3 � Cn+1 �
Cn + hωAn(t)

1 + h c2 + μ1 + ε( ( 
,

F4 � Rn+1 �
Rn + h τSn+1(t) + c2Cn+1(t) + ωAn+1(t)( 

1 + hμ1( 
.

(36)

Theorem 5. For all h> 0, the DFE point E0 of the NSFD
model (11) is locally asymptotically stable whenever R0 < 1.

Proof. Let us take the Jacobian matrix as follows:

J �

zF1

zS

zF1

zA

zF1

zC

zF1

zR

zF2

zS

zF2

zA

zF2

zC

zF2

zR

zF3

zS

zF3

zA

zF3

zC

zF3

zR

zF4

zS

zF4

zA

zF4

zC

zF4

zR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

First, we fnd all the derivatives of matrix (13) as follows:

zF1
zS

�
1

1 + h βCn(t) + τ + μ1( ( 
,

zF1
zA

� 0,
zF1
zC

�
− Sn + hp( hβ

1 + h βCn(t) + τ + μ1( ( 
2,

zF1
zR

� 0,
zF2
zS

�
hβCn(t)

1 + h c + μ1 + ω( 
,

zF2
zA

�
1

1 + h c + μ1 + ω( 
,

zF2
zC

�
hβSn+1(t)

1 + h c + μ1 + ω( 
,
zF2
zR

� 0,

zF3
zS

� 0,

zF3
zA

�
hω

1 + h c2 + μ1 + ε( 
,

zF3
zC

�
1

1 + h c2 + μ1 + ε( 
,

zF3
zR

� 0,

zF4
zS

�
hτ

1 + hμ1
,

zF4
zA

�
hω

1 + hμ1
,

zF4
zC

�
hc2

1 + hμ1
,

zF4
zR

�
1

1 + hμ1
.

(38)
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By replacing all the derivatives in (37), we get

J �

1
1 + h βCn(t) + τ + μ1( ( 

0
− Sn + hp( hβ

1 + h βCn(t) + τ + μ1( ( 
2 0

hβCn(t)

1 + h c + μ1 + ω( 

1
1 + h c + μ1 + ω( 

hβSn+1(t)

1 + h c + μ1 + ω( 
0

0
hω

1 + h c2 + μ1 + ε( 

1
1 + h c2 + μ1 + ε( 

0

hτ
1 + hμ1

h(ω)

1 + hμ1

hc2

1 + hμ1

1
1 + hμ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

After putting the DFE point E0, we get

J E
0

  �

1
1 + h τ + μ1( 

0
− p/t + μ1 + hp( hβ

1 + h τ + μ1( ( 
2 0

0
1

1 + h c + μ1 + ω( 

hβp

1 + h c + μ1 + ω( (  τ + μ1( 
0

0
hω

1 + h c2 + μ1 + ε( 

1
1 + h c2 + μ1 + ε( 

0

hτ
1 + hμ1

h(ω)

1 + hμ1

hc2

1 + hμ1

1
1 + hμ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (40)

In order to fnd the eigenvalues, we consider

1
1 + h τ + μ1( 

− λ 0
− p/t + μ1 + hp( hβ

1 + h τ + μ1( ( 
2 0

0
1

1 + h c + μ1 + ω( 
− λ

hβp

1 + h c + μ1 + ω( (  τ + μ1( 
0

0
hω

1 + h c2 + μ1 + ε( 

1
1 + h c2 + μ1 + ε( 

− λ 0

hτ
1 + hμ1

h(ω)

1 + hμ1

h c2( 

1 + hμ1

1
1 + hμ1

− λ





� 0. (41)
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Te abovementioned equation gives the following
characteristic equation:

1
1 + hμ1( 

− λ 
1

1 + h τ( ) + μ1( 
− λ  λ2 + Lλ + M  � 0, (42)

where

L �
1

1 + h c + μ1 + ω( 
+

1
1 + h c2 + μ1 + ε( 

,

M �
hβpω

1 + h c2 + μ1 + ε( (  1 + h c + μ1 + ω( (  τ + μ1( 
.

(43)

Te two roots of the (42) are λ1 � 1/1 + hμ1 < 1 and λ2 �

1/1 + h(τ + μ1)< 1. Also, it is clear that L> 0 and M> 0
whenever R0 < 1. So, by using Routh− Hurwitz criterion, the
other two roots of ( λ2 + λL + M) � 0 must have negative
real parts. Terefore, we conclude that the DFE point E0 of
the discrete NSFD model (11) is locally asymptotically stable
whenever R0 < 1. Tis completes the proof.

In the following theorem, we now prove the global
stability of the DFE point E0. To prove it, we use the criterion
employed by Vaz and Torres [35]. □

Theorem 6. For all h> 0, the DFE point E0 of the NSFD
model (11) is globally asymptotically stable whenever R0 ≤ 1,
as shown in Figures 2(a)–2(d).

Proof. If we choose ε> 0, then there exists an integer n0, such
that for any n≥ n0, Sn+1 <p/(τ + μ1) + ε. We consider the
sequence T(n){ } defned by

T(n) � hβSn+1Cn + An +
ω
C3

Cn +
μ1
C2

Rn, (44)

where C2 � (c2 + μ1 + ε) , C3 � (c + μ1 + ω). From above-
mentioned equation, we can write that

T(n + 1) − T(n) � hβSn+2Cn + An+1 +
ω
C3

Cn+1 +
μ1
C2

Rn+1 − hβSn+1Cn − An −
ω
C3

Cn −
μ1
C2

Rn,

� hβSn+2Cn + An+1 − An(  +
ω
C3

Cn+1 − Cn(  +
μ1
C2

Rn+1 − Rn( .

(45)

After simple calculations, we obtain

� hβSn+2Cn + h βSn+1(t)Cn(t) − c + μ1 + ω( An+1(t)(  +
ω
C3

h ωAn(t) − c2 + μ1 + ε( Cn+1(t)( 

+
μ1
C2

h τSn+1(t) + c2Cn+1(t) + ωAn+1(t) − μ1Rn+1(t)(  − hβSn+1Cn.

(46)

� hβSn+2Cn − h c + μ1 + ω( An+1(t) +
ω
C3

h ωAn(t) − c2 + μ1 + ε( Cn+1(t)( 

+
μ1
C2

h τSn+1(t) + c2Cn+1(t) + ωAn+1(t) − μ1Rn+1(t)( 
(47)

Let C1 � (c + μ1 + ω), then

� hβSn+2Cn − hC1An+1(t) +
ω
C3

h ωAn(t) − c2 + μ1 + ε( Cn+1(t)(  +
μ1
C2

h τSn+1(t) + c2Cn+1(t) + ωAn+1(t) − μ1Rn+1(t)( 

� h βSn+2Cn − C1An+1(t) +
ω
C3

ωAn(t) − c2 + μ1 + ε( Cn+1(t)(  +
μ1
C2

τSn+1(t) + c2Cn+1(t) + ωAn+1(t) − μ1Rn+1(t)(  

� h βSn+2Cn + ω − C1( An+1(t) +
μ1
C2

c2 −
ω
C3

c2 + μ1 + ε(  Cn+1(t) +
μ1
C2

τSn+1(t) − μ1Rn+1(t)(  .

(48)
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If U � μ1c2C3 − C2ω(c2 + μ1 + ε), then

� h βSn+2Cn − μ1c2C3 − C2ω c2 + μ1 + ε( ( Cn+1(t) + ω − C1( An+1(t) +
μ1
C2

τSn+1(t) − UCn+1(t) − μ1Rn+1(t)(  . (49)
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Figure 2: Te solutions of the HBV model (2) obtained through the NSFD scheme whenever R0 ≤ 1 and (a) h � 0.01, (b) h � 1, (c) h � 10
and (d) h � 20. Other parameters remain fxed as p � 0.5, β � 0.60, c � 0.2,ω � 0.5, τ � 0.001, μ1 � 0.2, c2 � 0.4, ε � 0.5.
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We can select β, a very small positive number such that

βSn+2Cn ≤ q An+1 + C1Cn+1 + C2Rn+1( . (50)

After simple rearrangement, we can write that

βSn+2Cn ≤ q An+1 + C1An+1 + C2An+1( ,

≤ q An+1 + C1
ω
C2

An+1 − C2
Uωc2

C2
+
ωc2

C2
 An+1  − U

An+1

C3
 ,

≤ q An+1 1 + C1
ω
C2

+ C2
ω
C2

c2  −
U

C3
  ,

≤ q An+1 1 +
βp τ + μ1( C1R0

βp
− ωc2(U + 1)(  −

U

C3
  .

(51)

If R0 ≤ 1, and because it is imprecise, we reach the
conclusion that T(n + 1) − T(n)≤ 0 and limn⟶∞In � 0 for
any n≥ 0. Te sequence T(n){ }

∞
n�0 is a monotonic decreasing

and lim
n⟶∞

Sn � p/τ + μ1. Hence, the DFE point E0 is globally
asymptotically stable. □

5.2. Local and Global Stability of DEE Point for NSFD Scheme

Theorem 7. For all h> 0, the DEE point E∗ of the NSFD
model (11) is locally asymptotically stable whenever R0 > 1.

Proof. In the similar way as in Teorem 5, the Jacobian
matrix can be obtained as

J �

1
1 + h βCn(t) + τ + μ1( ( 

0
− Sn + hp( hβ

1 + h βCn(t) + τ( ) + μ1( ( 
2 0

hβC(t)

1 + h c + μ1 + ω( 

1
1 + h c + μ1 + ω( 

hβS(t)

1 + h c + μ1 + ω( 
0

0
hω

1 + h c2 + μ1 + ε( 

1
1 + h c2 + μ1 + ε( 

0

h(τ)

1 + hμ1

h(ω)

1 + hμ1

h c2( 

1 + hμ1

1
1 + hμ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (52)

By putting DEE point E∗, we get
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (53)
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To fnd the eigenvalues of (53), we consider
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∗
+(τ) + μ1( ( 

  − λ 0
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∗
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− λ





� 0. (54)

Te abovementioned equation gives the following de-
terministic equation:

1
1 + hμ1( 

− λ  λ3 + λ2K + λL + M  � 0. (55)

Te abovementioned equation provides one eigenvalue
λ1 � 1/(1 + hμ1)< 1. Te remaining eigenvalues can be
obtained from

λ3 + λ2K + λL + M � 0, (56)

where
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(57)

It is clear that K, L, M> 0 whenever R0 > 1. Also,
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(58)
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Terefore, by applying Routh− Hurwitz criterion, all the
solutions of the (56) must have negative real parts whenever
R0 > 1. Hence, the DEE point E∗ of the NSFD scheme is
locally asymptotically stable whenever R0 > 1. □

Theorem 8. For all h> 0, the DEE point E∗ of the NSFD
model (11) is globally asymptotically stable whenever R0 ≥ 1,
as shown in Figures 3(a)–3(d)).

Proof. We construct a sequence V(n){ } such that

V(n) �
1

hA
∗ f

Sn

S
∗  +

1
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∗ f
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∗ f

Rn

R
∗ .

(59)

where C2 � (c + μ1 + ω) and C3 � (c2 + μ1 + ε). Let f(x) �

x − 1 − ln(x), x ∈ R+. Clearly f(x)≥ 0, and the equality
holds true if x � 1. We have
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(60)

Similarly.
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Figure 3: Te solutions of HBV model (2) obtained through NSFD scheme whenever R0 ≥ 1 and (a) h � 0.01, (b) h � 1, (c) h � 10 and (d)
h � 20. Other parameters remain fxed as p � 0.5, β � 1.60, c � 0.2,ω � 0.5, τ � 0.001, μ1 � 0.1, c2 � 0.4, ε � 0.5.
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Te diference of T(n) satisfes
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(63)

Terefore, T(n){ } is a monotonic decreasing sequence
for any n≥ 0. Since T(n){ }≥ 0 and limn⟶∞ (T(n + 1) −

T(n)) � 0, we obtain limn⟶∞Sn+1 � S∗, limn⟶∞An+1 � A∗,
limn⟶∞Cn+1 � C∗ and limn⟶∞Rn+1 � R∗. Hence, accord-
ing to Vaz et al. [35], we conclude that when R0 ≥ 1, the DEE
point E∗ is globally asymptotically stable. □

6. Conclusions

In the present paper, we proposed and investigated the
deterministic HBV disease model. Te aim is to understand
the disease dynamics and generate methods for managing
the disease transmission among the people. Te continuous
as well as discrete description of the model is discussed, and
diferent essential properties are developed. Both contin-
uous and discrete outcomes can be used as efcient tool for
monitoring the transmission of HBV epidemic diseases.
Te basic reproduction number R0 is constructed for the
model and by applying it, the local as well as global stability
of DFE and DEE points are discussed for the continuous
model. Te discrete NSFD scheme is developed for the
model which is not only unconditionally convergent but
also produces precise fndings that are mathematically and
biologically consistent with the associated continuous
model. Te local and global stability of both DFE and DEE
points are demonstrated for the NSFD scheme by utilizing

various criteria and conditions. Te qualities of the NSFD
scheme are presented, which shows that the results of the
NSFD scheme are qualitatively exact and profcient. Te
NSFD scheme is a simple technique which shows that the
continuous and discrete models behave identically, pro-
viding mathematically stable and high-quality response. By
using the NSFD scheme, we are able to better explain the
results that would be valuable to society and to the area of
medicine as well. Te outcomes provided in this paper can
be used as a helpful apparatus for forecasting the devel-
opment of HBV epidemic diseases. To support our theo-
retical results, numerical simulations are ofered at every
stage.
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