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The hepatitis B infection is a global epidemic disease which is a huge risk to the public health. In this paper, the transmission
dynamics of hepatitis B deterministic model are presented and studied. The basic reproduction number is attained and by applying
it, the local as well as global stability of disease-free and endemic equilibria of continuous hepatitis B deterministic model are
discussed. To better understand the dynamics of the disease, the discrete nonstandard finite difference (NSFD) scheme is produced
for the continuous model. Different criteria are employed to check the local and global stability of disease-free and endemic
equilibria for the NSED scheme. Our findings demonstrate that the NSFD scheme is convergent for all step sizes and consequently
reasonable in all respect for the continuous deterministic epidemic model. All the aforementioned properties and their effects are
also proved numerically at each stage to show their mathematical as well as biological feasibility. The theoretical and numerical

findings used in this paper can be employed as a helpful tool for predicting the transmission of other infectious diseases.

1. Introduction

Hepatitis is a general term that means inflammation of the
liver. This disease can cause both acute and chronic infec-
tions. The acute stage is usually defined as the first six
months of virus infection. During this phase, the immune
system is capable to manipulate the infection of human
body. The two primary indications of the acute stage are
feeling sick and having a high temperature, which subsides
after few weeks due to the immune system. Chronic disease
affects the liver ability to perform life-sustaining processes
such as removing dangerous transmitted substances from
the blood, collecting sugar levels, and converting it to useable
energy forms [1]. Hepatitis B virus (HBV) is one of the world
most serious health problems [2]. HBV has a large rate of
deaths, both from acute and chronic infection [3]. HBV is

spread by blood transfusion and gets transmitted to the
newly born child during pregnancy from affected mother.
Vaccination is the most enchanting and efficient process in
newly born children to decrease the occurrence of HBV [4].

HBV can induce chronic infection which can lead to
death from cirrhosis and liver cancer if not treated properly.
The HBV fatality rates are among the higher causes of
universal deaths [5]. Some pharmacological therapies for
chronic HBV have been proposed, including alpha inter-
feron, lamivudine, pegylated interferon, tenofovir dis-
oproxil, entecavir, and telbivudine [6]. During treatment, the
viral load is decreased, which reduces virus-related repro-
duction in the liver [7]. The vaccine against HBV is available
since 1982, but still its transmission continues to rise [8, 9].
According to Sheikhan and Ghoreishi [6], HBV can also live
beyond the mortal body. HBV can survive on the outer part
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of the body for at least seven days, and it can be transmitted
to any unimmunized human body during this time.

The use of mathematical modeling helps us to con-
centrate on the procedure by which an infectious disease
spreads throughout an area. Many mathematical models are
constructed by researchers from all around the world to
understand different types of infectious diseases and their
dynamic characteristics. In [10-13], the mathematical
models of fractional order derivatives have been employed to
investigate and evaluate the transmission of various infec-
tious diseases. The authors not only examined the precise
qualitative characteristics of the formulated models but also
offered numerical simulations to verify the obtained theo-
retical findings. In [14, 15], the authors presented vacci-
nation effects on HBV transmission with control strategies
by using different age structures in the population. In
[16-20], several specialized models of HBV transmission
dynamics have been focused on the impact of commitment
and control measures like vaccination and antiviral therapy.
Din et al. [21] performed a detailed analysis of stability,
showing that the reproduction number determines the
entire dynamic activities of the system. Recently, in [22], the
author discussed and analyzed the stochastic SACR model
for HBV transmission and left the deterministic model
unsolved. The author investigated the analytical results,
including the stability of disease-free and endemic equilibria
only for the continuous stochastic model. The purpose of the
present work is continuous and discrete characterization of
the hepatitis B deterministic model. Different criteria are
used to discuss the local as well as global stability of disease-
free and endemic equilibria for the continuous deterministic
model. The discrete NSFD scheme is constructed for the
continuous model to display its sustainability and biological
suitability. The NSFD scheme constructed for the model is
dynamically consistent with the original system for any step
size. Our theoretical and numerical findings indicate that the
NSFD scheme retains the essential qualitative characteristics
of the continuous model. Consequently, this scheme is not
only realistic but also verifies various features of the con-
tinuous model. The results acquired through this scheme are
very precise and accurate.

The paper is structured as follows: In Section 2, the HBV
epidemic model is presented and associated parameters are
explained. The existing equilibria and reproduction number
are established for the deterministic model in Section 3. By
using the reproduction number, the local and global stability
of disease-free and endemic equilibria for the continuous
model are discussed in Section 4. The discrete NSFD scheme
is constructed in Section 5 to analyze the convergence and
divergence of disease-free and endemic equilibria for the
proposed model. Our calculations show that the NSFD
scheme is an effective and powerful technique that presents a
clear portrait of the continuous model. The numerical
simulations are also provided which strengthen our theo-
retical results. Finally, a brief conclusion is presented in the
last section.
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2. Mathematical Model for HBV

In order to define the stochastic HBV disease model with
variable population environment, it is required to put some
conditions on the epidemic model. It is assumed that the
total population N (¢) at time ¢ is divided into four classes,
i.e., susceptible S(t), acutely infected A(t), chronically in-
fected C (t), and recovered R(t) where N (t) = S(t) + A(t) +
C(t) + R(t). The second supposition is that all state variables
and parameters of the proposed model are non-negative. The
function Q — Q + QB with O?>0 denotes the concen-
tration of white noise, where B(t) shows the normal which
satisfy B(0) = 0. Based on all above information, the sto-
chastic hepatitis B epidemic model [22] illustrated by the
system of four stochastic differential equations is defined as
follows:

ds(t) = (p - BSHC(t) — (1 + py)S(1))dt - QS () A()dB(1),
dA(t) = (BS(H)C () - (y + py + w)A(2))dt + QS (#)A(t)dB(¢),
dC(t) = (wA(t) = (y, + py +€)C(1))dt,
dR(t) = (1S(t) + y,C(t) + wA(t) — R (1))dkt.

(1)

By putting QO =0, the model (1) deduces into the fol-
lowing deterministic model:

% = p—BS(C(H) — (v + 1)S(D),

LY psoc® (e +a)aw),

% = @A) = (y, +p +)C (D), 2)
? = 18(t) + y,C (1) + wA(t) — i, R(2),

CY wa) (a1 +eC0)

Our main aim is continuous and discrete characteriza-
tion of model (2). It is assumed that all the parameters are
positive constants where the parameters and their expla-
nations are provided in Table 1.

As the total population N is denoted by

N=S+A+C+R (3)

So, by employing model (2), we attain

dN
E=P—MS—YA—IHA—MC*'“’A_MR- (4)

From previous equation, we can write that

dN
- 5
o <p-mS (5)
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TaBLE 1: Parameters included in model (2) and their explanations.

Parameter Parameter description

P The constant birth rate

B The transmission rate

T The vaccination rate

th Natural death rate

y The constant recovery rate for acutely infected individuals

15 The moving rate of acutely infected individuals to chronic stage
Y2 The disease induced death rate

&

The constant recovery rate for chronically infected individuals

lim supN sﬁ. (6)

t—00 P[l
Therefore, the feasible region for model (2) becomes

Kz{(S,A,C,R) ¢ R4,NS£}. )

“

3. Equilibria of the Model and Basic
Reproduction Number

3.1. Equilibria of the Model. The following two equilibria
exist for model (2):

3.1.1. Disease Free Equilibrium (DFE) Point. To find DFE
point, we take all other classes equal to zero except the
susceptible class, i.e., if A(t) = 0,C(t) = 0, R(f) = 0, then we
get S(t) = p/T + y,. Therefore, the DFE point denoted by
E%(S% A% C° R%) becomes E° = (p/t + y;,0,0,0).

3.1.2. Disease Endemic Equilibrium (DEE) Point. To find
DEE point, we simultaneously solve the proposed model (2)
for S, A, C and R. If the DEE point is denoted by
E*(§*,A*,C*,R*), then from model (2), we get

: (y+p tw)A™ (1)
S = )
® By, +py +€)C (1)

A* (t) — (YZ + 4! ;_ S)C* (t))

(8)
Ct (1) = wA" ()
(2 + 1, +e)
x p
R (t)=—+
® (7+ )

3.2. The Basic Reproduction Number (R,). The quantity R,
is the most crucial threshold related to any infectious
disease. It assists to find out whether an infectious disease
will transmit through population or not [23]. If Ry<1
throughout its infectious period, then infection does not
grow. On the other hand, if R, >1 then infection grows
and disease remains in the population. To obtain R,, we

employ transmission and translation matrices F(x) and
V (x), respectively. The previously discussed matrices can
be demonstrated as

S(t)C(t - At
F(x):{ﬁ() ()]andW(x):[ (y i+ @A ‘
0 wA () = (y, +py +€)C(1)
9
From the abovementioned matrices, we get
(o PP
Fo T+, ’
L0 0 (10)
[(y+ ¢y + @) 0
V= .
L —w (V2 +p +e)
As we know that
Ry =p(FV7Y). (11)
Therefore, using F and V, we obtain
R, Ppo (12)

T @) (o) (T hpy)

4. Local and Global Stability of DFE and DEE
Points for the Deterministic Model

In the following section, we first discuss the local and global
stability of DFE point for the deterministic HBV disease
model (2):

4.1. Local and Global Stability of DFE Point. To discuss the
local stability, we assume

F=p-BSH)C(t) = (t+u)S(t),
G=BSH)C(t) - (y +u, + w)A(t),

H = wA(t) — (y, + 4, +€)C(1),
I=178(t) +1,C(t) + WA(t) — s, R(1).

(13)

In the following theorem, we first discuss the local
stability of DFE point by using Routh—Hurwitz criterion
[24, 25]:



Theorem 1. The DFE point E° of model (2) is locally as-
ymptotically stable whenever Ry < 1.

Proof. Let us take the Jacobian matrix as follows:
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We first find all the derivatives included in (14) as

follows:

[OF OF OF OF
0S 0A 9oC OR
% 9 3G %
0S 0A dC OR
] = (14)
ot oH it ot
0S 0A oC OR
or o1 o1 or
L0S 0A dC OR-
OF OF OF OF oG oG
E = —ﬁC(t) - (T +‘lll),ﬂ = 0,% = —[SS(t),ﬁ = O,B—S = ﬂC(t),ﬁ = —(V + Y+ w),
oG oG o0H OH oH OH ol ol ol
= ﬁS(t),aR O,as O’BA e (y2+y1+s),aR O,as LYl 23 (15)
o__
aR - ”1'
By replacing all the derivatives in (14), we get By putting DFE point E® = (p/t + y;,0,0,0), we get
—pCt) = (7 +m) 0 -ps@) 0
~ BC(t) -(y+u +w) BS(t) 0
0 w (v +m+e) 0
T w Y2 !
(16)
r ﬁp -
—(7+ 0 - 0
( ‘ul) (T+ #1)
Bp
0 —(y+u +o 0
J(E%) = rrmre)  Ghm (17)
0 w ~(va+p +e) 0
LT w Y2 4y
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In order to find eigenvalues, we consider

~(r+m) -2 0
0 ~(y+m+w)-2
0 w
T w

The characteristic equation for the abovementioned
equation becomes

(2 +p +e) =2 0

5
Bp

T
Pp 0

(t+u) =0. (18)

Y2 —uy - A

Theorem 2. The DFE point E° of model (2) is globally as-
ymptotically stable whenever R, < 1.

(~(r+ ) =A) (=1, 1) (¥ +AP+Q) =0, (19)
Proof. In order to demonstrate the global stability of DFE
where point E° of model (2), we construct the Lyapunov function
P=(y+m+w)+(yy g +6), oo
Q=(y+p+0)(y,+m +&)(1-Ry). L=(8-S)+A+C+R (2D
The two negative roots of (19) are A, = —, and A, = From (21), the following can easily be obtained:
—(7+ ;). Also, it is clear that P>0 and Q >0 whenever dL dS dA dC dR 2
R, < 1. So, l)2y using Routh—Hurwitz criterion, the other two G at T T atar (22)
roots of A+ AP+ Q =0 must have negative real parts. ) )
Therefore, we deduce that E is locally asymptotically stable After simple calculations, we get
for R, < 1. This completes the proof. O
dL
S =P p)S=(y +u)A=(r2 +p +e)C—mR(),
dL
5= () (S =S0) = (v +pm)A = (2t +€)C— R (), (23)

dL

5= (@) (S =8) + (y +u)A+(r2 + 1 +€)C+uR(1) <0.

Thus, dL/dt <0 for R < 1. Also note that dL/dt = 0ifand
only if § = SjandA = C = R = 0. Hence, Labzai et al. [26]
imply that E° is globally asymptotically stable, as shown in
Figure 1(a). O

4.2. Local and Globally Stability of DEE Point

Theorem 3. The DEE point E* of model (2) is locally as-
ymptotically stable whenever Ry > 1.

Proof. In the similar way as in Theorem 1, the Jacobian
matrix can be written as

—BC(t) - (7 + ) 0 -BS () 0
I BC(t) —(y+u, +w) BS(t) 0
) 0 ©  Apyrpte) 0
T w Y2 —H
(24)

By putting DEE point E*, we get
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FiGure 1: The solutions of HBV model (2) obtained through ODE-45. (a) Stable DFE point whenever R, <1 and p = 0.05, (b) stable DEE
point whenever R, >1 and p = 2. Other parameters remain fixed, as # = 0.60,y = 0.2, w = 0.5,7 = 0.001, 4y = 0.2,y, = 0.4,¢ = 0.5.

[ —PwA™(t)
(V2 + 4 +e)

BwA* ()

(r+

(yo+u +e)

u1)

0 Bly+m +@)A™ (1) ]
(V2 + 1y +€)C (1)
By +u +w)A” (1)
~(r+um+o) (y2 + 1y +€)C (1) (25)
® ~(ratm+e) 0
w Y2 —H -
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In order to find the eigenvalues, we consider

—BwA”™ (1) By +p; +w)A™ (1)
- -1
(y2+p1 +e) () ° (v2+m +e)C ()
BwA* (t) By +p, +w)A™ (t)
_pea A\ _ Y .
(V2 + 1y +e) (rem+a) (V2 +p +)C (1) =0.
0 w —(y+u +e)-A 0
T w Y2 —py — A

o ) ) ) M+ BV + DA+ E=0,
The characteristic equation of abovementioned equation

becomes (—p; — 1) (A*+BA*+ DA+ E) =0. where
The abovementioned equation gives one negative ei-

genvalue A; = —u;. The other eigenvalues can be obtained

from

A" (t
- S )+ (e @)+ (o 40,

D~ BwA* () (y + py + )
(y2+p +e)

+ oA (1) + (t+p) (Y +p + )

Bew(y +u + A" (1) (t+ )
(rtwm+e)C @)

+(r+ru) (2t re)+ (g + @)yt te)+

L fan’ (t)(Hyl)(yﬂtl +w)A” (t)<1— (y+ 4y +w)A” (t)R0)>O.
(v2 + 1y +€)C (1) p

It is clear that B, D, E >0 whenever R, > 1. Also,

BwA* ()
(y2 + 1 +e)

PoA™ () (y + 4y + @)
(y2+p +e)

BD—E:( +(T+y1)+(y+y1+w)+(y2+[41+e))< + BwA”™ ()

w(y+py +w)A" (@) (T +p)

t(r+p)(y v+ o)+ (Tp) (vt re)+(y+u + o) (ya+p +e)+ P

_(/3‘0A* O (T +p) (v + ) + 0)A” (1) <1 C(r+p re)A O )) >0
* O ’
(y2 +u +€)C (1) p

(yy +p +€)C (1)

(26)

(27)

(28)

(29)

) (30)



Hence, by applying Routh—Hurwitz criterion, all the
solutions of (27) must have negative real parts if and only if
R, > 1. Therefore, E* is locally asymptotically stable when-
ever R, > 1. O

Theorem 4. The DEE point E* of model (2) is globally as-
ymptotically stable whenever Ry > 1.
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Proof. In order to demonstrate the global stability of DEE
point E* of model (2), we construct the Lyapunov function
as

W=2[(S-8) +(A-A)+(C-C)+ (R-R)P. (D)

Now, we calculate the derivative with respect to the time
of (31) and then using model (2), we get

d\II * * *
7 =S =8)+(A-A)+(C-CT)]* [p~(r+u)S~(y+p)A~(y2+ 1 +€)C— R]. (32)
If we put @, = (7+u4,), Py = (y+41), D3 = (y, + 4y +
€), ®, = p,. Then, after simple arrangement, we get
d¥y . . . . *
 =[(8-8)+(A- A7) +(C-C) + (R-R")] * [-S'Ry®, - 5P, - A~ ,C - D,R],
d\y * * * * *
—=—(§-S)+(A-A")+(C-C")+(R- * [S'Ry®; + SO, + ©,A + D;C + O R],
pr [(S-S)+(A-A")+(C-C")+(R-R")] = [S'RyD; + SO, + A + O,C + O,R] (33)
dy . * . . *
—=—{(§-S")+(A- +(C- +(R- * + + + + .
2= 188 +(A-AT) +(C-CT)+ (R=R)]+ [(SRy +S)®; + DA + O3C + D,R]

Since the right-hand side of (33) has a negative sign, so
the derivative on right hand side is less than or equal to zero,
i.e,, d¥/dt <0. Substituting S=85*,A=A*,C=C*",R=R"
in (33), d¥/dt yields zero, i.e., d¥/dt = 0. Therefore, the
largest invariant set in {(S, A,C, R)eR*: d¥/dt = 0} is the
singleton invariant set E*, where E* is the DEE point. Then,
by applying invariant principle of LaSalle et al. [27], it
implies that E* is globally asymptotically stable, as shown in
Figure 1(b). O

S N

ntl —

h

A
h

C

il T ~n

5. The NSFD Scheme

The main objective of this subsection is to develop a dy-
namically reliable discrete NSFD scheme for system (2). The
NSED scheme has been taken successfully to a variety of
challenges, including ecology [28, 29], epidemiology [30, 31],
and population models [32, 33]. To develop the NSFD
scheme for system (2), we use S,, A,,, C,,, and R, as numerical
approximations of S(t), A(T),C(t),and R(t) at t = nh,
where n = 0,1,2...., and h denotes the time-step size. By
applying the concept of Mickens [34], we can discretize
model (2) as follows:

"= p- ﬁSnH (t)cn (t) - (T + A"ll)snﬂ (t)’

L_An = ﬁSn+1 (t)cn (t) - (Y + Ml + w)An+1 (t)’

(34)

= wAn (t) - (Yz it S)Cn+1 (t)’

—ml Tn 78,41 (1) + Y,Cy () + WA, (1) =R, (B).
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The discrete NSFD model (10) can be rearranged to get
explicit form as

B S, +hp
" (L +h(BC, (O + h(T+ )
A, +hBC,(1)S,,, (t)
(A h(y )

S

(35)
C, + hwA, (t)

C.,= 2
(L+h(y,+u +e)

n+1

_R,+h (7811 () + y2C,011 () + WA, (1))

R = (1 +hy,)

5.1. Local and Global Stability of DFE Point for NSFD Scheme.
To obtain the local stability of the DFE point, we assume
that

F. =S _ Sn + hp
T T (B, (0 h(r )

= = A” + hﬁcn (t)SnH (t)

F2 _An+l - (1 +h('y+‘l41 +(U)),
(36)

_ _ C,+hwA, (1)
F3 - Cn+1 - (1 + h(yz +”1 +8)),
F,=R,, = R, +h(1S,,1 (8) + 1,C,1 () + @A, (t)).

(1 +huy)

Theorem 5. For all h>0, the DFE point E° of the NSFD
model (11) is locally asymptotically stable whenever Ry < 1.

Proof. Let us take the Jacobian matrix as follows:

(OF, OF, oF, oF)
dS 0A 0C OR

dF, 9F, OF, oF,
39S 0A oC OR
J= : (37)
dF, OF, OF, OF,
9S 0A oC OR

dF, OF, OF, OF,
L3S 9A 9C R

First, we find all the derivatives of matrix (13) as follows:

*_

0S  1+h(BC,(t) +(t+u))
% =0 % — _(Sn + hp)hﬁ
0A 7 oC (l+h(/3Cn(t)+T+[11))2)
OO0
OR 79S8 1+h(y+u +w)
9F, _ 1

0A  1+h(y+u +w)

0F, _  hpSn(®)  OF, _
0C l+h(y+pu +w) oR
oF,

“3_0,

oS

By o (38)
0A 1+h(y,+u +e)

oF; _ 1

0C 1+h(y,+u +e)

oF,

“3-0,

OR

o, e

S  1+hu

o, ha

0A  1+hu,

oF, __hy,

oC 1+hy,

o1

aR_1+h‘u1'
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By replacing all the derivatives in (37), we get

1 0 —(S,, + hp)hp
1+ h(BC, (1) + (T +p,)) (1+h(BC, () +7+u))
hBC, (¢) 1 hf3S,.1 (1) 0
L+h(y+u +w) L+h(y+u +w) L+h(y+u +w)
J= (39)
hw 1
0 0
L+h(y, +u, +e) L+h(y, +u, +¢)
ht h(w) hy, 1
1+ hy, 1+ hy, 1+ hy, 1+ hy, |
After putting the DFE point E°, we get
r 1 —(p/t +u, + hp)hp ]
— 0 k 0
L+h(t+u,) (L+h(t+u))
0 1 hBp 0
. Lth(y+u +w) (L+h(y+p+0)(T+u)
J(E’) = (40)
0 hw 1 0
L+h(y, +u, +¢) L+h(y, +u, +e)
ht h(w) hy, 1
L 1+ hy 1+ hy, 1+ hy, 1+ hy, |
In order to find the eigenvalues, we consider
1 —(p/t +u, + hp)hp
— -1 0 . 0
L+h(t+uy,) (L+h(t+u))
0 ! ) hpp 0
L+h(y+p +w) = (1+h(y+p +w)(t+m)
=0. (41)
0 hw 1 Y 0
L+h(y, +p, +e¢) L+h(y, +p, +¢)
ht h(w) h(y,) 1
-1
1+ hy, 1+ hy, 1+ hy, 1+ hy,
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The abovementioned equation gives the following
characteristic equation:

((1 +lhy1) _A><(1 + h(lT) ) ‘A>(Az +IA+ M) =0, (42)

where

1 1
L= X
1+h(y+;41+w)+1+h(y2+y1+s)

hBpw
(L+h(y,+u+e)(1+h(y+p +)(r+p)

The two roots of the (42) are A, = 1/1 + hy; <1land A, =
1/1+h(r+p,)<1. Also, it is clear that L>0 and M >0
whenever R; < 1. So, by using Routh—Hurwitz criterion, the
other two roots of (A* + AL + M) = 0 must have negative
real parts. Therefore, we conclude that the DFE point E° of
the discrete NSFD model (11) is locally asymptotically stable
whenever R, < 1. This completes the proof.

(43)

T(n+1) - T (n) = hBS,,,C, + A, + Cﬁcn+1 +
3

11

In the following theorem, we now prove the global
stability of the DFE point E°. To prove it, we use the criterion
employed by Vaz and Torres [35]. O

Theorem 6. For all h>0, the DFE point E° of the NSFD
model (11) is globally asymptotically stable whenever R, <1,
as shown in Figures 2(a)-2(d).

Proof. If we choose ¢ > 0, then there exists an integer 7, such
that for any n>ny, S,.,, < p/(7+ y;) + &. We consider the
sequence {T'(n)} defined by

T(n) = hBS,.,C, + A, +—C, + “1R | (44)
G G,

where C, = (y, +y; +¢€), C; = (y + 4, + w). From above-
mentioned equation, we can write that

w #
= hﬁsn+2cn + (An+1 - An) + C_3 (Cn+1 - Cn) + =t (Rn+1 - Rn)

After simple calculations, we obtain

= hﬁSnJrZCn +h (ﬁSnH (t)cn (t) - (Y + H + w)AnH (t)) + Cgh (wAn (t) - (y2 + 151 + s)cnﬂ (t))
3

+ %h (TSn+1 (t) + Vzcn+1 (t) + wAn+1 (t) - .“an+1 (t)) - hﬁsnﬂcn'
2

= hﬁSm—ZCn —h (V iyt w)An+1 (t) + Cih(wAn (t) - (YZ Tyt S)Cn+1 (t))
3

H w 8!
“—~R,,-hpS,.,C,-A,-—C,——R,,
C2 n+1 /3 n+l™~n n C3 n C2 n
(45)
G
(46)
(47)

+ %h (TSn+1 () + 92C01 (1) + WA, (£) — iy R, (t))
2

Let C, = (y + ¢4, + w), then

w
= hBS,,C, — hC A, (£) + gh(WAn )= (y +w + S)le (t)) + %h(-[srﬁl (5) +9,C1 () + WA, (£) — R,y (t))
3 2

= h(/jsnﬂcn - ClAn+l (t) + Cﬂ (wAn (t) - (VZ Ut S)CrH—I (t)) + % (Tsn+1 (t) + VZCnH (t) + wAn+1 (t) - ."‘an+1 (t))) (48)
3 2

- h(ﬁsmcn +(@=C) Ay (1) +(%yz et s))C,m (1) + & (1S (0 = Ry <t>)).
2 3 2
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FIGURE 2: The solutions of the HBV model (2) obtained through the NSFD scheme whenever Ry <1 and (a) h = 0.01, (b) h =1, (c) h = 10
and (d) & = 20. Other parameters remain fixed as p = 0.5, = 0.60,y = 0.2, w = 0.5, 7 = 0.001, g, = 0.2,9, = 0.4, = 0.5.

IfU = uyy,C5 — Cow(y, + 4y +€), then

= h(ﬁsmzcn — (172C5 = Cow(y, + 1 +8))Cpppy (1) + (0 = C1) A, (1) + % (7S040 (1) =UC,,,, (£) = phy Ry (t)))- (49)
2
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We can select 3, a very small positive number such that

ﬁanrZCn < q (An+1 + CICnJrl + C2Rn+1)' (50)

13

After simple rearrangement, we can write that

BSui2Cu <4 (Api + CrA, + CA,L),
w Uwy, wy A
S Q((Anu + C1C_2An+1 - Cz( c, 24 C_;)Anu) - UCL;l)’

(51)
w w U
< q(An+l<(l + C162 + CzCZY2> - C3))

Sq(AnH(l +M—(wh(U+ 1)) —g))

Bp

If Ry<1, and because it is imprecise, we reach the
conclusion that T (n+1) - T (n) <0 and lim,_, I, =0 for
any n> 0. The sequence {T'(n)},2, is a monotonic decreasing
and lim S, = p/7 + ;. Hence, the DFE point E is globally
asymptotically stable. O

5.2. Local and Global Stability of DEE Point for NSED Scheme

3

Theorem 7. For all h>0, the DEE point E* of the NSFD
model (11) is locally asymptotically stable whenever R, > 1.

Proof. In the similar way as in Theorem 5, the Jacobian
matrix can be obtained as

- ! (5, + ho)h .
L+h(BC, (1) + (7 +u)) (1+h(BC, (D) + (1) +py))’
hBC (1) 1 hBS () 0
L+h(y+u +w) L+h(y+u +w) L+h(y+uy, +w)
J= (52)
0 hw 1 0
Lt h(y, +py +¢) L+h(y, +p +e)
h(z) h(w) h(y,) 1
L 1+ hy, 1+ hy, 1+ hy, 1+ hy, |
By putting DEE point E*, we get
1 ~(S" + hp)hp 0
L+ h(BC" + (1) + ) (1+h(BC, () + (1) + 1))
hpC* 1 hpS* 0
(I+h(y+p+w) L+h(y+m+w)  (L+h(y+p +w))
J(E") = (53)
0 how 1 0
L+h(y, +p +e) L+h(y, +u, +e)
ht hw hy, 1
1+ hy, 1+ hy, (1+ hy) 1+hy, |
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To find the eigenvalues of (53), we consider

( 1 ) —(S" + hp)hp
* _A 0 2
(L+h(BC" + (1) +1y)) (T+h(BC, () + (1) +py))
hpC* 1 Y hpBS” 0
(L+h(y+m + ) (L+h(y+m + ) (L+h(y +m + )
=0. (54)
0 hw 1 Y 0
(I+h(ya+m+e)  (L+h(y+p +e))
h(7) h(@) h(y2) 1
(1+hyy) (1+ hyy) (1+hyy) (1+hyy)
The abovementioned equation gives the following de- The abovementioned equation provides one eigenvalue
q 8 g g
terministic equation: Ay =1/(1 +hy;)<1. The remaining eigenvalues can be
] obtained from
392 _
(m—a>()t +A’K +AL+M) = 0. (55) P4 PK4AL+ M =0, (56)
where
~ 1 N 1 B 1
(L+h(y+um+w)) (L+h(yy+u+e)) (L+h(BCT +(7) +uy))
- 1 N 1
(L+h(y+p +@)(A+h(BCT + () +py)  (L+h(yy+u +€)(1+h(BC +(7) +py))
1 WBS* w
+ + ) (57)
(L+h(y+p + @)X +h(y,+u +e) (L+h(y,+p +e))
B WBC* (S* +hp)w
(1+h(y + + @) (L +py +€) (1+h(BCT () + 7+ w,))’
1
(L+h(y+p+ @) (1+h(ys+u +€) (1 +h(BCT + (7 +p).
It is clear that K, L, M >0 whenever R, > 1. Also,
KL—M:( ! + ! - ! )
(+hy+p+w) (+h(y,+p+e) (1+h(BC +(r+w)))
< 1 . 1 . 1 . WpS*w )
(L+h(y+m+@)(1+h(BC + (@M +w) A+h(y+m+e)A+A(BEC + @ +w))  (L+h(y+u+0)(L+h(y,+m+e)  (L+h(y+p +¢))

~ WBC* (S* + hp)w .\ 1 o
(U+h(y+u + @)L+ h(y,+p + &)1+ h(BC (1) +T+p,)) (L+hy+u+@))(L+h(y,+p +6)) (1+h(BCT + (7 + 1))

(58)
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Therefore, by applying Routh—Hurwitz criterion, all the
solutions of the (56) must have negative real parts whenever
R, > 1. Hence, the DEE point E* of the NSFD scheme is
locally asymptotically stable whenever R, > 1. O

Theorem 8. For all h>0, the DEE point E* of the NSFD
model (11) is globally asymptotically stable whenever R, > 1,
as shown in Figures 3(a)-3(d)).

Proof. We construct a sequence {V (n)} such that

15

von = S(8) i A () s /() N
59
" hcf?*A* f <1§_)

where C, = (y+y; + w) and C; = (y, + y; +¢). Let f(x) =
x—-1-In(x),x € R*. Clearly f(x)>0, and the equality
holds true if x = 1. We have

S*

n

— (Sn+1 _f*)h
Sn+1S

= Bt =) 55" (1NC + (24 )" ()~ By (DG, (1) — (¢ + )81 (1)

sn+ls*

f<sn+l> _ f(s_n> — Sn+1 - Sn —In Sn_+1 < (Sn+1 - S*)(Snﬂ - Sn)
s* s* S, )~ S5

(p - ﬁsnﬂ (t)Cn (t) - (T + )Sn+1 (t))

(60)

=h ((Sn+1 - S*) (_(T + ‘Lll) (Sn+1 - S*) - ﬁC* (Sn+1 - S*)))

*\2
T+A“1)(Sn+l ) )

S,.1S" + phC” (1 -3

Similarly.

S*

n+1

(An Sn+1 1)
A" S

f<An+1> _ f<An> — An+1 B An —In An+1 < (An+1 B A*)
A* A" AF A, )5 ALA

n

< (An+1 - A*)
An+1A

< (An+1 - A*)

- AL AT

n+1

Cn+IS* _ an+1A*

(ﬁsnﬂ (t)Cn (t) - (Y Tt w)An+1 (t))

(ﬁsnﬂ (t)cn (t) -

=(1- A* whA* (An+1 _ Cn+1
A o A" C”

n+l

C c +wA, (t))

(- Ee=) @
AL )\ C S C

f<cn+1> B f<&> _ G =G, ln(cn+1> < (Ch1 = C)(Cui1 - C))

o c c

< (Cn+1 B C*)
Cn+1C*

(Cn+1 -C

Co ) CpnC

n

(wAn (t) - (VZ iyt E)Cn (t))

n+l

* C* A C
57*) wA,(t)-C5C,, =C5h[ 1 - ( nII _ nl—l)'
Cn+1C C A C
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FIGURE 3: The solutions of HBV model (2) obtained through NSFD scheme whenever R, > 1 and (a) h = 0.01, (b) h = 1, (c) h = 10 and (d)
h = 20. Other parameters remain fixed as p = 0.5, § = 1.60,y = 0.2,w = 0.5, 7 = 0.001, y; = 0.1, y, = 0.4, € = 0.5.

f<Rn+l> B f<&> _Rui-R, ln(h) < (R —R") (Ry1 —R,)

R R R R, R R
R .,-R*
<R 2R (g (0 + 1ot (O + 0y (8) — iRy (1) (62)
Rn+1R

_nf1-K (Anzl-anl).
Rn+1 A R
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The difference of T (n) satisfies

Tn+1)-T(n) =

g (—(r) ) G =SV gy o (1 . SS* )
n+1

Sn+ls

(- ANSC L (BCSu CunS|
A, ) C s c’

ol <<cm -cY)

(wAn (t) - C3Cn+1)>

e (10) -1 i () -1 ()

i () -1(@)) i (1

17

1- n+1 Rn+1)
hCZSA R,., R /)

*
n+1)
n+1

T hC,STAT\ C,,C
_Bh(Su —S)" whA”( C A Sut
T SS [o AT S
1 (C'A ACyy BR* (C'R
hS*\C,,, C” AnHC Czs AT n+1R

C,.
_ﬂh (Sn+1
STUSaS Sn+ls (f(
/J)R* n+1 n+1
hCZS A < < n+1 >+f< n+1 >>

Therefore, {T'(n)} is a monotonic decreasing sequence
for any n>0. Since {T'(n)}>0 and lim, ,  (T'(n+1)-
T (n)) = 0, weobtainlim, ,__S,,, =S*, lim, | A, =A"
lim, . C,,, =C* and lim, R, = R*. Hence, accord-
ing to Vaz et al. [35], we conclude that when R, > 1, the DEE

point E* is globally asymptotically stable. O

6. Conclusions

In the present paper, we proposed and investigated the
deterministic HBV disease model. The aim is to understand
the disease dynamics and generate methods for managing
the disease transmission among the people. The continuous
as well as discrete description of the model is discussed, and
different essential properties are developed. Both contin-
uous and discrete outcomes can be used as efficient tool for
monitoring the transmission of HBV epidemic diseases.
The basic reproduction number R; is constructed for the
model and by applying it, the local as well as global stability
of DFE and DEE points are discussed for the continuous
model. The discrete NSFD scheme is developed for the
model which is not only unconditionally convergent but
also produces precise findings that are mathematically and
biologically consistent with the associated continuous
model. The local and global stability of both DFE and DEE
points are demonstrated for the NSFD scheme by utilizing

n+1 )
n+1c

n+1 i ﬁsnﬂ _ <ﬂ>_i A*Cn+1 C*An+1
> *>>+f< s ) &) wUa o)\ a

(63)

various criteria and conditions. The qualities of the NSFD
scheme are presented, which shows that the results of the
NSFD scheme are qualitatively exact and proficient. The
NSED scheme is a simple technique which shows that the
continuous and discrete models behave identically, pro-
viding mathematically stable and high-quality response. By
using the NSFD scheme, we are able to better explain the
results that would be valuable to society and to the area of
medicine as well. The outcomes provided in this paper can
be used as a helpful apparatus for forecasting the devel-
opment of HBV epidemic diseases. To support our theo-
retical results, numerical simulations are offered at every
stage.
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