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Nowadays, researchers in applied sectors are highly motivated to propose and study new generalizations of the existing dis-
tributions to provide the best �t to data. To provide a close �t to data in numerous sectors, a series of new distributions have been
proposed. In this study, we propose a new family called the new generalized-X (for short, “NG-X”) family of distributions. Based
on the NG-X method, a novel modi�cation of the Weibull model called the new generalized-Weibull (for short, “NG-Weibull”)
distribution is studied. ­e heavy-tailed characteristics of the NG-X distributions are derived. ­e maximum likelihood esti-
mators of the NG-X distributions are also obtained. Based on the special case (i.e., NG-Weibull) of the NG-X family, a simulation
study is provided. ­e practical performance of the new NG-Weibull model is assessed by analyzing the COVID-19 data set. ­e
�tting results of the NG-Weibull model are compared with three other competing models. Based on certain statistical measures, it
is observed that the NG-Weibull model is the best competitive model.

1. Introduction

In the practice of applied statistics, statisticians are highly
motivated and attracted to introduce new probability dis-
tributions. ­is motivation has gained popularity in the
recent decade. In this credit, the development and intro-
duction of new families of distribution have received much
attention. ­e new families are developed by introducing
new parameters [1–4].

­eoretically and practically, some distributions do not
have enough �exibility to counter the complex forms of the
data sets. For example, the classical models do not provide a
reasonable �t to the extreme value data [5]. ­is is the main
attracting reason to go for the development of new statistical
distributions. ­e development of the modi�ed forms of the
existing distributions helps to improve the �tting power of
the existing distributions [6].

Recently, Chipepa et al. [7] introduced a new generalized
family of distributions called the OGHLW-G (odd

generalized half-logistic Weibull-G) family of distributions.
­ey have obtained some structural properties of the
OGHLW-G family. ­ey have also discussed some special
models of the OGHLW-G family to show the importance of
the newmodels. Chipepa et al. [8] also proposed the Burr III-
Topp-Leone-G family of distributions for analyzing (i)
carbon �bres data, (ii) fracture toughness of silicon nitride
data, and (iii) turbocharger failure times data.

Ahmad andHussain [9] introduced a NEF-Weibull (new
extended �exible-Weibull) distribution to model the lifetime
data with bathtub-shaped failure rates. Some other modi�ed
and extended distributions include the beta-Weibull (B-
Weibull) distribution of Famoye et al. [10]; the �exible
Weibull (FWEx) distribution of Bebbington et al. [11]; the
generalized modi�ed Weibull (GM-Weibull) distribution
proposed by Carrasco et al. [12]; the KumaraswamyWeibull
(K-Weibull) distribution proposed by Cordeiro et al. [13];
the beta modi�ed Weibull (BM-Weibull) distribution of
Silva et al. [14]; the exponentiated modi�ed Weibull
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extension (EMWE) distribution introduced by Sarhan and
Apaloo [15]; the Gumbel-Lomax (GL) distribution sug-
gested by Tahir et al. [16]; and the Marshall–Olkin inverse
Lomax distribution (MO-ILD) studied by Maxwell et al.
[17].

Another prominent approach for extending and
updating the existing distributions is called the new expo-
nential-X family of Ahmad et al. [5]. ,ey introduced the
new exponential-X family by combining the exponential
distribution with the T-X approach of Alzaatreh et al. [18].

Eliwa et al. [19] further contributed to the literature by
introducing the exponentiated form of the Chen-G family of
distributions. For other recent contributions to the devel-
opment of new approaches for updating the existing dis-
tributions, we refer to (i) the truncated burr-XG family [20],
(ii) the Fréchet Topp Leone-G family [21], (iii) the trans-
muted alpha power-G family [22], (iv) the Marshall–Olkin
Zubair-G family [23], (v) a new family of continuous (NFC)
distributions [24], and (vi) the Topp-Leone Odd Burr III-G
(TLOBIII-G) family [25].

In this article, we propose a NG-X family of distributions
to obtain the modified and updated versions of the existing
distributions. ,e NG-X method can be implemented to
obtain new flexible distributions for modeling data in var-
ious sectors such as reliability, survival analysis, healthcare,
biomedical engineering, and lifetime studies. ,e next
section is devoted to introduce the proposed NG-X family of
distributions.

2. ANewGeneralized-XFamilyofDistributions:
the Proposed Method

In this section, the probability density function (PDF),
cumulative distribution function (CDF), survival function
(SF), hazard function (HF), and cumulative HF (CHF) for
the NG-X family are computed.

Definition: A random variable X has a NG-X family, if it
is CDF G(x; α, δ,Ξ) is given by

G(x; α, δ,Ξ) � 1 − 1 −
(1 − δ)2F(x;Ξ)
[1 − δF(x;Ξ)]2

􏼠 􏼡

α

,

α> 0, δ ∈ (0, 1), x ∈ R.

(1)

,e function defined in (1) is a valid DF, if and only if,
δ ∈ (0, 1). Corresponding to G(x; α, δ,Ξ), the PDF
g(x; α, δ,Ξ) is given by

g(x; α, δ,Ξ) �
α(1 − δ)

2
f(x;Ξ) 1 + δF(x;Ξ){ }

[1 − δF(x;Ξ)]2α+1

· F(x;Ξ) 1 − δ2F(x;Ξ)􏽮 􏽯􏽨 􏽩
α− 1

.

(2)

Furthermore, in link to G(x; α, δ,Ξ) and g(x; α, δ,Ξ),
the G(x; α, δ,Ξ), HF h(x; α, δ;Ξ), and CHF H(x; α, δ;Ξ) are
given by

G(x; α, δ,Ξ) � 1 −
(1 − δ)2F(x;Ξ)
[1 − δF(x;Ξ)]2

􏼠 􏼡

α

,

h(x; α, δ,Ξ) �
α(1 − δ)

2
f(x;Ξ) 1 + δF(x;Ξ){ }

[1 − δF(x;Ξ)]
F(x;Ξ) 1 − δ2F(x;Ξ)􏽮 􏽯􏽨 􏽩

− 1
,

H(x; α, δ,Ξ) � − α log 1 −
(1 − δ)

2
F(x;Ξ)

[1 − δF(x;Ξ)]2
􏼠 􏼡,

(3)

respectively.
In this paper, we implement the NG-X family approach

to introduce an updated version of the Weibull distribution
called the NG-Weibull (new generalized Weibull) distri-
bution. In the next section, we provide the expressions for
the PDF, CDF, SF, and HF of the NG-Weibull distribution.
Furthermore, the plots for the PDF, CDF, SF, and HF of the
NG-Weibull distribution are also provided.

3. A NG-Weibull Distribution: a Special Model

With parameters θ> 0 and c> 0, consider the CDF F(x;Ξ)
of the Weibull distribution is given by

G(x;Ξ) � 1 − e
− cxθ

, x≥ 0. (4)

,e respective PDF g(x;Ξ), SF S(x;Ξ), and HF h(x;Ξ)
are, respectively, given by

g(x;Ξ) � θcx
θ− 1

e
− cxθ

, x> 0,

S(x;Ξ) � e
− cxθ

, x> 0,

h(x;Ξ) � θcx
θ− 1

, x> 0,

(5)

where Ξ � (α, ϑ).
Using (4) in (1), we get the CDF of the NG-Weibull

distribution, given by

G(x) � 1 − 1 −
(1 − δ)2 1 − e− cxθ

􏼐 􏼑

1 − δ 1 − e− cxθ
( 􏼁􏼂 􏼃

2
⎛⎝ ⎞⎠

α

, x≥ 0. (6)
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,e PDF of the NG-Weibull distribution is given by

g(x) �
α(1 − δ)

2θcx
θ− 1

e
− αcxθ

1 + δ 1 − e
− cxθ

􏼒 􏼓􏼚 􏼛

1 − δ 1 − e
− cxθ

􏼒 􏼓􏼔 􏼕
2α+1

· 1 − δ2 1 − e
− cxθ

􏼒 􏼓􏼔 􏼕
α− 1

.

(7)

Some possible behaviors for g(x) of the NG-Weibull are
presented in Figure 1. ,ese plots are obtained for (i) α �

2.9, δ � 0.8, c � 2.5, θ � 4.9 (red curve), (ii)
α � 2.7, δ � 0.7, c � 0.6, θ � 4.1 (blue curve), (iii)
α � 3.1, δ � 0.7, c � 4.6, θ � 0.9 (gold curve), (iv)
α � 3.8, δ � 0.1, c � 3.2, θ � 3.5 (green curve), and (iv) α �

0.8, δ � 0.4, c � 3.8, θ � 0.5 (black curve).
Furthermore, the SF and HF of the NG-Weibull dis-

tribution are given by

G(x) � 1 −
(1 − δ)2 1 − e− cxθ

􏼐 􏼑

1 − δ 1 − e− cxθ
( 􏼁􏼂 􏼃

2
⎛⎝ ⎞⎠

α

,

h(x) �
α(1 − δ)

2θcx
θ− 1

e
− αcxθ

1 + δ 1 − e
− cxθ

􏼒 􏼓􏼚 􏼛

1 − δ 1 − e
− cxθ

􏼒 􏼓􏼔 􏼕

· 1 − δ2 1 − e
− cxθ

􏼒 􏼓􏼔 􏼕
− 1

,

(8)

respectively.
For α � 1.2, δ � 0.99, c � 7.7, and θ � 0.6, the plots of

CDF G(x) and SF G(x) � 1 − G(x) of the NG-Weibull
distribution are provided in Figure 2.

Furthermore, some possible behaviors for h(x) of the
NG-Weibull are presented in Figure 3. ,ese plots are
obtained for (i) α � 0.8, δ � 0.5, c � 2.8, θ � 0.5 (red curve),
(ii) α � 1.8, δ � 0.2, c � 2.1, θ � 1.2 (green curve), and (iii)
α � 5.2, δ � 0.8, c � 1.1, θ � 0.2 (blue curve).

,e NG-Weibull distribution is an updated version of
theWeibull distribution. It has certain advantages over some
other updated versions of the Weibull distribution.

(i) ,e NG-Weibull distribution has a closed-form
CDF, which makes it easier to generate random
numbers for the simulation study.

(ii) ,e NG-Weibull is capable of capturing the bathtub
shape of the HF. Statistical models with a bathtub
shape of the HF are very useful for modeling the
healthcare engineering data sets.

(iii) ,e NG-Weibull distribution provides a close fit to
the COVID-19 data set. ,erefore, the imple-
mentation of the NG-Weibull distribution could be
a useful choice for modeling data in health and
other related sectors.

Besides the abovementioned advantages, the NG-Wei-
bull distribution also has certain limitations. For example,

(i) ,e NG-Weibull distribution is a continuous model,
and it is employed to analyze the mortality rates of
COVID- 19 infected people. ,erefore, it could not
be implemented to analyze the data sets that are not
continuous in nature, such as (i) the number of
COVID-19 daily registered cases, (ii) the number of
COVID-19 confirmed deaths, and (iii) the number
of COVID-19 recovered cases.

(ii) Since the PDF of the NG-X distributions has a
complicated form, more computational work would
be required to derive the distributional properties.

4. The HT Characteristics

,e statistical distributions that possess HT (heavy-tailed)
behavior are very useful for dealing with extreme value
phenomena. In this section, we prove mathematically the
HT characteristics of the NG-X distributions.

4.1. +e Regularly Varying Tail Behavior. ,is subsection is
devoted to proving the RVTB (regularly varying tail be-
havior) of the NG-X distributions. According to Karamata’s
theorem [26], in terms of SF G(x; α, δ;Ξ), we have

,eorem If F(x;Ξ) is the SF of the regular varying (RVa)
distribution, then G(x; α, δ;Ξ) is also an RVa distribution.

Proof. Let assume limx⟶∞F(λx;Ξ)/F(x;Ξ) � f(λ) is fi-
nite but nonzero ∀ λ> 0. Using (3), we have

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

1 −
(1 − δ)2F(x;Ξ)
[1 − δF(x;Ξ)]2

􏼠 􏼡

α

/ 1 −
(1 − δ)2F(x;Ξ)
[1 − δF(x;Ξ)]2

􏼠 􏼡

α

. (9)

Using α � 1 in (9), we get

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

1 −
(1 − δ)

2
F(λx;Ξ)

[1 − δF(λx;Ξ)]2
􏼠 􏼡/ 1 −

(1 − δ)
2
F(x;Ξ)

[1 − δF(x;Ξ)]2
􏼠 􏼡. (10)
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Figure 1: ,e PDF plots of the NG-Weibull distribution.
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Figure 2: ,e plots of the CDF and SF of the NG-Weibull distribution.
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On simplification, we get

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)] 1 − δ2F(λx;Ξ)􏽨 􏽩

[1 − δF(λx;Ξ)]2
/
[1 − F(x;Ξ)] 1 − δ2F(x;Ξ)􏽨 􏽩

[1 − δF(x;Ξ)]2
,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)] 1 − δ2F(λx;Ξ)􏽨 􏽩

[1 − F(x;Ξ)] 1 − δ2F(x;Ξ)􏽨 􏽩

[1 − δF(x;Ξ)]2

[1 − δF(λx;Ξ)]2
,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

×
[1 − δF(λx;Ξ)]2 1 − δ2F(x;Ξ)􏽨 􏽩

[1 − δF(x;Ξ)]2 1 − δ2F(λx;Ξ)􏽨 􏽩
.

(11)

Since, F(x;Ξ) is a CDF. ,erefore, we have

lim
x⟶∞

F(x;Ξ) � 1. (12)

Hence, from (11), we get

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

×
[1 − δ]

2 1 − δ2􏽨 􏽩

[1 − δ]
2 1 − δ2􏽨 􏽩

,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� f(λ).

(13)

which is finite but nonzero ∀u> 0; thus, G(x; α, δ;Ξ) is
an RVa distribution.

Now, we prove the HT behavior of the special case of the
NG-X family. Using (4) in (11), we get
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Figure 3: ,e plots of the HF of the NG-Weibull distribution.
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lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

×
1 − δ 1 − e

− c(λx)θ

􏼒 􏼓􏼔 􏼕
2
1 − δ2 1 − e

− cxθ
􏼒 􏼓􏼔 􏼕

1 − δ 1 − e
− cxθ

􏼒 􏼓􏼔 􏼕
2
1 − δ2 1 − e

− c(λx)θ

􏼒 􏼓􏼔 􏼕

,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

×
1 − δ 1 − e

− c(λ.∞)θ

􏼒 􏼓􏼔 􏼕
2
1 − δ2 1 − e

− c.∞θ
􏼒 􏼓􏼔 􏼕

1 − δ 1 − e
− c.∞θ

􏼒 􏼓􏼔 􏼕
2
1 − δ2 1 − e

− c(λ.∞)θ

􏼒 􏼓􏼔 􏼕

,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

×
1 − δ 1 − e

− ∞
( 􏼁􏼂 􏼃

2 1 − δ2 1 − e
− ∞

( 􏼁􏽨 􏽩

1 − δ 1 − e
− ∞

( 􏼁􏼂 􏼃
2 1 − δ2 1 − e

− ∞
( 􏼁􏽨 􏽩

,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

×
1 − δ 1 − 1/e∞( 􏼁􏼂 􏼃

2 1 − δ2 1 − 1/e∞( 􏼁􏽨 􏽩

1 − δ 1 − 1/e∞( 􏼁􏼂 􏼃
2 1 − δ2 1 − 1/e∞( 􏼁􏽨 􏽩

,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

×
[1 − δ(1 − 1/∞)]

2 1 − δ2(1 − 1/∞)􏽨 􏽩

[1 − δ(1 − 1/∞)]
2 1 − δ2(1 − 1/∞)􏽨 􏽩

,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

×
[1 − δ(1 − 0)]

2 1 − δ2(1 − 0)􏽨 􏽩

[1 − δ(1 − 0)]
2 1 − δ2(1 − 0)􏽨 􏽩

,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

×
[1 − δ]

2 1 − δ2􏽨 􏽩

[1 − δ]
2 1 − δ2􏽨 􏽩

,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� lim
x⟶∞

[1 − F(λx;Ξ)]
[1 − F(x;Ξ)]

,

lim
x⟶∞

G(λx; α, δ;Ξ)
G(x; α, δ;Ξ)

� f(λ),

z

zΞ
L(x; α, δ,Ξ) � 0.

(14)

□
4.2. A Supportive Application of the RVTB. Consider the
distribution of X has the power-law behavior (PLB), then we
have

F(x;Ξ) � P(X>x) ∼ x
− λ

. (15)

By incorporating Karamata’s theorem, we can write
F(x;Ξ) as

F(x;Ξ) � x
− λ

L(x;Ξ), (16)

where L(x;Ξ) stands for the slowly varying function. From
(3), we have

G(x; α, δ;Ξ) � 1 −
(1 − δ)2F(x;Ξ)
[1 − δF(x;Ξ)]2

􏼠 􏼡

α

. (17)

Using α � 1 in (17), we get

G(x; α, δ;Ξ) � 1 −
(1 − δ)

2
F(x;Ξ)

[1 − δF(x;Ξ)]2
,

G(x; α, δ;Ξ) �
[1 − F(x;Ξ)] 1 − δ2F(x;Ξ)􏽨 􏽩

[1 − δF(x;Ξ)]2
.

(18)

Since F(x;Ξ) � 1 − F(x;Ξ) � x− λ. ,erefore, we can
write (18), as follows:

G(x; α, δ;Ξ) �
x

− λ 1 − δ2F(x;Ξ)􏽨 􏽩

[1 − δF(x;Ξ)]2
,

G(x; α, δ;Ξ) � x
− λ

L(x;Ξ),

(19)

where

L(x;Ξ) �
1 − δ2F(x;Ξ)􏽨 􏽩

[1 − δF(x;Ξ)]2
. (20)
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If L(x;Ξ) is a slowly varying function, then the result
obtained in (19) is true. According to Resnick [27], for all
λ> 0, we have to prove

lim
x⟶∞

L(tx;Ξ)
L(x;Ξ)

� 1. (21)

By incorporating (19), we get

L(tx;Ξ)
L(x;Ξ)

�
1 − δ2F(tx;Ξ)􏽨 􏽩

[1 − δF(tx;Ξ)]2
×

[1 − δF(x;Ξ)]2

1 − δ2F(x;Ξ)􏽨 􏽩
,

L(tx;Ξ)
L(x;Ξ)

�
1 − δ2 1 − (tx)

− λ
􏼐 􏼑􏽨 􏽩

1 − δ 1 − (tx)
− λ

􏼐 􏼑􏽨 􏽩
2 ×

1 − δ 1 − x
− λ

􏼐 􏼑􏽨 􏽩
2

1 − δ2 1 − x
− λ

􏼐 􏼑􏽨 􏽩
,

L(tx;Ξ)
L(x;Ξ)

�
1 − δ2 1 − t

− λ
x

− λ
􏼐 􏼑􏽨 􏽩

1 − δ 1 − t
− λ

x
− λ

􏼐 􏼑􏽨 􏽩
2 ×

1 − δ 1 − x
− λ

􏼐 􏼑􏽨 􏽩
2

1 − δ2 1 − x
− λ

􏼐 􏼑􏽨 􏽩
,

L(tx;Ξ)
L(x;Ξ)

�
1 − δ2 1 − t

− λ/xλ
􏼐 􏼑􏽨 􏽩

1 − δ 1 − t
− λ/xλ

􏼐 􏼑􏽨 􏽩
2 ×

1 − δ 1 − x
− λ

􏼐 􏼑􏽨 􏽩
2

1 − δ2 1 − x
− λ

􏼐 􏼑􏽨 􏽩
,

L(tx;Ξ)
L(x;Ξ)

�
1 − δ2 1 − t

− λ/xλ
􏼐 􏼑􏽨 􏽩

1 − δ 1 − t
− λ/xλ

􏼐 􏼑􏽨 􏽩
2 ×

1 − δ 1 − 1/xλ
􏼐 􏼑􏽨 􏽩

2

1 − δ2 1 − 1/xλ
􏼐 􏼑􏽨 􏽩

.

(22)

Applying limx⟶∞ to both sides of (22), we get

lim
x⟶∞

L(tx;Ξ)
L(x;Ξ)

� lim
x⟶∞

1 − δ2 1 − t
− λ/xλ

􏼐 􏼑􏽨 􏽩

1 − δ 1 − t
− λ/xλ

􏼐 􏼑􏽨 􏽩
2 ×

1 − δ 1 − 1/xλ
􏼐 􏼑􏽨 􏽩

2

1 − δ2 1 − 1/xλ
􏼐 􏼑􏽨 􏽩

,

lim
x⟶∞

L(tx;Ξ)
L(x;Ξ)

�
1 − δ2 1 − t

− λ/∞􏼐 􏼑􏽨 􏽩

1 − δ 1 − t
− λ/∞􏼐 􏼑􏽨 􏽩

2 ×
[1 − δ(1 − 1/∞)]

2

1 − δ2(1 − 1/∞)􏽨 􏽩
,

lim
x⟶∞

L(tx;Ξ)
L(x;Ξ)

�
1 − δ2(1 − 0)􏽨 􏽩

[1 − δ(1 − 0)]
2 ×

[1 − δ(1 − 0)]
2

1 − δ2(1 − 0)􏽨 􏽩
,

lim
x⟶∞

L(tx;Ξ)
L(x;Ξ)

�
1 − δ2􏽨 􏽩

[1 − δ]
2 ×

[1 − δ]
2

1 − δ2􏽨 􏽩
,

lim
x⟶∞

L(tx;Ξ)
L(x;Ξ)

� 1.

(23)

5. Estimation and Simulation Study

In this section, the procedure of the maximum
likelihood estimation for the model parameters of the NG-
X distributions is implemented. Furthermore, a simula-
tion study for different values of the model parameters is
discussed.

5.1.MaximumLikelihood Estimation. In this subsection, the
computation of the maximum likelihood estimators (MLEs)
for the parameters (α, δ,Ξ) of NG-X is provided. Consider
x1, x2, . . . , xn be a set of observed values of a sample ran-
domly selected from NG-X distributions with parameters
α, δ, and Ξ. In link to the PDF of the NG-X distributions
given by (2), the LF (likelihood function) is

Mathematical Problems in Engineering 7



L(x; α, δ,Ξ) � 􏽙
n

i�1

α(1 − δ)
2
f xi;Ξ( 􏼁 1 + δF xi;Ξ( 􏼁􏼈 􏼉

1 − δF xi;Ξ( 􏼁􏼂 􏼃
2α+1 F xi;Ξ( 􏼁 1 − δ2F xi;Ξ( 􏼁􏽮 􏽯􏽨 􏽩

α− 1
. (24)

Corresponding to L(x; α, δ,Ξ), the log LF (LLF) is given
by

L(x; α, δ,Ξ) � n log α + 2n log(1 − δ) + 􏽘
n

i�1
log f xi;Ξ( 􏼁 + 􏽘

n

i�1
log 1 + δF xi;Ξ( 􏼁􏼈 􏼉

+(α − 1) 􏽘
n

i�1
log F xi;Ξ( 􏼁 1 − δ2F xi;Ξ( 􏼁􏽮 􏽯􏽨 􏽩

− (2α + 1) 􏽘
n

i�1
log 1 − δF xi;Ξ( 􏼁􏼂 􏼃.

(25)

On behalf of the parameters (α, δ,Ξ) of the NG-X
distributions, the partial derivative of the LLF are, respec-
tively, given by

z

zα
L(x; α, δ,Ξ) �

n

α
+ 􏽘

n

i�1
log F xi;Ξ( 􏼁 1 − δ2F xi;Ξ( 􏼁􏽮 􏽯􏽨 􏽩 − 2􏽘

n

i�1
log 1 − δF xi;Ξ( 􏼁􏼂 􏼃,

z

zδ
L(x; α, δ,Ξ) � −

2n

(1 − δ)
+ 􏽘

n

i�1

F xi;Ξ( 􏼁

1 + δF xi;Ξ( 􏼁􏼈 􏼉
+(2α + 1) 􏽘

n

i�1

F xi;Ξ( 􏼁

1 − δF xi;Ξ( 􏼁􏼂 􏼃

− 2(α − 1) 􏽘
n

i�1

δF xi;Ξ( 􏼁F xi;Ξ( 􏼁

F xi;Ξ( 􏼁 1 − δ2F xi;Ξ( 􏼁􏽮 􏽯􏽨 􏽩
,

z

zΞ
L(x; α, δ,Ξ) � 􏽘

n

i�1

z/zΞf xi;Ξ( 􏼁

f xi;Ξ( 􏼁
+ δ􏽘

n

i�1

z/zΞF xi;Ξ( 􏼁

1 + δF xi;Ξ( 􏼁􏼈 􏼉
+ δ(2α + 1) 􏽘

n

i�1

z/zΞF xi;Ξ( 􏼁

1 − δF xi;Ξ( 􏼁􏼂 􏼃

+(α − 1) 􏽘
n

i�1

1 − δ2F xi;Ξ( 􏼁􏽮 􏽯z/zΞF xi;Ξ( 􏼁 − δF xi;Ξ( 􏼁z/zΞF xi;Ξ( 􏼁

F xi;Ξ( 􏼁 1 − δ2F xi;Ξ( 􏼁􏽮 􏽯􏽨 􏽩
.

(26)

,eMLEs (􏽢αMLE, 􏽢δMLE, 􏽢ΞMLE) of the parameters (α, δ,Ξ)
can be obtained by solving

z

zα
L(x; α, δ,Ξ) � 0,

z

zδ
L(x; α, δ,Ξ) � 0,

z

zΞ
L(x; α, δ,Ξ) � 0.

(27)

5.2. SimulationStudy. In this subsection, the performance of
MLEs (􏽢αMLE, 􏽢δMLE, 􏽢ΞMLE) of (α, δ,Ξ) is evaluated by con-
ducting a simulation study. ,e process is carried out as
follows:

(i) A sequence of RS (random sample), say
X1, X2, . . . , Xn of sizes, n � 25, 50, . . . , 975, and
1000 are obtained from the NG-Weibull
distribution.

(ii) Two statistical quantities (MSE and bias) are con-
sidered to evaluate 􏽢αMLE, 􏽢δMLE, and 􏽢ΞMLE. ,ese
quantities are, respectively, given by

Bias(􏽢]) �
1

1000
􏽘

1000

i�1
(􏽢] − ]),

MSE(􏽢]) �
1

1000
􏽘

1000

i�1
(􏽢] − ])

2
.

(28)

(iii) Two different cases are considered for the four
parameters of the NG-Weibull distribution.
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(iv) One thousand repetitions are done to compute the
bias and the MSE for 􏽢αMLE, 􏽢δMLE, and 􏽢ΞMLE.

,e numerical results are provided in Tables 1–3. From
the numerical illustration presented in Tables 1–3, it can be
observed that as sample size n increases (i) the values of the
MLEs (􏽢αMLE, 􏽢δMLE, 􏽢ΞMLE) get closer and closer to the pa-
rameters (α, δ,Ξ), and (ii) the values of the MSE and bias of
􏽢αMLE, 􏽢δMLE, and 􏽢ΞMLE tend to zero.

6. Analyzing the COVID-19 Data Set

,is section is devoted to demonstrating the usefulness of the
NG-X method by applying its special model (NG-Weibull
distribution) to analyze the COVID-19 data set. ,e data set
represents the mortality rates of COVID-19 infected person in
Canada. Corresponding to the COVID-19 data set, the fitting
results of theNG-Weibull distribution are comparedwith three
other competing models. ,ese models are given by

(i) Weibull distribution

G(x;Ξ) � 1 − e
− cxθ

, x≥ 0, (29)

where θ> 0, c> 0.
(ii) K-Weibull distribution

G(x; a, b,Ξ) � 1 − 1 − 1 − e
− cxθ

􏼒 􏼓
a

􏼔 􏼕
b

, x≥ 0, (30)

where a> 0, b> 0, θ> 0, c> 0.
(iii) Alpha power transformed Weibull (APT-Weibull)

distribution

G x; α1Ξ( 􏼁 �
α 1− e− cxθ( 􏼁
1 − 1
α1 − 1

, 4x≥ 0, (31)

where α1 > 0, α1 ≠ 1, θ > 0, c> 0.

Some commonly used analytical goodness of fit mea-
sures are considered to show which distribution better fits
the data. ,ese measures are given by

AIC � 2p − 2ℓ(Ξ),

BIC � p log(n) − 2ℓ(Ξ),

CBIC �
2np

n − p − 1
− 2ℓ(Ξ),

HQIC � 2p log(log(n)) − 2ℓ(Ξ),

AD � − n −
1
n

􏽘

n

u�1
(2u − 1)

· log G xu( 􏼁 + log 1 − G xn− u+1( 􏼁􏼈 􏼉􏼂 􏼃,

CM �
1
12n

+ 􏽘
n

u�1

2u − 1
2n

− G xu( 􏼁􏼔 􏼕
2
.

(32)

Table 1: For α � 0.4, δ � 0.5, θ � 0.6, c � 0.5, the simulation results of the NG-Weibull model.

n Parameters MLEs MSEs Biases

25

α 1.3776477 5.3789876 0.9706542
δ 0.6128757 0.1738765 0.1129876
θ 0.5867868 0.0912987 0.1398765
c 1.2228970 2.6349807 0.7226754

100

α 0.8647665 2.0033452 0.4642937
δ 0.5660988 0.1513287 0.0963454
θ 0.5833452 0.0732938 0.1019876
c 0.9570987 1.2232093 0.4578769

375

α 0.5406557 1.2409876 0.2409865
δ 0.4992098 0.1079871 0.0665438
θ 0.6023452 0.0409090 0.0876548
c 0.7062093 0.9398782 0.2062983

525

α 0.4780987 0.7488761 0.0788967
δ 0.4920909 0.4698762 0.0198764
θ 0.6012837 0.0387658 0.0209873
c 0.6153546 0.1609872 0.1152342

750

α 0.4232341 0.4876754 0.0238972
δ 0.473–098 0.2609872 0.0098766
θ 0.607–092 0.0198765 0.0088735
c 0.5652789 0.0999876 0.0659897

950

α 0.4127658 0.0550987 0.0120981
δ 0.4830987 0.0188976 0.0077653
θ 0.6050956 0.0015098 0.0059887
c 0.5682376 0.0876543 0.0498706

1000

α 0.4042833 0.0300895 0.0040892
δ 0.5010293 0.0029674 0.0038765
θ 0.6085412 0.0010876 0.0024498
c 0.5182398 0.0198763 0.0286710
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Table 3: For α � 0.2, δ � 0.5, θ � 0.6, c � 0.3, the simulation results of the NG-Weibull model.

n Parameters MLEs MSEs Biases

25

α 0.6489876 1.9180987 0.4488765
δ 0.6398765 0.1660989 0.1399780
θ 0.5706543 0.1265439 0.0892543
c 1.1387890 2.8809876 0.8380987

100

α 0.3967654 0.6728765 0.1966543
δ 0.6150987 0.1296453 0.1158987
θ 0.5635432 0.1010987 0.0667890
c 0.8476709 1.5413458 0.5478654

375

α 0.2497586 0.1057654 0.1094410
δ 0.5290987 0.0958909 0.0997981
θ 0.5895799 0.0966549 0.0409783
c 0.4578790 0.2116543 0.1578091

525

α 0.2309876 0.0990987 0.0800876
δ 0.5136987 0.0770990 0.0536543
θ 0.5930989 0.0327543 0.0166541
c 0.4306543 0.1607890 0.1309876

750

α 0.2168761 0.0187654 0.0460987
δ 0.5167568 0.0220987 0.0267659
θ 0.5959876 0.0174569 0.0090987
c 0.3950987 0.0880987 0.0954569

950

α 0.2139801 0.0106432 0.0139878
δ 0.5059875 0.0202098 0.0090645
θ 0.5965432 0.0015789 0.0060989
c 0.3295490 0.0516748 0.0595437

1000

α 0.2100561 0.0100658 0.0101432
δ 0.4910982 0.0091276 0.0028976
θ 0.5996534 0.0010019 0.0019909
c 0.3109755 0.0340987 0.0287654

Table 2: For α � 0.5, δ � 0.5, θ � 0.6, c � 1, the simulation results of the NG-Weibull model.

n Parameters MLEs MSEs Biases

25

α 1.5398875 4.7660923 1.0399876
δ 0.5399585 0.1751234 0.1295234
θ 0.5996539 0.3132938 0.1089097
c 1.5190987 2.2270984 0.5199870

100

α 0.9698768 2.0767589 0.4698795
δ 0.521–098 0.1064256 0.1087653
θ 0.5948764 0.1786567 0.0987609
c 1.4513098 1.5681234 0.4517563

375

α 0.6288765 0.6017541 0.1280987
δ 0.470–098 0.0954378 0.0865309
θ 0.6093245 0.1398764 0.0554233
c 1.1638769 0.5044122 0.2798734

525

α 0.5820987 0.3599872 0.0974076
δ 0.4726543 0.0654369 0.0680969
θ 0.6090987 0.1075489 0.0187653
c 1.1099875 0.3254165 0.1094234

750

α 0.5342098 0.1350987 0.0347865
δ 0.4732390 0.0174578 0.0260987
θ 0.6072760 0.0498763 0.0076538
c 1.0491234 0.1721982 0.0493452

950

α 0.5062091 0.0477892 0.0068759
δ 0.4712342 0.0104568 0.0284327
θ 0.6082095 0.0026789 0.0064231
c 1.0347654 0.1054217 0.0346899

1000

α 0.5050471 0.0278901 0.0047887
δ 0.4976540 0.0085674 0.0206541
θ 0.6079876 0.0009563 0.0030982
c 1.0198769 0.0680980 0.0156983
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Figure 4: ,e fitted PDF, CDF, SF, and PP plots of the NG-Weibull distribution.

Table 4: ,e values of the MLEs along with standard errors in parentheses using the COVID-19 data.

Models α δ c θ a b α1
NG-Weibull 0.7358 (0.5199) 0.9864 (0.0230) 1.5708 (1.1629) 1.0923 (0.4809) — — —
Weibull — — 0.0139 (0.0075) 3.3089 (0.3591) — — —
K-Weibull — — 0.7011 (1.8876) 1.0555 (1.9107) 13.1558 (40.5978) 2.1563 (6.6188) —
APT-Weibull — — 0.0675 (0.0509) 2.5153 (0.4365) — — 7.2916 (7.7550)

Table 5: ,e analytical measures of the NG-Weibull and other competitive models for the COVID-19 data.

Models AIC BIC CAIC HQIC CM AD
NG-Weibull 102.7614 109.0955 104.0518 104.9722 0.0647 0.3741
Weibull 106.9487 110.1157 107.3123 108.0541 0.1726 0.9904
K-Weibull 104.0038 110.3379 105.2941 106.2145 0.0924 0.5373
APT-Weibull 107.8743 112.6249 108.6243 109.5324 0.1531 0.8723
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Corresponding to the COVID-19 data set, Table 4 gives
the values of the MLEs with standard errors enclosed in
parentheses. However, Table 5 gives the analytical measures
of the competing models for the COVID-19 data set.

Based on the results in Table 4, it is clear that the
implementation of the NG-Weibull model is a suitable
choice to use for modeling the COVID-19 data set. Fur-
thermore, for supporting the numerical results obtained in
Table 4, the estimated PDF, CDF, SF, and PP (probability-
probability) plots of the NG-Weibull model are presented in
Figure 4. ,e plots in Figure 4 visually confirm the close-
fitting of the NG-Weibull distribution.

7. Concluding Remarks

In this paper, a new family of distributions called the NG-X
family was introduced. ,e NG-X method was introduced
using the exponential distribution in combination with the
T-X approach.,e purpose of introducing the NG-X family
was to update the distributional flexibility of the classical/
modified distributions for modeling data in applied sectors.
Based on the NG-X distributions approach, an updated/
modified form of the Weibull model called the NG-Weibull
was studied in depth. ,e HT characteristics of the NG-
Weibull distribution were proved empirically. Based on the
NG-Weibull distribution, a simulation study was also
conducted. ,e simulation study showed that the values of
MLEs are quite steady and are close to the true parameters’
values as the sample gets increased. Finally, to establish the
applicability of the NG-Weibull distribution, a data set re-
lated to the mortality rates of COVID-19 infected people was
analyzed. ,e performance of the NG-Weibull distribution
was compared with three other competitors. Based on the
different six criteria, it is shown that the NG-Weibull dis-
tribution outperforms the competitive models [5].

Data Availability

,e data are available from the corresponding author upon
request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest.

References

[1] B. O. Oluyede, H. F. Bindele, B. Makubate, and S. Huang, “A
new generalized log-logistic and modified Weibull distribu-
tion with applications,” International Journal of Statistics and
Probability, vol. 7, no. 3, pp. 72–93, 2018.

[2] M. Arif, D. M. Khan, S. K. Khosa et al., “Modelling insurance
losses with a new family of heavy-tailed distributions,”
Computers, Materials & Continua, vol. 66, no. 1, pp. 537–550,
2021.

[3] J. T. Eghwerido and F. I. Agu, “,e shifted Gompertz-G family
of distributions: properties and applications,” Mathematica
Slovaca, vol. 71, no. 5, pp. 1291–1308, 2021.

[4] M. El-Morshedy, F. S. Alshammari, Y. S. Hamed, M. S. Eliwa,
and H. M. Yousof, “A new family of continuous probability
distributions,” Entropy, vol. 23, no. 2, p. 194, 2021.

[5] Z. Ahmad, E. Mahmoudi, R. Roozegar, M. Alizadeh, and
A. Z. Afify, “A new exponential-X family: modeling extreme
value data in the finance sector,” Mathematical Problems in
Engineering, vol. 2021, Article ID 8759055, 14 pages, 2021.

[6] J. Y. Falgore and S. I. Doguwa, “Kumaraswamy-odd Rayleigh-
g family of distributions with applications,” Open Journal of
Statistics, vol. 10, no. 4, p. 719, 2020.

[7] F. Chipepa, B. Oluyede, and B. Makubate, “,e odd gener-
alized half-logistic Weibull-G family of distributions: prop-
erties and applications,” Journal of Statistical Modelling:
+eory and Applications, vol. 1, no. 1, pp. 65–89, 2020.

[8] F. Chipepa, B. Oluyede, and P. O. Peter, “,e Burr III-Topp-
Leone-G family of distributions with applications,” Heliyon,
vol. 7, no. 4, Article ID e06534, 2021.

[9] Z. Ahmad and Z. Hussain, “,e new extended flexibleWeibull
distribution and its applications,” International Journal of
Data Science and Analysis, vol. 3, no. 3, pp. 18–23, 2017.

[10] F. Famoye, C. Lee, and O. Olumolade, “Beta-Weibull dis-
tribution: some properties and applications to censored data,”
Journal of Statistical +eory and Applications, vol. 4, no. 2,
pp. 121–136, 2005.

[11] M. Bebbington, C.-D. Lai, and R. Zitikis, “A flexible Weibull
extension,” Reliability Engineering & System Safety, vol. 92,
no. 6, pp. 719–726, 2007.

[12] J. M. F. Carrasco, E. M. M. Ortega, and G. M. Cordeiro, “A
generalized modified Weibull distribution for lifetime mod-
eling,” Computational Statistics & Data Analysis, vol. 53,
no. 2, pp. 450–462, 2008.

[13] G. M. Cordeiro, E. M. M. Ortega, and S. Nadarajah, “,e
Kumaraswamy Weibull distribution with application to
failure data,” Journal of the Franklin Institute, vol. 347, no. 8,
pp. 1399–1429, 2010.

[14] G. O. Silva, E. M. M. Ortega, and G. M. Cordeiro, “,e beta
modified Weibull distribution,” Lifetime Data Analysis,
vol. 16, no. 3, pp. 409–430, 2010.

[15] A. M. Sarhan and J. Apaloo, “ExponentiatedmodifiedWeibull
extension distribution,” Reliability Engineering & System
Safety, vol. 112, pp. 137–144, 2013.

[16] M. H. Tahir, M. Adnan Hussain, G. M. Cordeiro,
G. G. Hamedani, M. Mansoor, and M. Zubair, “,e gumbel-
lomax distribution: properties and applications,” Journal of
Statistical +eory and Applications, vol. 15, no. 1, pp. 61–79,
2016.

[17] O. Maxwell, A. U. Chukwu, O. S. Oyamakin, and
M. A. Khaleel, “,e Marshall-Olkin inverse Lomax distri-
bution (MO-ILD) with application on cancer stem cell,”
Journal of Advances in Mathematics and Computer Science,
vol. 33, no. 4, pp. 1–12, 2019.

[18] A. Alzaatreh, C. Lee, and F. Famoye, “A new method for
generating families of continuous distributions,” Metron,
vol. 71, no. 1, pp. 63–79, 2013.

[19] M. S. Eliwa, M. El-Morshedy, and S. Ali, “Exponentiated odd
Chen-G family of distributions: statistical properties, Bayesian
and non-Bayesian estimation with applications,” Journal of
Applied Statistics, vol. 48, no. 11, pp. 1948–1974, 2021.

[20] R. A. R. Bantan, C. Chesneau, F. Jamal, I. Elbatal, and
M. Elgarhy, “,e truncated burr X-G family of distributions:
properties and applications to actuarial and financial data,”
Entropy, vol. 23, no. 8, p. 1088, 2021.

[21] H. Reyad, M. Ç. Korkmaz, A. Z. Afify, G. G. Hamedani, and
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