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Organic compounds such as polyphenylene are very important and useful for the synthesis of many new organic compounds due
to their physio-chemical properties. To ascertain these properties, one can use QSPR/QSAR methods which necessitate the
computation of topological indices. &e topological indices based on two newly introduced abstract notions of ev-degree and ve-
degree are in practice to model numerous chemical properties as well as physical properties of organic, inorganic, hybrid, and
biological compounds. In this study, we computed a certain number of topological indices for the chemical graph of poly-
phenylene network which will help to model some of its physio-chemical properties.

1. Introduction

&e detailed critical inspection in order to discover essential
features or meanings of chemical compounds graphically is
known as chemical graph theory. It is the branch of
mathematics, which alloys chemistry and graph theory. In
graph theory, a simple graph or just graph G(V, E) is
constructed by two sets: V � v1, . . . , vn , the set of vertices,
and E � e1, . . . , em , the set of edges. Each v ∈ V represents
a node in the graph and each e ∈ E denotes the line joining
two nodes.

In chemical graph theory, the image obtained from
diffraction of X-rays or electron microscopy of a compound
(biological or chemical) is drawn into plane and lighted
upon its symmetry, and then, peculiarities of this compound
is mathematically modeled. &e simple sketch of the image
of compound is known as the chemical graph where we
assume that the ends or vertices are atoms and lines or edges
are the bonds between the atoms. Chemical graph theory
helps to understand different properties, namely, molecular
structure, kinetics of molecules, atoms or electrons, chain or
patterns of polymers, crystals and clusters, aromaticity,

nuclear magnetic resonance (NMR) analysis, depicting or-
bitals, and electrons behaviors. Ante Graovac, Alexandru
Balaban, Haruo Hosoya, Iv a

′ n Gutman, Nenad Trinajstic,
and Milan Randic are few scientists who introduced graph
theory in chemistry [1].

&e job of mathematical modeling the properties of
chemical compounds is done by topological indices which
we define as a number obtained by a real-valued function,
g � g(e), g � g(v)org � g(e, v), that is applied to any
chemical graph (or molecular structure) of a compound to
determine its topology, is known as topological graph index or
just topological index (plural: topological indices), where
e and v ∈ Z+ are edges and vertices of graph, for example,
Zagreb indices and their variants, distance indices, detour
index, and Wiener index. &ere are different kinds of to-
pological indices based on degree, distance, and counting
[2]. Many physical and chemical properties of different
chemical and biological compounds have been modeled
mathematically by the aid of topological indices such as
boiling point, anti-leishmanial effect, acute toxicity, radial
scavenging activity, and many more [3–5]. In this study, we
considered some topological indices based on degree of
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vertices and edges, ve-degree of vertices, and ev-degree of
edges. To understand the terms used in formulas of topo-
logical indices, first, we consider the following basic defi-
nitions [6–8].

For a graph X(V, E), we have

(1) Degree of a vertex v means the number of edges
connected to the vertex v denoted by dX(v)

(2) &e number dX(v) + dX(w) − 2 is called degree of
edge e if e is formed by joining the vertex v and w,
denoted by dX(e)

(3) &e set N(w) � v ∈ V: v andw{ are nodes of
some edge e ∈ E} is called the open neighborhood of
the vertex w

(4) &e set w{ }∪N(w) is the closed neighborhood of w

denoted by N[w]

(5) &e number of nonidentical edges that are incident
to each vertex in the closed neighbourhood of the
vertex v is the ve-degree of vertex v denoted by dve

X v

[9]
(6) If v andw are nodes of an edge e, then the order of

N[v]∪N[w] is equal to the ev-degree [9] of edge e,
denoted by dev

X (e)

For a graph X(V, E), the topological indices under
consideration are given below:

(i) Randić index [10]:

R(X) � 

|E|

e�1

1
������������
dX(u) × dX(v)

 . (1)

(ii) ev-degree Randić index [11]:

R
ev

(X) � 

|E|

e�1

1
�����
d

ev
X (e)

 . (2)

(iii) ve-degree Randić index:

R
ve

(X) � 

|E|

e�1

1
�������������
d

ve
X (u) × d

ve
X (v)

 . (3)

(iv) Reciprocal ve-degree Randić index [12]:

RR
ev

(H) � 

|E|

e�1
d

ev
X (e)

1/2
. (4)

Milan Randić, a chemist, introduced the “branching
index” in 1975 as a topological index R for evaluating the
degree of branching in the carbon-atom skeleton of satu-
rated hydrocarbons [10]. Moreover, it is also used to model
the cavity surface area of different alcohols. In [11],
Suleyman Ediz introduced ev−degree Randić (2) index and
proved that it gives more accurate correlation than the
previous one.

First ve-degree Zagreb beta index:

M
bve
i (X) � 

|E|

e�1
d

ve
X v + d

ve
X w( . (5)

Second ve-degree Zagreb index:

M
ve
ii (X) � 

|E|

e�1
d

ve
X v × d

ve
X w( . (6)

Redefined third ve-degree Zagreb index [13]:

RZGve
iii(H) � 

|E|

e�1
d

ve
X (u) × d

ve
X (v)(  d

ve
X (u) + d

ve
X (v)( .

(7)

&e modified ev-degree Zagreb index [12]:

∗
M

ev
(H) � 

|E|

e�1

1
d

ev
X (e)

2. (8)

Zagreb indices were first used to model anti-inflam-
matory agility in different acids [14], and then, M1 and M2
were used to model the clearance of cephalosporins and
fraction bound in humans [15].

(i) ve-degree sum-connectivity index:

ve − SC(X) � 

|E|

e�1

1
�������������
d

ve
X (u) + d

ve
X (v)

 . (9)

(ii) ve-degree atom-bond connectivity index:

ve − ABC(X) � 

|E|

e�1

����������������
d

ve
X (u) + d

ve
X (v) − 2

d
ve
X (u) × d

ve
X (v)



. (10)

Atom-bond connectivity index is used to model
heat of formation ΔHf in alkanes [16].

(iii) ve-degree geometric arithmetic index:

ve − GA(X) � 

|E|

e�1

2
�������������
d

ve
X (u) × d

ve
X (v)



d
ve
X (u) + d

ve
X (v)

. (11)

(iv) Arithmetic-geometric index [17]:

ve − AG(X) � 

|E|

e�1

d
ve
X (u) + d

ve
X (v)

2
�������������
d

ve
X (u) × d

ve
X (v)

 . (12)

In [18], the geometrical-arithmetic index (GA) was in-
troduced and used to model the following properties of
chemical compounds:

(i) Acentric factor (AcenFac)
(ii) Boiling point (BP)
(iii) Entropy (S)
(iv) Enthalpy of formation (HFORM)
(v) Enthalpy of vaporization (HVAP)
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(vi) Standard enthalpy of vaporization (DHVAP)

Recently, some other topological indices (listed below)
are introduced on the basis of ev- and ve-degree to model
chemical properties written above which give better cor-
relation coefficients of about 0.99088 [19].

(i) ve-degree harmonic index:

H
ve

(X) � 

|E|

e�1

2
d

ve
X (u) + d

ve
X (v)

. (13)

(ii) ev-degree inverse index [12]:

ID
ev

(H) � 

|E|

e�1

1
d

ev
X (e)

. (14)

(iii) ve-degree inverse sum index [20]:

ISI
ve

(H) � 

|E|

e�1

d
ve
X (u) × d

ve
X (v)

d
ve
X (u) + d

ve
X (v)

. (15)

(iv) F-ev-degree index [12]:

F
ev

(H) � 

|E|

e�1
dev

X (e)
3
. (16)

(v) F-ve-degree index [21]:

F
ve

(H) � 

|E|

e�1
d

ve
X (u)

2
+ d

ve
X (v)

2
 . (17)

(vi) First hyper-ve-degree index [21]:

HM
ve
1 (H) � 

|E|

e�1
d

ve
X (u) + d

ve
X (v)( 

2
. (18)

(vii) Second hyper-ve-degree index [21]:

HM
ve
2 (H) � 

|E|

e�1
d

ve
X (u) × d

ve
X (v)( 

2
. (19)

For more details, see[22–24].

2. Polyphenylene Network

Hydrocarbons, which are organic compounds formulated
completely by the atoms of hydrogen and carbon elements,

are one of the world’s most prominent sources of energy and
are found mostly in petroleum form, natural gas, and crude
oil. &e majority of hydrocarbons are linear chains, rings, or
a mix of the two. Polyphenylene, a two-dimensional (2D)
limitless hydrocarbon with the formula C6H4, that may be
formed experimentally, is thermodynamically stable. Fur-
thermore, due to its new structural features, 2D poly-
phenylene could be used in a variety of industries, such as a
barrier for H2 purification. When H2 is produced by the
conventional process of steam methane reformation, certain
less desirable species are produced, such as CO, CO2, and
CH4. As a result, isolating H2 from these species is critical
for its storage and use [25]. SRP is a superb option for many
demanding applications including semiconductor compo-
nents, high-performance bearings, bushings, valves, valve
seats, and aircraft substructures, due to its remarkable
mechanical, chemical, thermal, and electrical qualities. SRP
is an ideal contender for light-weight high-performance
applications due to its high specific strength. Antistatic
coatings made of electrically conductive polyphenylene
(p- or n-doped) are used to protect integrated circuits from
static charges, humidity, and corrosion [26]. &e following
are important performance characteristics:

Mechanical stiffness and strength are extremely high.
High compression strength and resistance to pressure, ex-
cellent wear and scratch resistance, and good cold tem-
perature stability (to around −270°C), 155° C is a high glass
transition temperature. Before and after processing, there is
exceptional dimensional stability, low coefficient of thermal
expansion (low thermal shrinkage), excellent acid, and basic
resistance. With resistance to solvents and hot steam (but
lower than PEEK), processability is good (can be extruded
and injection molded).

2.1. Mathematical Work and Discussion. In this section, we
will compute and discuss all the topological indices men-
tioned before, for the graph of polyphenylene network PN,
as shown in Figure 1, where, in Figure 2, we show the unit
segment of the graph. In the graph, we have vertices joined
with single edge, double edges, and triple edges (i.e.,
dPN(v) ∈ 1, 2, 3{ }). In the graph of polyphenylene network
PN(V, E), we observe that there are 30m2 + 8m − 4 vertices
and 34m2 + m + 3 edges. More information about the graph
is given in Table 1.

(a)ve − SC(PN) � 3
�
3

√
+

5
2

�
2

√ +
7
��
10

√ +
4
��
15

√ m
2

+
m

2
�
3

√ −
1

2
�
2

√ +
1

2
�
3

√ +
1
��
10

√ +
2
��
15

√ ,

(b)ve − ABC(PN) �
14

�
2

√

5
+

��
10

√
+ 18

���
2/7

√
+

����
26/7

√
 m

2
+

���
2/7

√
m +

2
�
2

√

5
−

���
2/5

√
+

���
2/7

√
+

�����
13/14

√
.

(20)

Theorem 1. Let PN(V, E) be the graph of polyphenylene
network; then,
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(a) R(PN) �
1
6

(10
�
3

√
+ 18

�
6

√
+ 29)m

2
+

m
�
6

√ +
1
6

(−2
�
3

√
+

�
6

√
+ 7),

(b) R
ev

(PN) � 2
���
2/3

√
+

18
�
5

√ + 6 m
2

+
m

�
5

√ +
���
2/3

√
+

1
�
5

√ ,

(c) R
ve

(PN) �
���
5/3

√
+

���
2/7

√
+
7
5

+
18
��
35

√ m
2

+
m
��
35

√ +
1
5

+
1
��
14

√ −
1
��
15

√ +
1
��
35

√ ,

(d) RR
ev

(PN) � 2(9
�
5

√
+ 2

�
6

√
+ 12)m

2
+

�
5

√
m +

�
5

√
+ 2

�
6

√
.

(21)

Proof. To prove (a), we expand equation (1) and substitute
values from Table 1, which gives

Figure 1: Molecular graph of polyphenylene network.

Figure 2: Unit of the graph of polyphenylene network.

Table 1: Edge partition table of polyphenylene network.

(dPN(u), dPN(v)) dPN(e) (dve
PN(u), dve

PN(v)) dev
PN(e) Frequency

(1, 3) 2 (3, 5) 4 5m2 − 1
(2, 2) 2 (5, 5) 4 7m2 + 1
(2, 3) 3 (5, 7) 5 18m2 + m + 1
(3, 3) 4 (7, 8) 6 4m2 + 2
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R(PN) �
4m

2
+ 2

����
3 × 3

√ +
5m

2
− 1

����
1 × 3

√ +
18m

2
+ m + 1
����
2 × 3

√ +
7m

2
+ 1

����
2 × 2

√

�
1
3

4m
2

+ 2  +
1
2

7m
2

+ 1  +
5m

2
− 1
�
3

√ +
18m

2
+ m + 1

�
6

√

�
1
6

(10
�
3

√
+ 18

�
6

√
+ 29)m

2
+

�
6

√
m − 2

�
3

√
+

�
6

√
+ 7 

�
1
6

(10
�
3

√
+ 18

�
6

√
+ 29)m

2
+

m
�
6

√ +
1
6

(−2
�
3

√
+

�
6

√
+ 7).

(22)

To prove (b), we expand (2) and substitute values from
Table 1, which gives

R
ev

(PN) �
4m

2
+ 2
�
6

√ +
5m

2
− 1
�
4

√ +
18m

2
+ m + 1

�
5

√ +
7m

2
+ 1
�
4

√

�
4m

2
+ 2
�
6

√ +
1
2

5m
2

− 1  +
1
2

7m
2

+ 1  +
18m

2
+ m + 1

�
5

√

� 2
���
2/3

√
+

18
�
5

√ + 6 m
2

+
m

�
5

√ +
���
2/3

√
+

1
�
5

√ .

(23)

To prove (c), we expand (3) and substitute values from
Table 1, which gives

R
ve

(PN) �
4m

2
+ 2

����
7 × 8

√ +
5m

2
− 1

����
3 × 5

√ +
18m

2
+ m + 1
����
5 × 7

√ +
7m

2
+ 1

����
5 × 5

√

�
2m

2
+ 1

��
14

√ +
1
5

7m
2

+ 1  +
5m

2
− 1

��
15

√ +
18m

2
+ m + 1
��
35

√

�
���
5/3

√ ���
2/7

√
+
7
5

+
18
��
35

√ m
2

+
m
��
35

√ +
1
5

+
1
��
14

√

−
1
��
15

√ +
1
��
35

√ .

(24)

To prove (d), we expand (4) and substitute values from
Table 1, which gives

RR
ev

(PN) �
�
6

√
4m

2
+ 2  +

�
4

√
5m

2
− 1  +

�
5

√
18m

2
+ m + 1  +

�
4

√
7m

2
+ 1 

� 2 5m
2

− 1  + 2 7m
2

+ 1  +
�
5

√
18m

2
+ m + 1  +

�
6

√
4m

2
+ 2 

� 2(9
�
5

√
+ 2

�
6

√
+ 12)m

2
+

�
5

√
m +

�
5

√
+ 2

�
6

√
.

(25)

□
Theorem 2. Let PN(V, E) be the graph of polyphenylene
network; then,

(a) M
bve
i (PN) � 386m

2
+ 12m + 44,

(b) M
ve
ii (PN) � 1104m

2
+ 35m + 157,

(c) RZG
ve
iii(PN) � 10 223 + 42m + 1327m

2
 ,

(d)
∗
M

ev
(PN) �

1
900

1423m
2

+ 36m + 86 .

(26)

Proof. To prove (a), expand equation (5) and substitute
values from Table 1, which gives

M
bve
i (PN) � (7 + 8) 4m

2
+ 2  +(3 + 5) 5m

2
− 1  +(5 + 7) 18m

2
+ m + 1 

� +(5 + 5) 7m
2

+ 1 15 4m
2

+ 2  + 8 5m
2

− 1  + 10 7m
2

+ 1  + 12 18m
2

+ m + 1 

� 386m
2

+ 12m + 44.

(27)

To prove (b), expand (6) and substitute values from
Table 1, which gives
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M
ve
ii (PN) � (7 × 8) 4m

2
+ 2  +(3 × 5) 5m

2
− 1  +(5 × 7) 18m

2
+ m + 1  +(5 × 5) 7m

2
+ 1 

� 56 4m
2

+ 2  + 15 5m
2

− 1  + 25 7m
2

+ 1  + 35 18m
2

+ m + 1 

� 1104m
2

+ 35m + 157.

(28)

To prove (c), expand (7) and substitute values from
Table 1, which gives

RZGve
iii(PN) � 5m

2
− 1 (3 × 5)(3 + 5) + 7m

2
+ 1 (5 × 5)(5 + 5) + 18m

2
+ m + 1 (5 × 7)(5 + 7) + 4m

2
+ 2 (7 × 8)(7 + 8)

� 840 2 + 4m
2

  + 120 −1 + 5m
2

  + 250 1 + 7m
2

  + 420 1 + m + 18m
2

 

� 10 223 + 42m + 1327m
2

 .

(29)

To prove (d), expand (8) and substitute values from
Table 1, which gives

∗M
ev

(PN) � 5m
2

− 1  ×
1
42

+ 7m
2

+ 1  ×
1
42

+ 18m
2

+ m + 1  ×
1
52

+ 4m
2

+ 2  ×
1
62

�
1
36

4m
2

+ 2  +
1
16

5m
2

− 1  +
1
16

7m
2

+ 1  +
1
25

18m
2

+ m + 1 

�
1
900

1423m
2

+ 36m + 86 .

(30)

□
Theorem 3. Let PN(V, E) be the graph of polyphenylene
network; then,

Proof. To prove (a), expanding equation (9) and
substituting values from Table 1, we find

ve − SC(PN) �
4m

2
+ 2

����
7 + 8

√ +
5m

2
− 1

����
3 + 5

√ +
18m

2
+ m + 1
����
5 + 7

√ +
7m

2
+ 1

����
5 + 5

√

�
4m

2
+ 2

��
15

√ +
5m

2
− 1

2
�
2

√ +
18m

2
+ m + 1

2
�
3

√ +
7m

2
+ 1

��
10

√

� 3
�
3

√
+

5
2

�
2

√ +
7
��
10

√ +
4
��
15

√ m
2

+
m

2
�
3

√ −
1

2
�
2

√ +
1

2
�
3

√ +
1
��
10

√ +
2
��
15

√ .

(31)

To prove (b), expanding (10) and substituting values
from Table 1, we find
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ve − ABC(PN) �
������������
7 + 8 − 2/7 × 8

√
4m

2
+ 2  +

������������
3 + 5 − 2/3 × 5

√
5m

2
− 1  +

������������
5 + 7 − 2/5 × 7

√
18m

2
+ m + 1 

+
������������
5 + 5 − 2/5 × 5

√
7m

2
+ 1 

�
2
5

�
2

√
7m

2
+ 1  +

���
2/5

√
5m

2
− 1  +

���
2/7

√
18m

2
+ m + 1  +

�����
13/14

√
2m

2
+ 1 

�
14

�
2

√

5
+

��
10

√
+ 18

���
2/7

√
+

����
26/7

√
 m

2
+

���
2/7

√
m +

2
�
2

√

5
−

���
2/5

√
+

���
2/7

√
+

�����
13/14

√
$.

(32)

□
Theorem 4. Let PN(V, E) be the graph of polyphenylene
network, then

(a) ve − GA(PN) �
16

��
14

√

15
+
5

��
15

√

4
+ 3

��
35

√
+ 7 m

2
+

��
35

√
m

6
+
8

��
14

√

15
+

��
35

√

6
−

��
15

√

4
+ 1,

(b) ve − AG(PN) � 4
�
5
3



+
15
��
14

√ +
108

��
35

√ + 7 m
2

+
6m

��
35

√ +
15

2
��
14

√ −
4
��
15

√ +
6
��
35

√ + 1.

(33)

Proof. To prove (a), expand equation (11) and substitute
values from Table 1, which gives

ve − GA(PN) � 4m
2

+ 2 
2

����
7 × 8

√

7 + 8
+ 5m

2
− 1 

2
����
3 × 5

√

3 + 5
+ 18m

2
+ m + 1 

2
����
5 × 7

√

5 + 7
+ 7m

2
+ 1 

2
����
5 × 5

√

5 + 5

� 7m
2

+
4
15

��
14

√
4m

2
+ 2  +

1
4

��
15

√
5m

2
− 1  +

1
6

��
35

√
18m

2
+ m + 1  + 1

�
16

��
14

√

15
+
5

��
15

√

4
+ 3

��
35

√
+ 7 m

2
+

��
35

√
m

6
+
8

��
14

√

15
+

��
35

√

6
−

��
15

√

4
+ 1.

(34)

To prove (b), expand (12) and substitute values from
Table 1, which gives

AG
ve

(PN) � 5m
2

− 1 
3 + 5

2
����
3 × 5

√ + 7m
2

+ 1 
5 + 5

2
����
5 × 5

√ + 18m
2

+ m + 1 
7 + 5

2
����
7 × 5

√ + 4m
2

+ 2 
7 + 8

2
����
7 × 8

√

� 1 + 7m
2

+
15 1 + 2m

2
 

2
��
14

√ +
4 −1 + 5m

2
 

��
15

√ +
6 1 + m + 18m

2
 

��
35

√

� 4
�
5
3



+
15
��
14

√ +
108

��
35

√ + 7 m
2

+
6m

��
35

√ +
15

2
��
14

√ −
4
��
15

√ +
6
��
35

√ + 1.

(35)

□
Theorem 5. Let PN(V, E) be the graph of polyphenylene
network; then, H

ve
(PN) �

1
60

371m
2

+ 10m + 23 . (36)
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Proof. To prove, expand equation (13) and substitute values
from Table 1, which gives

H
ve

(PN) �
2 4m

2
+ 2 

7 + 8
+
2 5m

2
− 1 

3 + 5
+
2 18m

2
+ m + 1 

5 + 7
+
2 7m

2
+ 1 

5 + 5

�
2
15

4m
2

+ 2  +
1
4

5m
2

− 1  +
1
5

7m
2

+ 1  +
1
6

18m
2

+ m + 1 

�
1
60

371m
2

+ 10m + 23 .

(37)

□
Theorem 6. Let PN(V, E) be the graph of polyphenylene
network; then,

(a) ID
ev

(PN) �
1
15

109m
2

+ 3m + 8 ,

(b) ISIve
(PN) �

1
120

1321 + 350m + 11317m
2

 .

(38)

Proof. To prove (a), expand equation (14) and substitute
values from Table 1, which gives

ID
ev

(PN) � 5m
2

− 1  ×
1
4

+ 7m
2

+ 1  ×
1
4

+ 18m
2

+ m + 1  ×
1
5

+ 4m
2

+ 2  ×
1
6

�
1
15

109m
2

+ 3m + 8 .

(39)

To prove (b), expand (15) and substitute values from
Table 1, which gives

ISIve
(PN) � 5m

2
− 1 

3 × 5
3 + 5

+ 7m
2

+ 1 
5 × 5
5 + 5

+ 18m
2

+ m + 1 
7 × 5
7 + 5

+ 4m
2

+ 2 
7 × 8
7 + 8

�
56
15

2 + 4m
2

  +
15
8

−1 + 5m
2

  +
5
2

1 + 7m
2

  +
35
12

1 + m + 18m
2

 

�
1
120

1321 + 350m + 11317m
2

 .

(40)

□
Theorem 7. Let PN(V, E) be the graph of polyphenylene
network; then,

(a) F
ev

(PN) � 3882m
2

+ 125m + 557,

(b) F
ve

(PN) � 316 + 74m + 2304m
2
.

(41)

Proof. To prove (a), expand equation (16) and substitute
values from Table 1, which gives

F
ev

(PN) � 43 5m
2

− 1  + 43 7m
2

+ 1  + 53 18m
2

+ m + 1  + 63 4m
2

+ 2 

� 216 4m
2

+ 2  + 64 5m
2

− 1  + 64 7m
2

+ 1  + 125 18m
2

+ m + 1 

� 3882m
2

+ 125m + 557.

(42)
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To prove (b), expand (17) and substitute values from
Table 1, which gives

F
ve

(PN) � 5m
2

− 1  32 + 52  + 7m
2

+ 1  52 + 52  + 18m
2

+ m + 1  52 + 72  + 4m
2

+ 2  72 + 82 

� 113 2 + 4m
2

  + 34 −1 + 5m
2

  + 50 1 + 7m
2

  + 74 1 + m + 18m
2

 

� 316 + 74m + 2304m
2
.

(43)

□
Theorem 8. Let PN(V, E) be the graph of polyphenylene
network; then,

(a) HM
ve
1 (PN) � 6 105 + 24m + 752m

2
 ,

(b) HM
ve
2 (PN) � 7897 + 1225m + 40094m

2
.

(44)

Table 2: &e numerical representation of Randic-type indices.

m R(PN) Rev(PN) Rve(PN) RRev(PN)

1 16.474 4 17.393 8 6.815 2 83.418 3
2 62.088 3 64.889 5 25.788 4 307.796
3 137.839 143.751 57.297 8 680.268
4 243.727 253.978 101.343 1200.83
5 379.753 395.571 157.925 1869.49
6 545.915 568.529 227.043 2686.25
7 742.214 772.853 308.697 3651.1
8 968.651 1008.54 402.887 4764.04
9 1225.22 1275.6 509.613 6025.08
10 1511.94 1574.02 628.876 7434.21

R (PN)
Rev (PN)

Rve (PN)
RRev (PN)

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

m

Ra
nd

ic 
In

di
ce

s

Figure 3: &e graphical representation of Randic-type indices.

Table 3: &e numerical representation of Zagreb-type indices.

m Mbve
i (PN) Mve

ii (PN) RZGve
iii(PN) ∗Mve(PN)

1 442 1296 15 920 1.716 67
2 1612 4643 56150 6.5
3 3554 10198 122 920 14.445 6
4 6268 17 961 216 230 25.553 3
5 9754 27 932 336 080 39.823 3
6 14 012 40111 482 470 57.255 6
7 19 042 54 498 655 400 77.85
8 24 844 71 093 854 870 101.607
9 31 418 89 896 1080 880 128.526
10 38 764 110 907 1333 430 158.607
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Proof. To prove (a), expand equation (18) and substitute
values from Table 1, which gives

HM
ve
1 (PN) � 5m

2
− 1 (3 + 5)

2
+ 7m

2
+ 1 (5 + 5)

2
+ 18m

2
+ m + 1 (5 + 7)

2
+ 4m

2
+ 2 (7 + 8)

2

� 225 2 + 4m
2

  + 64 −1 + 5m
2

  + 100 1 + 7m
2

  + 144 1 + m + 18m
2

 

� 6 105 + 24m + 752m
2

 .

(45)

Mi
bve (PN)

Mii
ve (PN)

RZGiii
ve (PN)

*Mev (PN)

0 2 4 6 8 10
0

50000

100000

150000

200000

250000

300000

m

Za
gr

eb
 In

di
ce

s

Figure 4: &e graphical representation of Zagreb-type indices.

Table 4: &e numerical representation of ve-ABC and ve-SC indices.

m ve - ABC(PN) ve - SC(PN)
1 20.636 6 11.266 7
2 77.183 3 42.186 3
3 171.072 93.526 6
4 302.301 165.287
5 470.872 257.469
6 676.785 370.071
7 920.039 503.094
8 1200.63 656.537
9 1518.57 830.401
10 1873.85 1024.69

ve-SC (PN)
ve-ABC (PN)

0 2 4 6 8 10
0

500

1000

1500

m

Su
m

, A
to

m
ic

 B
on

d 
Co

nn
ec

tiv
ity

 In
di

ce
s

Figure 5: &e graphical representation of ve-ABC and ve-SC indices.
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Table 5: &e numerical representation of the geometric arithmetic index.

m ve - GA(PN) ve - AG(PN)
1 37.579 9 38.428 3
2 139.308 142.727
3 308.196 315.882
4 544.246 557.894
5 847.458 868.762
6 1217.83 1248.49
7 1655.36 1697.07
8 2160.06 2214.51
9 2731.91 2800.8
10 3370.93 3455.95

ve-GA (PN)
ve-AG (PN)

0 2 4 6 8 10
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m
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Figure 6: &e graphical representation of the geometric arithmetic index.
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Figure 7: &e graphical representation of ve-degree harmonic indices.

Table 6: &e numerical representation of inverse indices.

m IDev(PN) ISIve(PN)

1 8 108.233
2 30 394.075
3 66.533 3 868.533
4 117.6 1531.61
5 183.2 2383.3
6 263.333 3423.61
7 358 4652.53
8 467.2 6070.07
9 590.933 7676.23
10 729.2 9471.01
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To prove (b), expand (19) and substitute values from
Table 1, which gives

HM
ve
2 (PN) � 5m

2
− 1 (3 × 5)

2
+ 7m

2
+ 1 (5 × 5)

2
+ 18m

2
+ m + 1 (5 × 7)

2
+ 4m

2
+ 2 (7 × 8)

2

� 3136 2 + 4m
2

  + 225 −1 + 5m
2

  + 625 1 + 7m
2

  + 1225 1 + m + 18m
2

 

� 7897 + 1225m + 40094m
2
.

(46)

□
2.2. Numerical and Graphical Discussion. In &eorem 1, we
stated and then computed Randić indices of the graph of
polyphenylene network (Figure 1) for m frameworks or
units. By the resulting equations, we determined exact
numerical values of Randić indices, for some
m(� 1, 2, . . . , 10), and listed in Table 2 and plotted them in
Figure 3 by which we can observe that all the resulting
equations show parabolic behavior. For continuously in-
creasing values of m, all the indices go to infinity. RRev(PN)

increases faster than other indices which are in order
Rve(PN)<R(PN)<Rev(PN).

Table 3 and Figure 4 are derived from &eorem 2 which
show the numerical values and graphical pattern of the Zagreb
indices of polyphenylene network. &e curves are parabolic,
and the parabola for RZGve

iii(PN) has the shortest length of
lactusrectum; i.e., it runs much faster than the others.

In Table 4 and Figure 5, we exhibited the numerical
measures and graphical style of sum-connectivity and atom-
bond connectivity indices from &eorem 3. &e curves are
parabolic, and the separation between them becomes greater
and greater for increasing values of m.ve − ABC(PN) earns
larger numerical value than ve − SC(PN) for all values of m.

For m units of polyphenylene, ve − GA(PN) and ve −

AG(PN) were given in &eorem 4. By substituting
m � 1, . . . , 10, Table 5 is constructed. In Figure 6, the curves
of both the indices are shown from where we can observe
that the span between them is growing gradually.

In Figure 7, the outcomes of &eorem 5 are shown. &e
numerical values are increasing continuously with the in-
crease of frameworks m.

Table 6 and Figure 8 are established for &eorem 6 in
which we can see that, for all m, IDev(PN)< ISIve(PN), and

◆ ◆
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◆
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◆
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6.7333325.45
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223.983
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502.733

620.383

0 2 4 6 8 10
0

100

200

300

400

500

600

700

m

H
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 (P
N

)

ve-degree harmonic indices of Polyphenylene Network

Figure 8: &e graphical representation of inverse indices.

Table 7: &e numerical representation of F-ev-degree index.

m Fev(PN) Fve(PN)

1 4564 2694
2 16 335 9680
3 35 870 21 274
4 63169 37 476
5 98 232 58 286
6 141 059 83 704
7 191 650 113 730
8 250 005 148 364
9 316124 187 606
10 390 007 231 456
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both the curves are parabolic in manner. &e span between
the curves is growing very high.

Numerical values of the indices discussed in &eorem 7
are given in Table 7, where the graph of both the indices is
shown in Figure 9. Again, both the curve are parabolic. &e
index Fev(PN) acquires higher values than the index
Fve(PN) all the time, for the graph of polyphenylene
network.

Following are the conclusions of final &eorem 8. &e
numerical representation is shown in Table 8, and graphical
representation is shown in Figure 10. Once again both the
curves are parabolic. &e separation between them is
growing continuously. &e numerical values of HMve

1 (PN)

is always less than the numerical values of HMve
2 (PN).

3. Conclusion

In this study, we calculated 19 topological indices discussed
in Section 1 for the graph of polyphenylene network. Each
index represents a unique chemical or physical property
which is also mentioned in section 1. We also mentioned
many qualities of polyphenylene which tell that it is an
admirable chemical compound to make new substances and
to improve dispositions of the present one. &erefore, the
work of this paper will provide assistance in studying the
properties of polyphenylene and its derivatives.

Data Availability

&e data used to support the findings of this study are cited
at relevant places within the article as references.

Conflicts of Interest

&e authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors equally contributed to this work.

References

[1] M. Randic, “Nenad Trinajstic pioneer of chemical graph theory,”
Croatica Chemica Acta, vol. 77, no. 1-2, pp. 1–15, 2004.

[2] I. Gutman, E. Milovanovic, and I. Milovanovic, “Beyond the
Zagreb indices,” AKCE International Journal of Graphs and
Combinatorics, vol. 18, pp. 22–33, 2018.

[3] J. C. Dearden, “&e use of topological indices in QSAR and
QSPR modeling,” in Challenges and Advances in Computa-
tional Chemistry and Physics, vol. 14, pp. 57–88, Springer,
Cham, 2017.

[4] Y.-M. Chu, M. K. Siddiqui, M. F. Hanif, A. Rauf, M. Ishtiaq,
and M. H. Muhammad, “On ve-degree and ev-degree based
topological properties of H-naphtalenic nanotube,” Polycyclic
Aromatic Compounds, vol. 10, pp. 1–13, 2020.

[5] M. Ibrahim, N. Zahra, andM. K. Siddiqui, “On ve degree and ev
degree based topological indices for the series of benzenoid
graphs,” Polycyclic Aromatic Compounds, vol. 8, pp. 1–15, 2021.

[6] M.M. Zobair, M. A. Malik, and H. Shaker, “Eccentricity based
topological invariants of tightest nonadjacently configured
stable pentagonal structure of carbon nanocones,” Interna-
tional Journal of Quantum Chemistry, vol. 121, no. 24,
pp. 1–15, 2021.

[7] M. M. Zobair, A. M. Malik, H. Shaker, and N. Rehman, “Ec-
centricity based topological invariants of triangulane den-
drimers,” Utilitas Mathematica, vol. 107, pp. 193–206, 2018.

[8] H. Shaker, M. M. Zobair, H. M. A. Mehmood, and
M. A. Malik, “Gourava descriptors of multi dimensional flat
and stable tri hexagonal boron nanotubes,” International
Journal of Quantum Chemistry, vol. 122, no. 2, pp. 1–12, 2022.

Fev (PN)
Fve (PN)

0 2 4 6 8 10
0

100000

200000

300000

400000

m

F-
ev

-, 
F-

ve
-d

eg
re

e I
nv

er
se

 In
di

ce
s

Figure 9: &e graphical representation of F-ev-degree index.

Table 8: &e numerical representation of hyper-ve-degree index.

m HMve
1 (PN) HMve

2 (PN)

1 5286 49 216
2 18 966 170 723
3 41 670 372 418
4 73 398 654 301
5 114150 1.01637 × 106
6 163 926 1.45863 × 106
7 222 726 1.98108 × 106
8 290 550 2.58371 × 106
9 367 398 3.26654 × 106
10 453 270 4.02955 × 106

HM1
ve (PN)

HM2
ve (PN)

0 2 4 6 8 10
0

1×106

2×106

3×106

4×106

m

H
yp

er
 ve

-d
eg

re
e I

nd
ice

s

Figure 10: &e graphical representation of hyper-ve-degree index.

Mathematical Problems in Engineering 13



[9] M. Chellali, T. W. Haynes, S. T. Hedetniemi, and T. M. Lewis,
“On ve-degrees and ev-degrees in graphs,” Discrete Mathe-
matics, vol. 340, no. 2, pp. 31–38, 2017.

[10] M. Randic, “Characterization of molecular branching,”
Journal of the American Chemical Society, vol. 97, no. 23,
pp. 6609–6615, 1975.

[11] E. D. . Z. Suleyman, “A new tool for QSPR researches: ev-
degree randic index,” Celal Bayar University Journal of Sci-
ence, vol. 13, no. 3, pp. 615–618, 2017.

[12] V. R. Kulli, “Computing ev-degree and multiplicative evde-
gree indices of certain chemical structures,” International
Journal of Engineering Sciences & Research Technology, vol. 7,
no. 9, pp. 54–65, 2020.

[13] S. Fajtlowicz, “On conjectures of Graffiti-II,” Congressus
Numerantium, vol. 60, pp. 187–197, 1987.

[14] S. Bajaj, S. S. Sambi, and A. K. Madan, “Prediction of anti-
inflammatory activity of N-arylanthranilic acids: computa-
tional approach using refined Zagreb indices,” Croatica
Chemica Acta, vol. 78, no. 2, pp. 165–174, 2005.

[15] H. Dureja, S. Gupta, and A. K. Madan, “Topological models
for prediction of pharmacokinetic parameters of cephalo-
sporins using random forest, decision tree and moving av-
erage analysis,” Scientia Pharmaceutica, vol. 76, no. 3,
pp. 377–394, 2008.

[16] I. Gutman, J. Tosovic, S. Radenkovic, and S. Markovic, “On
atom-bond connectivity index and its chemical applicability,”
Croatica Chemica Acta, vol. 44, pp. 265–274, 2012.

[17] V. R. Kulli, “On the square ve-degree index and its polynomial
of certain oxide networks,” Journal of Global Research in
Mathematical Archives, vol. 5, no. 10, pp. 1–11, 2018.

[18] D. Vukicevic and B. Furtula, “Topological index based on the
ratios of geometrical and arithmetical means of end-vertex
degrees of edges,” Journal of Mathematical Chemistry, vol. 46,
no. 4, pp. 1369–1376, 2009.

[19] B. Zhou and N. Trinajstić, “On general sum-connectivity
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