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Recently, Wigner distribution (WD) associated with linear canonical transforms (LCTs) is quickly becoming a promising
technique for detecting linear frequency-modulated (LFM) signals corrupted with noises by establishing output signal-to-noise
ratio (SNR) inequality model or optimization model. Particularly, the closed-form instantaneous cross-correlation function type
of WD (CICFWD), a unified linear canonical Wigner distribution, has shown to be competitive in detecting noisy LFM signals
under an extremely low SNR. However, the CICFWDhas up to nine LCTfree parameters so that it requires a heavy computational
load. To improve the efficiency of real-time processing, this paper focuses on the instantaneous cross-correlation function type of
WD (ICFWD), which has only six LCTfree parameters but is not a special case of the CICFWD.,emain advantage of ICFWD is
that it could be expected to reduce the computational complexity while maintaining detection performance. ,is paper first
proposes an optimization model to the ICFWD’s output SNR with respect to deterministic signals embedded in additive zero-
mean noises. It then deduces the model’s solution to a single component LFM signal added with white noise, leading to the
optimal selection strategy on LCTfree parameters. Simulation results demonstrate that the ICFWD improves almost a doubling of
computing speed in comparison with the CICFWD while sharing the same level of detection performance. To be specific, the
computing time of ICFWD in sampling frequencies 5Hz, 10Hz, 15Hz, and 20Hz is about 0.048 s, 0.111 s, 0.226 s, and 0.392 s,
respectively, while 0.075 s, 0.233 s, 0.478 s, and 0.821 s for the computing time of CICFWD; the ICFWD and CICFWD have nearly
the same output SNR higher than that of the WD.

1. Introduction

Linear canonical transform (LCT) [1–4], also known as
ABCD transform, affine Fourier transform, and lossless first-
order optical transform, was used to solve differential
equations and analyze optical models in the early years [5].
,e LCT has three free parameters, which enable it to be
capable of providing a mathematical model for paraxial
propagation through quadratic phase systems [6–8]. It can
also be described and characterized by propagation through
free space in the Fresnel approximation or through sections
of graded-index media, implemented with an arbitrary
number of thin lenses [6–8]. From the viewpoint of time-
frequency analysis, thanks to more degrees of freedom, the

LCT outperforms the ordinary Fourier transform (FT)
which is subjected to the time or the frequency domain
representation, giving a flexible nonstationary signal rep-
resentation in time-frequency domains.

Wigner distribution (WD) [9–11] is the generating
distribution for Cohen’s class time-frequency representa-
tions [12]. It can be suitable in the process of linear fre-
quency-modulated (LFM) signals, which are frequently
encountered in many engineering applications such as
satellite communications [13] and synthetic aperture radar
(SAR) [14]. However, in the case of extremely strong noise
interference, the WD fails to provide enough signal repre-
sentation flexibility to extract the signal from the noise. To
address this shortcoming, a promising technique that
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introduces LCT free parameters into the traditional WD has
attracted much attention in recent years.

Indeed, as early as 2001, Pei and Ding [15] presented the
affine characteristic type of WD (ACWD) to separate
multicomponent signals through the designing of filters in
LCT domains, which is none other than the traditional WD
affinely transforming in the time-frequency plane. Until
2012, Bai et al. [16] proposed the kernel function type of WD
(KFWD), which differs essentially from the traditional WD,
by replacing the kernel function of the FT with that of the
LCT. In consideration of the fact that the KFWD is subjected
to the conventional energy domain representation when
dealing with LFM signals, in 2016 Zhang [17] proposed the
convolution representation type of WD (CRWD) by
replacing the classical convolution operator with a general
form in the LCT domain. To combine the advantages of
energy domain and correlation domain representations,
Zhang [18] also proposed the instantaneous cross-correla-
tion function type ofWD (ICFWD) [19] to integrate theWD
and the ambiguity function. Two different LCT parameter
matrices embedded in the ICFWD are acting, respectively,
on the signal and the kernel function, indicating that the
ICFWD is a six-free-parameter class of bilinear time-fre-
quency distribution.

In order to unify the existing Wigner distributions in
LCT domains, such as the ACWD, KFWD, CRWD, and
ICFWD, Zhang and Luo [20] proposed the closed-form
instantaneous cross-correlation function type of WD
(CICFWD) [19] by applying also another LCT parameter
matrix on the signal’s complex conjugate. ,e CICFWD has
been shown to be the main body of Wigner distributions in
LCTdomains, and it achieves a good detection performance
under some LCT free parameters while a poor one in other
cases. To disclose a causal relationship between appropriate
parameters and good detection effects, the function of
output signal-to-noise ratio (SNR) with respect to param-
eters was investigated. ,e CICFWD’s expectation-SNR
[21, 22] and variance-SNR [8, 19] defined, respectively, by
the ratio of magnitude spectrums and energy spectrums are
currently derived. Output SNR inequality [21]/inequalities
system [8] model and optimization [22]/multiobjective
optimization [19] model are then established to reveal the
underlying mechanism of the improvement of detection
effects triggered by the LCT free parameters. However, the
CICFWD has as many as nine parameters so that its
implementation requires a high computation cost, which is
unbearable to most real-time information analysis problems,
such as real-time communication processing and real-time
SAR imaging.

Compared with the CICFWD, the ICFWD has few LCT
free parameters but is not a special case. It is this fact that
enables the ICFWD to be more computationally efficient
while maintaining the same level of detection performance
as the CICFWD.,us, the main research object of this paper
is the ICFWD. In the paper, we first formulate the ICFWD’s
expectation-SNR definition for a generalized noisy signal
expression and establish an output SNR optimization model
of the ICFWD. We then make a strategic decision on the
optimal parameters by solving the optimization model with

respect to a single component LFM signal embedded in
additive white noise. We also compare the computing speed
and detection performance of ICFWD and CICFWD
through numerical experiments.

,e main contributions of this paper are summarized as
follows:

(i) It defines the expectation-SNR of ICFWD for a
generalized noisy signal consisting of signal and
additive zero-mean noise

(ii) It constructs the output expectation-SNR optimi-
zation model of ICFWD on the generalized noisy
signal

(iii) It obtains the solution of the optimization model for
analytic single component LFM signal added with
white noise

(iv) It reveals the competitive strengths of ICFWD in
maintaining detection performance and saving
computing time as compared with the CICFWD

,e remainder of this paper is structured as follows:
Section 2 collects some background knowledge of the LCT
and ICFWD; Section 3 studies the optimization modeling
and solving of the output SNR of ICFWD; Section 4 deduces
the optimal selection strategy on LCT free parameters for a
single component LFM signal embedded in additive white
noise; Section 5 conducts numerical experiments; and
Section 6 concludes the paper and demonstrates the future
research interests.

2. Preliminaries

2.1. LCT. ,e LCT includes the classical FT, the Fresnel
transform, the Lorentz transform, the fractional Fourier
transform [23–27], and the scaling and chirp multiplication
operators [28] as special cases. ,e LCT’s generality enables
it to be capable of solving many mathematical, physical, and
engineering problems that other conventional transforma-
tions fail to solve. For a signal f(t), its LCT associated with
the parameter matrix A � (a, b; c, d) is given by [29–35]

FA(u) �
􏽚

+∞

− ∞
f(t)KA(u, t)dt, b≠ 0,

��
d

√
e

j(c d)/2u2
f(du), b � 0,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where

KA(u, t) �
1

����
j2πb

􏽰 e
j d/(2b)u2− (1/b)ut+a/(2b)t2( )

(2)

denotes the LCT kernel function, and where a, b, c, d are
LCT real parameters that satisfy a d − bc � 1.

,e variable u in the kernel function and the LCT do-
main are abbreviated as the linear canonical frequency and
the linear canonical domain, respectively.

As it is seen, the LCT is just a type of scaling and chirp
multiplication operations for b � 0. We, therefore, have no
interest in dealing with this particular case. Without loss of
generality, this paper focuses only on the LCT with b≠ 0,
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from which a relation c � (a d − 1)/b derives. In this case,
three free parameters of the LCTare none other than a, b, d.

2.2. ICFWD. For a signal f(t), its CICFWD associated with
parameter matrices A1 � (a1, b1; c1, d1), A2 � (a2, b2;

c2, d2), and A � (a, b; c, d) is defined by [6, 8, 19–22]

W
A1 ,A2 ,A
f (t, u) � 􏽚

+∞

− ∞
FA1

t +
τ
2

􏼒 􏼓F
∗
A2

t −
τ
2

􏼒 􏼓KA(u, τ)dτ,

(3)

where the superscript ∗ stands for a complex conjugate
operator, FA1

and FA2
stand for LCTs of f(t) associated with

parameter matrices A1 and A2, respectively, and KA(u, τ)

stands for the LCT kernel function associated with the
parameter matrix A.

As shown in the definition of CICFWD, there exist three
different matrices A1, A2, and A, i.e., nine LCT free pa-
rameters. Although the CICFWD is particularly suitable for
noisy LFM signals detection, it is computationally expensive.
A wise alternative is thus the ICFWD, which has only six
parameters. For a signal f(t), its ICFWD associated with
parameter matrices A1 and A is defined by [18]

W
A1 ,A
f (t, u) � 􏽚

+∞

− ∞
FA1

t +
τ
2

􏼒 􏼓f
∗

t −
τ
2

􏼒 􏼓KA(u, τ)dτ. (4)

Because of b2 ≠ 0, FA2
does not reduce to f at any time,

implying that the ICFWD is by nomeans a special case of the
CICFWD.

It should also be noted that in the case ofA1 � (1, 0; 0, 1)

andA � (0, 1; − 1, 0) the ICFWD turns into the conventional
WD [10]

Wf(t,ω) � 􏽚
+∞

− ∞
f t +

τ
2

􏼒 􏼓f
∗

t −
τ
2

􏼒 􏼓e
− jωτdτ. (5)

3. ICFWD’s Output SNR Optimization
Modeling and Solving

,is section first defines the output SNR of ICFWD
according to the mathematical expectation result on a
generalized noisy signal expression. It then introduces the
ICFWD’s output SNR optimization model. It also sum-
marizes the solving process of optimization problems by
considering analytic and nonanalytic noisy signals,
respectively.

3.1. Expectation-SNR Definition of ICFWD. For a general-
ized noisy signal expression f(t) + n(t), where f(t) and
n(t) denote a deterministic signal and a zero-mean noise (if
its mean were not zero, one could normalize the mean as
zero), respectively, the mathematical expectation of
ICFWD reads

E W
A1 ,A
f+n (t, u)􏼔 􏼕 � W

A1 ,A
f (t, u) + E W

A1 ,A
n (t, u)􏽨 􏽩. (6)

See Appendix A for the proof of the above formula.
Similar to the CICFWD’s output SNR definition given by

([21], equation (32) or [22], equation (6)), the expectation-
SNR of ICFWD is well defined as

ESNRA1 ,A
ICFWD �

max
(t,u)∈R2

W
A1 ,A
f (t, u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Mean
argmax

(t,u)

W
A1 ,A
f

(t,u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

E W
A1 ,A
n (t, u)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛

,
(7)

where “Mean” stands for the arithmetic mean when
argmax(t,u)|W

A1 ,A
f (t, u)| is a countable set while the integral

average when it is an uncountable set.

3.2. ICFWD’sOutput SNROptimizationModeling. As shown
in (7), for given signals and noises the expectation-SNR of
ICFWD relies on a combination of double matrixes A1,A. A
natural idea is then to explore the optimal combination that
reaches the maximum value of expectation-SNR. By taking
the expectation-SNR and LCT free parameters as an ob-
jective function and decision variables, respectively, there is
an optimization model for the output SNR of the ICFWD

max
A1 ,A

ESNRA1 ,A
ICFWD. (8)

3.3. ICFWD’s Output SNR Optimization Solving. It does not
seem workable to solve the optimization model (8) in a
common way as the objective function relies heavily on the
deterministic signal and the noise. It should also be em-
phasized that solutions of (8) differ in analytic and non-
analytic noisy signal expressions. Moreover, it requires a
lower computation cost to solve the ICFWD’s output SNR
optimization model as compared with solving that of the
CICFWD.

3.3.1. Analytic Case. For analytic noisy signals, W
A1 ,A
f (t, u)

and W
A1 ,A
n (t, u) can be seen as bivariate parametric func-

tions of variables t, u and parameter matricesA1,A. By using
the classical extreme value theory [36],
max(t,u)∈R2 |W

A1 ,A
f (t, u)| can be simplified as an algebraic

expression associated with six LCT free parameters. ,en
Meanargmax(t,u)|W

A1 ,A
f

(t,u)|
|E[W

A1 ,A
n (t, u)]|􏽮 􏽯 can be calculated

as another algebraic expression associated with parameters.
By substituting these two algebraic expressions into (7), it
follows that ESNRA1 ,A

ICFWD is a function of six parameters.
Since the parameters that give rise to the maximum of
ICFWD are subjected to some equality constraints, the
optimization model (8) is converted to a conditional ex-
tremum problem. ,anks to the Lagrangian multiplier
method [37], by taking the Lagrange function’s partial de-
rivatives in regard to LCT free parameters, there is a set of
algebraic equations. ,us, solving equations yields the op-
timal parameters. Note that the expectation-SNR of
CICFWD is a function of nine parameters. ,e system of
algebraic equations derived from the Lagrangian multiplier
method contains more equations than the previous one, and
it seems more difficult to solve them.
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3.3.2. Nonanalytic Case. For nonanalytic noisy signals, us-
ing peak detection algorithms [38] gives a solution to
max(t,u)∈R2 |W

A1 ,A
f (t, u)| for the given LCT free parameters;

Meanargmax(t,u)|W
A1 ,A
f

(t,u)|
|E[W

A1 ,A
n (t, u)]|􏽮 􏽯 can be calculated

from the set of peak points. It then follows a value of
ESNRA1 ,A

ICFWD. By using uniform design [39], traversing rep-
resentative experimental points and ranking the value thus
reach the maximum value, i.e., the maximum expectation-
SNR. ,e corresponding experimental points are just the
optimal LCT free parameters. Due to an additional pa-
rameter matrix A2 for the CICFWD, the order of repre-
sentative experimental points’ number is higher than the
previous one, resulting in a more expensive computation
cost.

4. Optimal LCT Free Parameters for Analytic
Single Component LFM Signal Embedded in
Additive White Noise

,is section explores the optimal selection strategy on the
ICFWD’s LCT free parameters for an analytic single com-
ponent LFM signal embedded in additive white noise
through the framework of output SNR optimization mod-
eling and solving.

In order to obtain the optimal strategy, the critical step is
to translate the ICFWD’s expectation-SNR into a function of

LCT free parameters. It is necessary to achieve two prepa-
ratory results, including the ICFWDs of single component
LFM signal and white noise.

4.1. ICFWD of the Single Component LFM Signal. Here is an
analytic single component LFM signal

f(t) � e
j αt+βt2( ), (9)

where the frequency rate β≠ 0.
In view of equation (4.1) introduced in [18], the ICFWD

of (9) is none other than an impulse function
������

2π bh1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

δ u − b
d1 − h1

2b1
+ β􏼠 􏼡t −

α
2

b h1 + 1( 􏼁􏼢 􏼣, (10)

where δ stands for Dirac delta operator, iff LCT free pa-
rameters satisfy (1/h1)≜ 2βb1 + a1 ≠ 0 and

a

2b
+

d1 − h1

8b1
−
β
4

� 0. (11)

As it is seen, the ICFWD reaches its maximum at a
straight line u − b((d1 − h1)/(2b1) + β)t − (α/2)b(h1 + 1) �

0 in (t, u) plane. ,e optimization problem
max(t,u)∈R2 |W

A1 ,A
f (t, u)| thus has analytic solutions

argmax
(t,u)

W
A1 ,A
f (t, u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � (t, u)|u − b
d1 − h1

2b1
+ β􏼠 􏼡t −

α
2

b h1 + 1( 􏼁 � 0􏼨 􏼩, (12)

max
(t,u)∈R2

W
A1 ,A
f (t, u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �

������

2π bh1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

. (13)

4.2. ICFWD of the White Noise. Let D denote the power
spectral density of white noise. By using the stationarity of
white noise, i.e., E[n(t1)n

∗(t2)] � Dδ(t1 − t2), and using the

sifting property of Delta function, i.e.,
g(τ) � 􏽒

+∞
− ∞ g(t)δ(t − τ)dt, the ICFWD of n(t) takes

E W
A1 ,A
n (t, u)􏽨 􏽩 �

D

2π
���
jb1

􏽰 ��
jb

􏽰 e
jd/(2b)u2

e
j a1+d1− 2( )/ 2b1( )t2

􏽚
+∞

− ∞
e

j a1+d1+2( )/ 8b1( )+
a

2b
􏼒 􏼓τ2

e
j d1− a1( )/ 2b1( )t− u/b( )τdτ. (14)

,anks to a celebrated relation

􏽚
+∞

− ∞
e

pt2+qtdt �

���π
− p

􏽲

e
− q2/(4p)

(p≠ 0,Re(p)≤ 0), (15)

taking a module on both sides of (14) gives

E W
A1 ,A
n (t, u)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � D

��������������������
2

π b a1 + d1 + 2( 􏼁 + 4ab1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳

, (16)

for (a1 + d1 + 2)/b1 ≠ − (4a/b). Note that the right-hand
side of (16) is a constant independent of variables t, u. Its
detailed derivation is given in Appendix B. Owing to (11),

the formulation b(a1 + d1 + 2) + 4ab1 can be simplified as
b(h1 + 1)2/h1. ,en there is

Mean
argmax

(t,u)

W
A1 ,A
f

(t,u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

E W
A1 ,A
n (t, u)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛 �
D

h1 + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�����
2
π

h1

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏽳

, (17)

for h1 + 1≠ 0.

4.3. Solution of the Optimization Model. Substituting (13)
and (17) into (7) gives
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ESNRA1 ,A
ICFWD �

π
D

b h1 + 1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (18)

which is a function of parameters a1, b1, b. With an equality
constraint (11), the optimization model (8) can be converted
to the following conditional extremum problem:

maximizef a1, b1, b( 􏼁 � b
2

h1 + 1( 􏼁
2
,

subject tog a1, b1, b( 􏼁 �
a

2b
+

d1 − h1

8b1
−
β
4
.

(19)

By using the Lagrangian multiplier method, the
Lagrange function follows

L a1, b1, b, λ( 􏼁 � f a1, b1, b( 􏼁 + λg a1, b1, b( 􏼁, (20)

and subsequently, by taking its partial derivatives, there is a
set of algebraic equations

zL

za1
� 0,

zL

zb1
� 0,

zL

zb
� 0,

zL

zλ
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

By solving equations, there are equalities

h1 � d1

�
4a

b
b1 − 1,

(22)

2a

b
� β, (23)

which can be regarded as the optimal strategy on LCT free
parameters. For the detailed proof, ones can refer to Ap-
pendix C.

By substituting h1 � (4a/b)b1 − 1 into (18), the ICFWD’s
maximum expectation-SNR takes (π/D)|4ab1|. As it is
known, the maximum expectation-SNR of the traditional
WD is (2π/D) [22]. Certainly, the former should be greater
than the latter in order to achieve a better detection per-
formance. ,us, there is a potential inequality constraint

ab1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>
1
2
. (24)

For simplicity, in real-world applications the optimal
LCT free parameters are chosen as a1 � b/(4 − b) − (2β/a),
b1 � (1/a), d1 � (4/b) − 1, and (2a/b) � β satisfying
(22)–(24).

5. Numerical Experiments

,is section presents simulations to compare the computing
speed and detection performance of ICFWD and CICFWD.

Here is the simulated single component LFM signal
f1(t) added with a complex white Gaussian noise n(t)

f(t) � f1(t) + n(t)

� e
j t+0.5t2( ) + n(t), |t|≤ 5s.

(25)

Let Var[n(t)] denote the variance of the noise, which is
closely related to the noise’s power spectral density D and
the noise’s bandwidth W, i.e., Var[n(t)] � D × W. ,en the
input SNR takes

SNR � 10log10
􏽒
5
− 5 f1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dt

D × W
. (26)

Moreover, the sampling frequency takes 20Hz.
Figure 1 compares the detection performance of ICFWD

with that of CICFWD andWD.,e ICFWD and its contour
picture are plotted in Figures 1(a) and 1(b), respectively. ,e
CICFWD and its contour picture are plotted in Figures 1(c)
and 1(d), respectively. ,e WD and its contour picture are
plotted in Figures 1(e) and 1(f ), respectively. ,e optimal
LCT free parameters are selected for A1 � (− 1, 2; − 1, 1) and
A � (1/2, 2; − 3/4, − 1) obeying the proposed strategy
a1 � b/(4 − b) − (2β/a), b1 � (1/a), d1 � (4/b) − 1, and
(2a/b) � β for the ICFWD and are chosen as
A1 � (3/2, 1; − 1, 0), A2 � (11/6, − 1; 1, 0), and A � (1, 5/2;

− 4/15, 1/3) obeying the optimal strategy introduced in [22]
for the CICFWD. By comparing the sharpness of energy
straight lines, it is obvious that the detection performance of
ICFWD is similar to that of CICFWD, outperforming the
detection performance of the traditional WD.

By using Radon transform (RT) [40] to accumulate
energy straight lines, it allows conducting a further detection
performance comparison through the maximum output of
the matched filtering in accordance with the signal. ,e RT-
based CICFWD (RCICFWD) and RT-basedWD (RWD) are
reproduced here as ([21], equations (53) and (54))

χRCICFWD(k, l) � 􏽚 􏽚
+∞

− ∞
W

A1 ,A2 ,A
f (t, u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

× δ u − b
d1 − 1/ 2kb1 + a1( 􏼁

2b1
+

d2 − 1/ 2kb2 + a2( 􏼁

2b2
􏼠 􏼡t −

l

2
b

1
2kb1 + a1

+
1

2kb2 + a2
􏼠 􏼡􏼢 􏼣dtdu,

χRWD(k, l) � 􏽚 􏽚
+∞

− ∞
Wf(t,ω)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
δ(ω − 2kt − l)dtdω,

(27)
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Figure 1:,e detection performance of ICFWD, CICFWD, andWD.,e input SNR is − 10 dB.,e sampling frequency takes 20Hz. (a),e
ICFWD with A1 � (− 1, 2; − 1, 1) and A � (1/2, 2; − 3/4, − 1). (b) ,e ICFWD’s contour picture. (c) ,e CICFWD with A1 � (3/2, 1; − 1, 0),
A2 � (11/6, − 1; 1, 0), and A � (1, 5/2; − 4/15, 1/3). (d) ,e CICFWD’s contour picture. (e) ,e WD. (f) ,e WD’s contour picture.
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respectively. Similarly, the RT-based ICFWD, abbreviated as
the RICFWD, is given by

χRICFWD(k, l) � 􏽚 􏽚
+∞

− ∞
W

A1 ,A
f (t, u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

× δ u − b
d1 − 1/ 2kb1 + a1( 􏼁

2b1
+ k􏼠 􏼡t −

l

2
b

1
2kb1 + a1

+ 1􏼠 􏼡􏼢 􏼣dtdu. (28)

Figures 2(a)–2(c) plot the k-amplitude distributions of
RICFWD, RCICFWD, and RWD, respectively. As it is seen,
the ICFWD maintains the same level of output SNR as the
CICFWD, and both are higher than the WD’s output SNR.

Table 1 records the computing time of ICFWD and
CICFWD in four different sampling frequencies 5Hz, 10Hz,
15Hz, and 20Hz by using MATLAB language (version
R2020b) and Acer NoteBook equipped with Intel(R)
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Figure 2:,e detection performance of RICFWD, RCICFWD, and RWD.,e input SNR is − 10 dB.,e sampling frequency takes 20Hz.
(a) ,e RICFWD’s k-amplitude distribution. (b) ,e RCICFWD’s k-amplitude distribution. (c) ,e RWD’s k-amplitude distribution.

Table 1: Computing time of ICFWD and CICFWD in sampling frequencies 5Hz, 10Hz, 15Hz, and 20Hz.

Sampling frequency (Hz) Computing time of ICFWD (s) Computing time of CICFWD (s)
5 0.0482 0.0745
10 0.1110 0.2331
15 0.2259 0.4780
20 0.3918 0.8207
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Core(TM) i5-10300H CPU @ 2.50GHz. ,e computing
time is statistically obtained by averaging over 1000 reali-
zations. Figure 3 plots a comparison of the computing speed
of ICFWD and CICFWD. It is clear that the calculating
speed of ICFWD can be nearly doubled in comparison with
that of CICFWD.

To summarize, the ICFWD exhibits the same level of
detection performance as the CICFWD while improving
almost a doubling of computing speed.

6. Conclusion

,e theory of ICFWD in detecting noisy LFM signals is
investigated. By modeling and solving the ICFWD’s ex-
pectation-SNR optimization problem, the optimal strategy

for the determination of the ICFWD’s LCT free parameters
is definite. It turns out that the ICFWD exhibits the same
level of detection performance as the CICFWD but half the
computing speed. Although the proposed strategy seems
correct and effective, it is not unique. ,erefore, the future
work will be interested in the uniqueness of the optimal LCT
free parameters selection strategy.

Appendix

A. Mathematical Expectation of
ICFWD of f(t)+ n(t)

According to the LCT’s linearity property, there is

E W
A1 ,A
f+n (t, u)􏼔 􏼕 � E 􏽚

+∞

− ∞
FA1

t +
τ
2

􏼒 􏼓 + NA1
t +

τ
2

􏼒 􏼓􏼔 􏼕 f
∗

t −
τ
2

􏼒 􏼓 + n
∗

t −
τ
2

􏼒 􏼓􏼔 􏼕KA(u, τ)dτ􏼢 􏼣

� E W
A1,A
f (t, u)􏼔 􏼕 + E W

A1 ,A
n (t, u)􏽨 􏽩

+ E 􏽚
+∞

− ∞
FA1

t +
τ
2

􏼒 􏼓n
∗

t −
τ
2

􏼒 􏼓KA(u, τ)dτ􏼢 􏼣

+ E 􏽚
+∞

− ∞
NA1

t +
τ
2

􏼒 􏼓f
∗

t −
τ
2

􏼒 􏼓KA(u, τ)dτ􏼢 􏼣.

(A.1)

Due to the whiteness of noise, it follows that
E[n(t)] � E[n∗(t)] � 0, from which it derives
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Figure 3: ,e computing speed of ICFWD and CICFWD.
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E 􏽚
+∞

− ∞
FA1

t +
τ
2

􏼒 􏼓n
∗

t −
τ
2

􏼒 􏼓KA(u, τ)dτ􏼢 􏼣

� 􏽚
+∞

− ∞
FA1

t +
τ
2

􏼒 􏼓E n
∗

t −
τ
2

􏼒 􏼓􏼔 􏼕KA(u, τ)dτ

� 0,

E 􏽚
+∞

− ∞
NA1

t +
τ
2

􏼒 􏼓f
∗

t −
τ
2

􏼒 􏼓KA(u, τ)dτ􏼢 􏼣

� 􏽚
+∞

− ∞
E NA1

t +
τ
2

􏼒 􏼓􏼔 􏼕f
∗

t −
τ
2

􏼒 􏼓KA(u, τ)dτ

� 􏽚
+∞

− ∞
E 􏽚

+∞

− ∞
n(ε)KA1

t +
τ
2
, ε􏼒 􏼓dε􏼢 􏼣f

∗
t −

τ
2

􏼒 􏼓KA(u, τ)dτ

� 􏽚
+∞

− ∞
􏽚

+∞

− ∞
E[n(ε)]KA1

t +
τ
2
, ε􏼒 􏼓dε􏼒 􏼓f

∗
t −

τ
2

􏼒 􏼓KA(u, τ)dτ

� 0.

(A.2)

Because of E[W
A1 ,A
f (t, u)] � W

A1 ,A
f (t, u), equation (A.1)

becomes the required result (6).
B. Module of ICFWD’s Mathematical
Expectation of White Noise

It follows from E[n(t1)n
∗(t2)] � Dδ(t1 − t2) that

E NA1
t +

τ
2

􏼒 􏼓n
∗

t −
τ
2

􏼒 􏼓􏼔 􏼕 � E 􏽚
+∞

− ∞
n(ε)n∗ t −

τ
2

􏼒 􏼓KA1
t +

τ
2
, ε􏼒 􏼓dε􏼢 􏼣

� 􏽚
+∞

− ∞
E n(ε)n∗ t −

τ
2

􏼒 􏼓􏼔 􏼕KA1
t +

τ
2
, ε􏼒 􏼓dε

� D 􏽚
+∞

− ∞
δ ε − t +

τ
2

􏼒 􏼓KA1
t +

τ
2
, ε􏼒 􏼓dε

�
D
����
j2πb

􏽰 e
j a1+d1− 2( )/ 2b1( )t2

e
j a1+d1+2( )/ 8b1( )τ2e

j d1− a1( )/ 2b1( )tτ
.

(B.1)

,en the expectation of ICFWD of white noise has a
form

E W
A1 ,A
n (t, u)􏽨 􏽩 � 􏽚

+∞

− ∞
E NA1

t +
τ
2

􏼒 􏼓n
∗

t −
τ
2

􏼒 􏼓􏼔 􏼕KA(u, τ)dτ

�
D

�����
j2πb1

􏽰
1

����
j2πb

􏽰 e
jd/(2b)u2

e
j a1+d1− 2( )/ 2b1( )t2

􏽚
+∞

− ∞
e

j a1+d1+2( )/ 8b1( )+(a/2b)( )τ2e
j d1− a1( )/ 2b1( )t− (u/b)( )τdτ.

(B.2)

For (a1 + d1 + 2)/b1 ≠ − (4a/b) by using (15), and
subsequently by taking the module, there is the required
result (16).
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C. Solution of the System of Algebraic
Equations (21)

b2(h1 + 1)2 is a function of parameters a1, b1, b, since h1 �

1/(2βb1 + a1) is a function of parameters a1 and b1.,en, the
Lagrange function takes

L a1, b1, b, λ( 􏼁 � f a1, b1, b( 􏼁 + λg a1, b1, b( 􏼁

� b
2

h1 + 1( 􏼁
2

+ λ
a

2b
+

d1 − h1

8b1
−
β
4

􏼠 􏼡.

(C.1)

Taking its partial derivatives with respect to a1, b1, b, λ
and setting them to zero yield

zL

za1
� − h

2
1 2b

2
h1 + 2b

2
−

λ
8b1

􏼠 􏼡

� 0,

zL

zb1
� − 2βh

2
1 2b

2
h1 + 2b

2
−

λ
8b1

􏼠 􏼡 +
λ h1 − d1( 􏼁

8b
2
1

� 0,

zL

zb
� 2b h1 + 1( 􏼁

2
−
λa

2b
2

� 0,

zL

zλ
�

a

2b
+

d1 − h1

8b1
−
β
4

� 0.

(C.2)

,en there are a couple of equations

2b
2

h1 + 1( 􏼁 �
λ
8b1

, (C.3)

2βh
2
1 2b

2
h1 + 2b

2
−

λ
8b1

􏼠 􏼡 �
λ h1 − d1( 􏼁

8b
2
1

, (C.4)

4b
3

h1 + 1( 􏼁
2

� λa, (C.5)

2a

b
+

d1 − h1

2b1
� β. (C.6)

Combining (C.3) and (C.5) gives

h1 + 1 �
4a

b
b1. (C.7)

By substituting (C.3) into the left-hand side of (C.4),
there is

h1 � d1, (C.8)

and subsequently substituting this relation into the left-hand
side of (C.6) yields

2a

b
� β. (C.9)

With (C.7)–(C.9), there are the required results (22) and
(23).
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